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Abstract

In this thesis, I investigated in three different anomaly aware sparse represen-

tation approaches.

The first approach focuses on algorithmic development for the low-rank

matrix completion problem. It has been shown that in the `0-search for low-

rank matrix completion, the singular points in the objective function are the

major reasons for failures. While different methods have been proposed to

handle singular points, rigorous analysis has shown that there is a need for

further improvement. To address the singularity issue, we propose a new

objective function that is continuous everywhere. The new objective function

is a good approximation of the original objective function in the sense that in

the limit, the lower level sets of the new objective function are the closure of

those of the original objective function. We formulate the matrix completion

problem as the minimization of the new objective function and design a quasi-

Newton method to solve it. Simulations demonstrate that the new method

achieves excellent numerical performance.

The second part discusses dictionary learning algorithms to solve the blind

source separation (BSS) problem. For the proof of concepts, the focus is on

the scenario where the number of mixtures is not less than that of sources.

Based on the assumption that the sources are sparsely represented by some
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dictionaries, we present a joint source separation and dictionary learning al-

gorithm (SparseBSS) to separate the noise corrupted mixed sources with very

little extra information. We also discuss the singularity issue in the dictionary

learning process which is one major reason for algorithm failure. Finally, two

approaches are presented to address the singularity issue.

The last approach focuses on algorithmic approaches to solve the robust

face recognition problem where the test face image can be corrupted by ar-

bitrary sparse noise. The standard approach is to formulate the problem as

a sparse recovery problem and solve it using `1-minimization. As an alterna-

tive, the approximate message passing (AMP) algorithm had been tested but

resulted in pessimistic results. The contribution of this part is to successfully

solve the robust face recognition problem using the AMP framework. The re-

cently developed adaptive damping technique has been adopted to address the

issue that AMP normally only works well with Gaussian matrices. Statistical

models are designed to capture the nature of the signal more authentically.

Expectation maximization (EM) method has been used to learn the unknown

hyper-parameters of the statistical model in an online fashion. Simulations

demonstrate that our method achieves better recognition performance than

the already impressive benchmark `1-minimization, is robust to the initial val-

ues of hyper-parameters, and exhibits low computational cost.
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Chapter 1

Introduction

Nowadays, we capture, transmit, analyse and store more and more data. Big

data processing has played an important role from research to our daily life,

e.g., signal processing, machine learning, computer vision, user recommenda-

tion system, etc. For example, book retailers can predict preferences of their

costumers and recommend books to them by using the data that collected

from their costumers.

1.1 The Challenges of Large-scale Data Process-

ing

Large-scale data brings more useful information. It offers tremendous insight

for us. On the contrary, the cost of big data processing increases with the

increasing of the dimension of the data. It is one of the phenomena that is re-

ferred as the curse of dimensionality. There are more fundamental phenomena

referred to the curse of dimensionality in other fields, such as data acquisition,

data sampling, etc. However, we are particularly interested in the big data

25
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Figure 1.1.1: A simple example of the incomplete elements in user recom-
mendation system. Each row contains the feedback scores for movies from
one customer. Each column contains all the feedback scores for one particu-
lar movie from all the customer. The question marks indicate the incomplete
feedback scores.

processing in this thesis.

We are facing the challenges in leveraging more useful data in real time

applications. For example, in statistical anomaly detection techniques, we

may need more parameters and the statistical model is complex, when the

dimension of the data is high. Another problem of handling high dimensional

data is that the data is often incomplete or even corrupted as anomalies. For

example, in the user recommendation system, the vendors collect the feedback

scores of their products (such as movies, books, etc.) from their customers.

However, in practice, the data always has “missing” elements. In other words,

we are not able to collect the feedbacks from all the customers for all the

products. The aim of a recommendation system is to predict the missing

entries from the incomplete observations. A simple example is shown in Fig.

1.1.1. In face recognition problem, some of the collected face images are under

extreme lighting conditions, corrupted by the noise or occlusions, etc.
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1.2 From Compressive Sensing to Low Rank Ma-

trices

One may utilise the sparsity property to handle large-scale data. In the high

dimensional data, there exists correlation and redundancy. Those properties

make the data more compressible/sparse. A very common example is the

image compression standard JPEG, which is an abbreviation for the Joint

Photographic Experts Group. Under this standard, the raw image can be

compressed by using Discrete Cosine Transform (DCT) with a small number

of significant non-zero coefficients while the majority of the coefficients are all

zero or close to zero. Moreover, a higher dimension may bring more sparse

feature. For example, under the same scene of a video, the two adjacent

frames are highly correlated. Hence, we do not have to keep the redundant

information between those correlated frames. The compression rate of a video

can be made much higher than a single image. We benefit from the sparsity

to handle the high dimensional data. Typically, there are two types of sparse

representations: one is the signal is sparse under the some fixed basis, such

as DCT, standard Gaussian; the other is the that the basis is not fixed, for

example, dictionary learning. A more detailed discussion about the fixed basis

case is presented in this Subsection.

