154 research outputs found

    Retrospective Interference Alignment

    Full text link
    We explore similarities and differences in recent works on blind interference alignment under different models such as staggered block fading model and the delayed CSIT model. In particular we explore the possibility of achieving interference alignment with delayed CSIT when the transmitters are distributed. Our main contribution is an interference alignment scheme, called retrospective interference alignment in this work, that is specialized to settings with distributed transmitters. With this scheme we show that the 2 user X channel with only delayed channel state information at the transmitters can achieve 8/7 DoF, while the interference channel with 3 users is able to achieve 9/8 DoF. We also consider another setting where delayed channel output feedback is available to transmitters. In this setting the X channel and the 3 user interference channel are shown to achieve 4/3 and 6/5 DoF, respectively

    GDoF of the MISO BC: Bridging the gap between finite precision CSIT and perfect CSIT

    Get PDF
    This work bridges the gap between sharply contrasting results on the degrees of freedom of the K user broadcast channel where the transmitter is equipped with K transmit antennas and each of the K receivers is equipped with a single antenna. This channel has K DoF when channel state information at the transmitter (CSIT) is perfect, but as shown recently, it has only 1 DoF when the CSIT is limited to finite precision. By considering the full range of partial CSIT assumptions parameterized by β ⋯ [0,1], such that the strength of the channel estimation error terms scales as ∼ SNR-β relative to the channel strengths which scale as ∼ SNR, it is shown that this channel has 1 - β + Kβ DoF. For K = 2 users with arbitrary βij parameters, the DoF are shown to be 1 + mini,j βij. To explore diversity of channel strengths, the results are further extended to the symmetric Generalized Degrees of Freedom setting where the direct channel strengths scale as ∼ SNR and the cross channel strengths scale as ∼ SNRα, α ⋯ [0,1], β ⋯ [0,α]. Here, the roles of α and β are shown to counter each other on equal terms, so that the sum GDoF value in the K user setting is (α - β) + K(1 - (α-β )) and for the 2 user setting with arbitrary βij, is 2 - α + mini,j βij

    Elements of Cellular Blind Interference Alignment --- Aligned Frequency Reuse, Wireless Index Coding and Interference Diversity

    Full text link
    We explore degrees of freedom (DoF) characterizations of partially connected wireless networks, especially cellular networks, with no channel state information at the transmitters. Specifically, we introduce three fundamental elements --- aligned frequency reuse, wireless index coding and interference diversity --- through a series of examples, focusing first on infinite regular arrays, then on finite clusters with arbitrary connectivity and message sets, and finally on heterogeneous settings with asymmetric multiple antenna configurations. Aligned frequency reuse refers to the optimality of orthogonal resource allocations in many cases, but according to unconventional reuse patterns that are guided by interference alignment principles. Wireless index coding highlights both the intimate connection between the index coding problem and cellular blind interference alignment, as well as the added complexity inherent to wireless settings. Interference diversity refers to the observation that in a wireless network each receiver experiences a different set of interferers, and depending on the actions of its own set of interferers, the interference-free signal space at each receiver fluctuates differently from other receivers, creating opportunities for robust applications of blind interference alignment principles
    • …
    corecore