914 research outputs found

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    Interference Management in Heterogeneous Networks with Blind Transmitters

    Full text link
    Future multi-tier communication networks will require enhanced network capacity and reduced overhead. In the absence of Channel State Information (CSI) at the transmitters, Blind Interference Alignment (BIA) and Topological Interference Management (TIM) can achieve optimal Degrees of Freedom (DoF), minimising network's overhead. In addition, Non-Orthogonal Multiple Access (NOMA) can increase the sum rate of the network, compared to orthogonal radio access techniques currently adopted by 4G networks. Our contribution is two interference management schemes, BIA and a hybrid TIM-NOMA scheme, employed in heterogeneous networks by applying user-pairing and Kronecker Product representation. BIA manages inter- and intra-cell interference by antenna selection and appropriate message scheduling. The hybrid scheme manages intra-cell interference based on NOMA and inter-cell interference based on TIM. We show that both schemes achieve at least double the rate of TDMA. The hybrid scheme always outperforms TDMA and BIA in terms of Degrees of Freedom (DoF). Comparing the two proposed schemes, BIA achieves more DoF than TDMA under certain restrictions, and provides better Bit-Error-Rate (BER) and sum rate performance to macrocell users, whereas the hybrid scheme improves the performance of femtocell users.Comment: 30 pages, 18 figure

    Elements of Cellular Blind Interference Alignment --- Aligned Frequency Reuse, Wireless Index Coding and Interference Diversity

    Full text link
    We explore degrees of freedom (DoF) characterizations of partially connected wireless networks, especially cellular networks, with no channel state information at the transmitters. Specifically, we introduce three fundamental elements --- aligned frequency reuse, wireless index coding and interference diversity --- through a series of examples, focusing first on infinite regular arrays, then on finite clusters with arbitrary connectivity and message sets, and finally on heterogeneous settings with asymmetric multiple antenna configurations. Aligned frequency reuse refers to the optimality of orthogonal resource allocations in many cases, but according to unconventional reuse patterns that are guided by interference alignment principles. Wireless index coding highlights both the intimate connection between the index coding problem and cellular blind interference alignment, as well as the added complexity inherent to wireless settings. Interference diversity refers to the observation that in a wireless network each receiver experiences a different set of interferers, and depending on the actions of its own set of interferers, the interference-free signal space at each receiver fluctuates differently from other receivers, creating opportunities for robust applications of blind interference alignment principles

    Degrees of Freedom and Achievable Rate of Wide-Band Multi-cell Multiple Access Channels With No CSIT

    Full text link
    This paper considers a KK-cell multiple access channel with inter-symbol interference. The primary finding of this paper is that, without instantaneous channel state information at the transmitters (CSIT), the sum degrees-of-freedom (DoF) of the considered channel is β1βK\frac{\beta -1}{\beta}K with β2\beta \geq 2 when the number of users per cell is sufficiently large, where β\beta is the ratio of the maximum channel-impulse-response (CIR) length of desired links to that of interfering links in each cell. Our finding implies that even without instantaneous CSIT, \textit{interference-free DoF per cell} is achievable as β\beta approaches infinity with a sufficiently large number of users per cell. This achievability is shown by a blind interference management method that exploits the relativity in delay spreads between desired and interfering links. In this method, all inter-cell-interference signals are aligned to the same direction by using a discrete-Fourier-transform-based precoding with cyclic prefix that only depends on the number of CIR taps. Using this method, we also characterize the achievable sum rate of the considered channel, in a closed-form expression.Comment: Submitted to IEEE Transactions on Communication

    Ergodic Interference Alignment

    Full text link
    This paper develops a new communication strategy, ergodic interference alignment, for the K-user interference channel with time-varying fading. At any particular time, each receiver will see a superposition of the transmitted signals plus noise. The standard approach to such a scenario results in each transmitter-receiver pair achieving a rate proportional to 1/K its interference-free ergodic capacity. However, given two well-chosen time indices, the channel coefficients from interfering users can be made to exactly cancel. By adding up these two observations, each receiver can obtain its desired signal without any interference. If the channel gains have independent, uniform phases, this technique allows each user to achieve at least 1/2 its interference-free ergodic capacity at any signal-to-noise ratio. Prior interference alignment techniques were only able to attain this performance as the signal-to-noise ratio tended to infinity. Extensions are given for the case where each receiver wants a message from more than one transmitter as well as the "X channel" case (with two receivers) where each transmitter has an independent message for each receiver. Finally, it is shown how to generalize this strategy beyond Gaussian channel models. For a class of finite field interference channels, this approach yields the ergodic capacity region.Comment: 16 pages, 6 figure, To appear in IEEE Transactions on Information Theor
    corecore