Compressive sensing (CS) was first introduced by Candes, Tao [15] and

Donoho [25]. In the past decades, it has been studied and widely applied to

many fields, such as Magnetic Resonance Imaging (MRI), Single-pixel camera,

face recognition, etc. The acquired signal is sampled under a very low mea-

surement rate, which is below the Nyquist sampling rate, while still preserving
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a good quality of the signal. The mathematical model is as follows,

y = Ax,

where A ∈ Rm×n is the known measurement matrix, x ∈ Rn is the unknown

sparse signal, and observation vector y ∈ Rm (m < n). CS targets at finding

a sparse solution x from its measurement y. Then, this problem is presented

as,

min
x
‖x‖0 s.t. y = Ax, (1.2.1)

where ‖·‖0 is the `0 pseudo-norm, which denotes the number of non-zero ele-

ments of (·). An illustration of this problem is presented in Fig. 1.2.1. However,

this `0 problem is NP-hard. A relaxed convex optimization approach to the

problem (1.2.1) was proposed,

min
x
‖x‖1 s.t. y = Ax, (1.2.2)

where ‖·‖1 is the `1-norm, which is defined as the summation of the absolute

value of each element in of vector. The solution of `1 problem gives the exact

solution to the `0 problem in (1.2.1) if the measurement matrix satisfies some

properties, such as Restricted Isometry Property (RIP) [15].

The matrix rank minimization problem is closely related to the CS problem.

It assumes the signal has a low rank structure, which is known as spectral

sparsity. The sparsity is in the eigen space rather than the signal itself. Let

X ∈ Rm×n be an unknown matrix. The singular value decomposition (SVD)

of X gives,

SV D(X) =
∑
i

σiuiv
T
i ,
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Figure 1.2.1: An illustration of the mathematical model of CS. Each block
indicates one entry of the vectors/ matrix. For the sparse vector x, the red
blocks present its non-zero entries. These non-zero entries are associated with
the corresponding columns (bounded in red) in the measurement matrix A.
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where σis are the singular values in descending order and uis and vis are

the corresponding left and right singular vectors, respectively. The rank is the

number of non-zero σis. In other words, the matrix rank minimization problem

is aiming to find the minimization of the `0 pseudo-norm of the singular value

vector.

The matrix rank minimization problem is defined as follows,

min
X

rank(X) s.t. P(X) = b, (1.2.3)

where the linear map P : Rm×n → Rp. Similar with the problem (1.2.1), this

problem is also NP-hard. For the matrix minimization problem, we consider

the following convex relaxation,

min
X
‖X‖∗ s.t. P(X) = b,

where ‖·‖∗ is the nuclear norm, which denotes the sum of the singular values.

1.3 Sparse Representations for Anomaly Detec-

tion

For statistical anomaly detection techniques, the major issue is that we may

need many parameters and the statistical model is complex when the dimen-

sion of the data is high. The spectral anomaly detection techniques are based

on the assumption that data can be projected into a lower subspace, which

the abnormal data differ from the normal data. One effective way of solv-

ing the high dimensional problem is to learn the subspace structure of data,
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which leads to reducing the dimension of the data. Some dimension reduction

methods have been proposed, e.g. Principle Component Analysis (PCA) [2],

Non-negative Matrix Factorization (NMF) [52], etc. Low rank models (spec-

tral sparse) capture the intrinsic structure of the high dimensional data. The

low rank representation of the data can help us in saving storage space and

reducing computational complexity. For example, PCA is a low rank matrix

approximation method that captures the hidden important aspects of the data.

The low rank matrix approximation of X ∈ Rm×n can be written as follows

min
∥∥∥X − X̂∥∥∥2

F
, s.t. rank(X̂) ≤ r

where X̂ ∈ Rm×n is the low rank approximation, r < min(m,n) and ‖·‖F

denotes the Frobenius norm.

