1,216 research outputs found

    Fast and accurate methods of independent component analysis: A survey

    Get PDF
    summary:This paper presents a survey of recent successful algorithms for blind separation of determined instantaneous linear mixtures of independent sources such as natural speech or biomedical signals. These algorithms rely either on non-Gaussianity, nonstationarity, spectral diversity, or on a combination of them. Performance of the algorithms will be demonstrated on separation of a linear instantaneous mixture of audio signals (music, speech) and on artifact removal in electroencephalogram (EEG)

    Multichannel Speech Enhancement

    Get PDF

    Proper Inner Product with Mean Displacement for Gaussian Noise Invariant ICA

    Get PDF
    Independent Component Analysis (ICA) is a classical method for Blind Source Separation (BSS). In this paper, we are interested in ICA in the presence of noise, i.e., the noisy ICA problem. Pseudo-Euclidean Gradient Iteration (PEGI) is a recent cumulant-based method that defines a pseudo Euclidean inner product to replace a quasi-whitening step in Gaussian noise invariant ICA. However, PEGI has two major limitations: 1) the pseudo Euclidean inner product is improper because it violates the positive definiteness of inner product; 2) the inner product matrix is orthogonal by design but it has gross errors or imperfections due to sample-based estimation. This paper proposes a new cumulant-based ICA method named as PIMD to address these two problems. We first define a Proper Inner product (PI) with proved positive definiteness and then relax the centering preprocessing step to a mean displacement (MD) step. Both PI and MD aim to improve the orthogonality of inner product matrix and the recovery of independent components (ICs) in sample-based estimation. We adopt a gradient iteration step to find the ICs for PIMD. Experiments on both synthetic and real data show the respective effectiveness of PI and MD as well as the superiority of PIMD over competing ICA methods. Moreover, MD can improve the performance of other ICA methods as well

    Speech Enhancement using Multiple Transducers

    No full text
    In this thesis, three methods of speech enhancement techniques are investigated with applications in extreme noise environments. Various beamforming techniques are evaluated for their performance characteristics in terms of signal to (distant) noise ratio and tolerance to design imperfections. Two suitable designs are identified with contrasting performance characteristics — the second order differential array, with excellent noise rejection but poor robustness; and a least squares design, with adequate noise rejection and good robustness. Adaptive filters are introduced in the context of a simple noise canceller and later a post-processor for a dual beamformer system. Modifications to the least mean squares (LMS) filter are introduced to tolerate cross-talk between microphones or beamformer outputs. An adaptive filter based post-processor beamforming system is designed and evaluated using a simulation involving speech in noisy environments. The beamforming methods developed are combined with the modified LMS adaptive filter to further reduce noise (if possible) based on correlations between noise signals in a beamformer directed to the talker and a complementary beamformer (nullformer) directed away from the talker. This system shows small, but not insignificant, improvements in noise reduction over purely beamforming based methods. Blind source separation is introduced briefly as a potential future method for enhancing speech in noisy environments. The FastICA algorithm is evaluated on existing data sets and found to perform similarly to the post-processing system developed in this thesis. Future avenues of research in this field are highlighted

    Performance measurement in blind audio source separation

    Get PDF
    International audienceIn this article, we discuss the evaluation of Blind Audio Source Separation (BASS) algorithms. Depending on the exact application, different distortions can be allowed between an estimated source and the wanted true source. We consider four different sets of such allowed distortions, from time-invariant gains to time-varying filters. In each case we decompose the estimated source into a true source part plus error terms corresponding to interferences, additive noise and algorithmic artifacts. Then we derive a global performance measure using an energy ratio, plus a separate performance measure for each error term. These measures are computed and discussed on the results of several BASS problems with various difficulty levels

    Anomaly detection: sparse representation for high dimensional data

    Get PDF
    In this thesis, I investigated in three different anomaly aware sparse representation approaches. The first approach focuses on algorithmic development for the low-rank matrix completion problem. It has been shown that in the l0-search for low- rank matrix completion, the singular points in the objective function are the major reasons for failures. While different methods have been proposed to handle singular points, rigorous analysis has shown that there is a need for further improvement. To address the singularity issue, we propose a new objective function that is continuous everywhere. The new objective function is a good approximation of the original objective function in the sense that in the limit, the lower level sets of the new objective function are the closure of those of the original objective function. We formulate the matrix completion problem as the minimization of the new objective function and design a quasi-Newton method to solve it. Simulations demonstrate that the new method achieves excellent numerical performance. The second part discusses dictionary learning algorithms to solve the blind source separation (BSS) problem. For the proof of concepts, the focus is on the scenario where the number of mixtures is not less than that of sources. Based on the assumption that the sources are sparsely represented by some dictionaries, we present a joint source separation and dictionary learning algorithm (SparseBSS) to separate the noise corrupted mixed sources with very little extra information. We also discuss the singularity issue in the dictionary learning process which is one major reason for algorithm failure. Finally, two approaches are presented to address the singularity issue. The last approach focuses on algorithmic approaches to solve the robust face recognition problem where the test face image can be corrupted by arbitrary sparse noise. The standard approach is to formulate the problem as a sparse recovery problem and solve it using l1-minimization. As an alternative, the approximate message passing (AMP) algorithm had been tested but resulted in pessimistic results. The contribution of this part is to successfully solve the robust face recognition problem using the AMP framework. The recently developed adaptive damping technique has been adopted to address the issue that AMP normally only works well with Gaussian matrices. Statistical models are designed to capture the nature of the signal more authentically. Expectation maximization (EM) method has been used to learn the unknown hyper-parameters of the statistical model in an online fashion. Simulations demonstrate that our method achieves better recognition performance than the already impressive benchmark l1-minimization, is robust to the initial values of hyper-parameters, and exhibits low computational cost.Open Acces
    corecore