One can use SVD to find the rank r approximation L of the data matrix

X by

L =
r∑
i=1

σiuiv
T
i ,

where L is the optimal solution of the low rank matrix completion problem.

Then, the dimension of the matrix can be significantly reduced if the value of

the rank r is low.

Most interestingly, one can detect [6, 62] or predict changes from data sets

by using statistic tools. In many industry and business, fast and precise detec-

tion or prediction play a very important role. Unfortunately, most of the data

analysis are based on parametric statistical models [50]. High dimensional data

sets increase the number of unknown parameters and computational complex-

ity. Laan and Rose [50] argue that the next generation of statisticians must

build new tools for massive data sets. However, for some particular case, not
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Figure 1.3.1: The model of sparse representations for anomaly detection. The
observation matrix (left) can be decomposed into its sparse representation
(middle) and anomalies (right).

all of the data sets are useful and some of them are even redundant. If it is pos-

sible to distill (i.e. random measurements) useful information from big data,

and then one could apply statistical tools. An efficient and robust statistical

approach is needed to process the sparse signal.

In this thesis, we assume that the observation is the summation of the

under-lying sparse representation and the anomalies. The model of sparse

representations for anomaly detection are shown in Fig. 1.3.1. The observation

matrix can be decomposed into its sparse representation and anomalies. We

aim to acquire the sparse representation of the observation and separate the

anomalies. We shall adopt the state of the art sparse representation techniques,

such as matrix rank minimization, CS, etc., leveraging the anomalies in real-

time applications.

Low rank matrix completion is a typical application of the matrix rank

minimization. It has been receiving considerable interest in recent years due

to the wide applicability, ranging from collaborative filtering to anomaly detec-

tion. It aims at recovering the underlying low rank matrix from its incomplete
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observations. A very famous example of low rank matrix completion is the Net-

flix problem [1]. Netflix is a company that provides online streaming service.

Netflix collects the user preferences, e.g., feedbacks, browsing histories, etc.

Then, let user recommendation system to predict the potential user interests.

The users are more likely to purchase the personalised recommendations if the

predictions are more accurate. In 2009, in order to improve the accuracy of

their predictions, Netflix established one million dollars grand prize to award

the person or team who achieved 10% improvement compared with their own

recommendation system on the same train data. It is noteworthy that the low

rank structure is determined by the several key factors. From the point of view

of movies, it can be affected by the themes, regions, directors, actresses/actors,

etc. For the users, it is determined by the ages, genders, nationalities, etc. For

the low-rank matrix completion problem, we are aiming to find a complete

matrix with the lowest rank from its subset of entries. An illustration of this

problem is shown in Fig. 1.3.2.

In [51], Lakhina et al. firstly introduced PCA technique to the off-line

traffic matrix anomaly detection in 2004. The authors shows the correlations

of the time series of the traffic data at link level, e.g., there are only 3 or

4 principal components in the time series of a more than 40 links network.

Then one can separate anomalies from the normal traffic data by using SVD.

Low rank matrix completion technique can also be applied to traffic matrix

estimation in the network. A traffic matrix is a measurement matrix that each

entry indicates the traffic volume at a link at one time interval. The traffic

matrix is low rank [51]. Monitoring all the link data in a large networks can

be very costly. Instead, one can measure different subsets of link volume at

different time intervals. Then, we can use the partially observed traffic matrix
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Figure 1.3.2: An illustration of low rank matrix completion problem. The
matrix on the left is the incomplete observations. Each block presents an entry
of the matrix. The black blocks indicate the missing entries. The underlying
matrix is assumed to be low rank. One is aiming to estimate the full low rank
matrix (right) from its incomplete observations (left).

to estimate the missing entries.

Pedestrian Detection is a good example of anomaly detection. Given a

sequence of video of the public area, even in one frame, pedestrians are always

sparse (as anomalies) in contrast to the background (e.g. buildings, trees, etc.).

If we vectorized each frame, the whole video can be converted into a matrix,

with each frame as a column or row vector. Then, one can assume that this

matrix is of low rank. In practice, the rank is larger than one, because of the

movement of the pedestrians, illumination changes, etc. Finally, the problem

turns to be an optimization of finding a low rank sparse representation of the

obtained matrix. Hence, low rank representation is a very interesting problem

and one can benefit it from storage reduction to anomaly separation. A recent

paper [78] concludes that the traditional methods, e.g., PCA, are sensitive to

the outliers. There are some robust algorithms, but they are typically complex.

They propose to guess the locations of the outliers and then learn the location
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of the outlier and its low rank representation iteratively.

Blind source separation has been investigated during the last two decades,

many algorithms have been developed and applied in a wide range of appli-

cations including biomedical engineering, medical imaging, speech processing,

astronomical imaging and communication systems. One of the most famous

phenomena is the cocktail party problem. Suppose there is a cocktail party.

We are able to focus on the voice that we are particularly interested even

there are lots of other voices or sounds, e.g., someone speaks simultaneously

in your neighbors. However, blind source separation remains challenging for a

machine. The aim of blind source separation is to isolate on one source while

filtering out the other sources or noises in the background as anomalies. It is

not limited to separate mixed talks. There are several existing methods, such

as PCA, Independent Component Analysis (ICA), etc. In this thesis, we focus

on dictionary learning approach for blind source separation. It is worth to note

that the dictionary (basis) is not fixed in dictionary learning approaches.

In face recognition problem, it involves in identifying the target from a large

set of facial images. In practice, the target image might even be corrupted by

the noise or occlusions (sunglasses, scarfs) as anomalies. It makes the identifi-

cation of a facial image more difficult. Wright et al. [77] propose a robust face

recognition method that assumes the testing image can be represented by the

sparse linear combinations of the images in the training dataset. The noise

or occlusion is also sparse. A review paper [81] compared the `1-minimization

benchmarks for the robust face recognition framework in terms of recognition

accuracy and speed. Unfortunately, the original Approximate Message Passing

(AMP) algorithm has pessimistic results. Moreover, if the faces in the dataset

are not well aligned, it will affect the recognition rate. The image registration
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is beyond the scope of this thesis. We assume the test facial images are well

aligned with the training images in face recognition.

1.4 Organization of the Thesis

The remainder of this thesis is organised as follows. In Chapter 2, we focus

on the low rank matrix completion problem. Chapter 3 describes the BSS

problem and presents a dictionary learning approach to address this problem.

A detailed discussion about robust face recognition is present in Chapter 4.

Finally, we concludes this thesis and identifies future works in the last Chapter.



Chapter 2

Low Rank Matrix Completion

2.1 Introduction

This Chapter focuses on an `0-search for low-rank matrix completion. Here,

the `0-search is referred to the search process that the variable is constrained

in the set of low-rank matrices. As discussed in detail in [19], the `0-search for

low-rank matrix completion is significantly different from heuristic algorithms

that are used for compressive sensing. Methods that are particularly designed

for matrix completion have to be developed. Early examples include the Pow-

erFactorization (PF) [39] and the OptSpace [47] algorithms. More recently, in

[21], the authors discovered that the major technical difficulty of the `0-search

comes from the fact that the objective function is not continuous. The singu-

lar points create the so called barriers to stop an optimization process from

converging to the global optimum. To address this issue, a method involving

singularity detection and jumping was developed in [21], a geometric objective

function that is used to replace the original objective function was proposed in

[19], and a regularized objective function was studied in [11]. A more detailed

37
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description and analysis of these methods is presented in Section 2.2.

However, this problem is NP-hard [40]. In order to solve this problem

effectively, one can use its convex relaxation, e.g., nuclear norm minimiza-

tion. Scores of methods have been proposed for low-rank matrix completion.

Many of them are based on the similarities between compressive sensing re-

construction and low-rank matrix completion, both of which involve solving

under-deterministic linear inverse problems with sparsity constraints. Follow-

ing the popular `1-minimization approach for compressive sensing, a convex

relaxation of the low-rank matrix completion problem, nuclear norm minimiza-

tion [16, 14, 71] has been successfully applied. The nuclear norm minimization

is finding the minimum nuclear norm of a complete matrix via given observed

entries. Under certain conditions, the nuclear norm minimization recovers the

same unique solution as the rank minimization. At the same time, greedy

algorithms for low-rank matrix completion [53, 56], as counterparts of those

for compressive sensing, have also been developed.

In this Chapter, we proposed a new method, termed as smoothed subspace

evolution (SSE), to solve the so called singular point issue. In SSE, a new ob-

jective function is proposed and it is continuous everywhere. In particular, a

multiplication term is introduced to smooth the discontinuous objective func-

tion in [21]. In contrast, an addition (regularized) term is proposed in [11]. The

advantage of the proposed approach is presented in Section 2.2 and 2.3. The

new approach is implemented based on quasi-Newton method, which has su-

per linear convergence and is easy to compute. Numerical results demonstrate

that the proposed method outperforms all other benchmark algorithms.

The main contributions of this Chapter include:

• We study different mechanisms to handle the singularity issue in `0-
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search, and rigorously show how the regularization technique may fail.

The regularization term solves the discontinuous problem of the objec-

tive function. It will force the searching process away from the singular

points, while it will generate a local minimum at the neighbor of the

singular points as a side effect.

• To address the singularity issue, we propose a continuous objective func-

tion to replace the original objective function. We prove that the pro-

posed objective function is a good approximation of the original one. In

the limit, it differs from the original one only at the singular points, and

its lower level sets are the closure of those of the original one.

• A quasi-Newton method is implemented to solve the related optimiza-

tion problem. In order to reduce the computational complexity of the

optimization process, a local coordinate based quasi-Newton approach is

introduced and discussed.

• Simulations demonstrate that the proposed method achieves excellent

numerical performance. The SSE also has the best performance among

all tested algorithms even when the number of observations is close to

the oracle rate1.

The remainder of this Chapter is organized as follows. In Section 2.2.1, we

formally introduce the `0-search for low-rank matrix completion. Section 2.2.2

is devoted to describing the singularity issue and analyzing several techniques

developed to cope with this issue. Our solution to the singularity issue is pre-

sented in Section 2.3. The considerations for implementation of the proposed
1The oracle rate refers to the minimum number of observations that is needed to deter-

mine a matrix. For a m× n rank r matrix, its oracle rate is r(m+ n− r).
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method are discussed in Section 2.4. The empirical performance improvement

is demonstrated in Section 2.5.

2.2 Backgrounds

2.2.1 An Optimization Framework for `0-Search

The `0-search of low-rank matrix completion can be formulated as follows.

Following the common approach [53, 39, 47, 21], assume that the rank r is

given.2 Let Ω ⊂ [m] × [n] be the set of indices of the observed entries, where

[K] = {1, 2, · · · , K}. Define the projection operator PΩ : Rm×n → Rm×n by

PΩ(X) 7→XΩ, where (XΩ)i,j =


Xi,j if (i, j) ∈ Ω

0 if (i, j) /∈ Ω.

The task is to find a rank-r matrix X ′ that is consistent with the observation

matrix XΩ, i.e., given Ω and XΩ,

Find a X ′ s.t.

rank (X ′) ≤ r and PΩ (X ′) = PΩ (X) = XΩ. (2.2.1)

The problem 2.2.1 can be formulated as an optimization problem. Define

Um,r =
{
U ∈ Rm×r : UTU = Ir

}
and the function f : Um,r → R as

f(U) = min
W∈Rr×n

‖XΩ − PΩ (UW )‖2
F . (2.2.2)

2 In practice, one may try to sequentially guess a rank bound until a satisfactory solution
has been found.
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This function measures the consistency between the matrix U and the obser-

vation XΩ. In particular, if f
(
Û
)

= 0 for some Û ∈ Um,r and let Ŵ ∈ Rr×n

be the matrix solving the least squares problem in evaluating f
(
Û
)
, then

the rank-r matrix X̂ = ÛŴ is a solution of the problem 2.2.1. Hence, the

`0-search problem can be formulated as

min
U∈Um,r

f (U) = 0. (2.2.3)

Remark 2.2.1. A detailed discussion on the necessity to have the constraint

U ∈ Um,r is given in Section 2.4.2.

The objective function (2.2.2) can be decomposed as a summation of atomic

functions [21]. Let Ωi be the index set of the observed entries in the ith column,

i.e., Ωi = {k : (k, i) ∈ Ω}. Let xΩi be the ith column of XΩ, and wi be the ith

column ofW . Define UΩi ∈ Rm×r as (UΩi)k,` = Uk,` if k ∈ Ωj and (UΩi)k,` = 0

if k /∈ Ωi. Then it can be verified that

f (U) =
n∑
i=1

min
wi
‖xΩi −UΩiwi‖2

2︸ ︷︷ ︸
fi(U)

=
n∑
i=1

fi (U) . (2.2.4)

Each atomic function fi involves a least squares problem. The optimal wi for

a given U has a closed form

wi (U) = U †ΩixΩi , (2.2.5)

where the superscript † denotes the pseudo-inverse. It is noteworthy that when

UΩi is column-rank deficient, the optimal wi (U) is not unique3 but the atomic

3Equation (2.2.5) gives the minimum `2-norm solution whenUΩi
is column-rank deficient.
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function fi (U) takes a unique value. As a result, each atomic function can be

written as

fi (U) =
∥∥∥xΩi −UΩiU

†
Ωi
xΩi

∥∥∥2

2
. (2.2.6)

We then make the following assumption.

Assumption 2.2.2. Let qi = |Ωi|. We assume that qi > r for all i ∈ [n].4

The assumption is motivated by the fact that the observed column does

not provide much information when qi ≤ r. Suppose that qi ≤ r for some

i ∈ [n]. A randomly generated U from the uniform distribution on Um,r will

have full column rank and give fi (UΩi) = 0 with probability one [22].

With this assumption, we formally define singular points. The motivation

is that U †Ωi , as a function of UΩi , is differentiable if and only if UΩi has full

column rank.

Definition 2.2.3. A matrix U ∈ Um,r is a singular point of an atomic function

fi in 2.2.6 if UΩi is column-rank deficient. It is a singular point of the overall

function f if there exists an i ∈ [n] such that UΩi is column-rank deficient.

An illustration of the singular points is given in the next Subsection.

2.2.2 Singularity Issue

Optimization methods, for example, the gradient descent method, can be ap-

plied to solve the optimization problem (2.2.3). However, the optimization

procedure may not converge to a global minimizer satisfying f = 0. Numeri-

cal experiments in [21] show that the optimization procedure may be trapped

4If the observation matrix XΩ contains columns with qi ≤ r, then we simply delete the
columns corresponding to qi ≤ r and use the resulting matrix for completion.
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to singular points. The following example is designed to demonstrate this

phenomenon.

Example 1. With slight abuse of notations, consider an incomplete rank-

one matrix

XΩ =


? 1

1 ?

1 1

 ,
where the question marks denote the missing entries. Based on the information

that r = 1, the solution of the corresponding matrix completion problem is

the all-one matrix, i.e., Xi,j = 1, ∀i, j. Formulate the completion problem as

the optimization problem in (2.2.3). There are two solutions, which is given

by U ∗ = ± 1√
3

[1, 1, 1]T . In this case, we only focus on one of the solutions

U ∗ = 1√
3

[1, 1, 1]T .

We shall show that the objective function (2.2.2) is discontinuous. Recall

the decomposition in (2.2.4). Consider a vector U in U3,1 parametrized by ε:

U (ε) =
[√

1− 2ε2, ε, ε
]T

where ε ∈
[
−1/
√

2, 1/
√

2
]
. The optimal ε is given by

ε∗ = 1/
√

3. For a given U (ε), let w1 (ε) be the solution of the least squares

problem in evaluating f1 (ε). Then,

w1 (ε) =


1
ε
, f1 (U (ε)) = 0 if ε 6= 0,

0, f1 (U (ε)) = 2 if ε = 0.

Hence, the atomic function f1, as well as the overall objective function f , is

discontinuous at the point U (0).

It has been observed [21] that a gradient descent algorithm that mini-

mizes f in Eq. 2.2.4 may be trapped in the neighborhood of singular points.
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Figure 2.2.1: Illustration of the singularity issue and possible solutions. Con-
sider Example 1. The contours of the original f1, the regularized fµ,1 (µ = 0.1),
and the smoothed f̃1 (ρ = 1

6
) are depicted in sub-figures (a), (c), and (d) re-

spectively, where the blue circle and the red cross denote the initial point and
the global optimum respectively. Sub-figure (b) illustrates how an infinitesimal
gradient descent procedure gets trapped to the singular point when minimizing
f . Sub-figures (c) and (d) give the intuitions on why regularization does not
solve the singularity issue but the proposed smoothing technique does.
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In particular, it can be verified that ∀ε ∈
(
− 1√

3
, 0
)
, d
dε
f (U (ε)) < 0 (see

Subsection 2.6.1 for the proof). Consider an infinitesimal gradient-descent

search process (the real gradient-descent search process) starting from a U (ε0)

with ε0 ∈
(
− 1√

3
, 0
)
. That d

dε
f (U (ε)) < 0 suggests that the search path,

parametrized by ε, is given by ε = ε0 + α where α > 0. However, note that

f (U (0)) > limε↑0− f (U (ε)). The infinitesimal search can never pass the sin-

gular point ε = 0. A detailed illustration is given in Fig. 2.2.1b. Refer next

Section for more detailed explanation.

There are several approaches to address the singularity issue. In [21], Dai

et al. proposed the Subspace Evolution and Transfer (SET) method to detect

the barriers that are created by singular points and jump across the barriers

whenever they are detected. This method achieves good empirical perfor-

mance. However, the definition of barriers and the design of the jump step are

somewhat heuristic. Furthermore, the detection and jump steps are compli-

cated, suggesting that the computational cost per iteration is very high. With

the goal of obtaining certain performance guarantees, the same set of authors

proposed to replace the original objective function (2.2.2) with a geometric ob-

jective function [19]. With this replacement, strong performance guarantees,

better than those for `1-minimization, were obtained for certain special cases.

However, the geometric objective function is quite different from the original

objective function.

More recently, a regularization technique was proposed in [11], where the
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new objective function is given by

fµ (U) = min
W∈Rr×n

‖XΩ − PΩ (UW )‖2
F + µ ‖UW ‖2

F

= min
W∈Rr×n

‖XΩ − PΩ (UW )‖2
F + µ ‖W ‖2

F . (2.2.7)

The regularized objective function in [11] is slightly different from the one

presented in Eq. (2.2.7): the regularization term in [11] only involves the

unobserved entries (UW )i,j where (i, j) /∈ Ω while we include all entries of

X̂ = UW in the regularization term. This small change doesn’t affect the

essence of this method but makes the rigorous analysis relatively easier. It is

straightforward to verify that the objective function fµ is continuous whenever

the regularization constant µ > 0 [11]. In fact, the function fµ is a continuous

approximation of f : the smaller µ > 0, the better the approximation. In

practice, one may choose a small constant µ > 0 or keep decreasing the value

of µ along the optimization process.

However, a careful study reveals that the continuous approximation fµ

creates local minimum in the neighborhood of singular points of f . This is un-

desirable as the optimization process may converge to the created local mini-

mum. To demonstrate this phenomenon, we rigorously analyze how fµ (U (ε))

behaves in Example 1. The details are presented in Subsection 2.6.1. The

analysis shows the following. Let ε0 < 0 denote the starting point. For all

ε0 ∈
(
−1

4
, 0
)
, let µ be sufficiently small such that µ < |ε0|3 /3. One can get

that ε0 < −
√
µ/2 < 0. We prove that f ′µ (ε0) < 0, f ′µ

(
−
√
µ/2
)
> 0 and

f ′µ (0) < 0. This implies that there exist a minimum εmin,µ ∈
(
ε0,−

√
µ/2
)

and a maximizer εmax,µ ∈
(
−
√
µ/2, 0

)
. As a result, the gradient search will

stop at the point εmin,µ ∈
(
ε0,−

√
µ/2
)
. The gradient search will not converge
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to the global minimizer ε∗ = 1/
√

3.

Power Factorization (PF) [39] is another low rank matrix completion ap-

proach, which optimizesU andW alternatively to minimize ‖XΩ − PΩ (UW )‖2
F

using linear-least squares procedure. In paper [39], the objective function is

‖vec(XΩ)−A (UW )‖2, where A is a linear operator that A : Rm×n → Rq

and q is the number of observations. For the sake of consistency, we also

change the objective function in this case. It has been proved that the ob-

jective function is discontinuous when optimizes W while keeps U fixed in

Example 1. In PF, one also has to optimize U by fixing the optimized W .

Consider U (ε1) =
[√

1− 2ε21, ε1, ε1

]T
and the objective function

f(W ) = min
U(ε1)

∥∥XT
Ω − PΩT

(
W TUT

)∥∥2

F
.

The objective function is f(W ) = f3(W ) = min
ε1

∥∥∥∥∥∥∥
 1

1

−
 w1

w2

 ε1
∥∥∥∥∥∥∥

2

F

. Take

the derivative with respect to ε1 and let df3(W )
dε1

= 0. It is easy to obtain that

ε1 =


w1+w2

w2
1+w2

2
, f3 (ε1 (ε)) = 0 if ε 6= 0,

1 , f3 (ε1 (ε)) = 1 if ε = 0.

Then, it is obvious that the objective function is f(W (ε)) is also discon-

tinuous at point W (ε = 0).

In a summary, the singularity issue cannot be completely addressed by

either the SET method in [21], or the geometric objective function in [19], or

the regularization technique in [11] or the PF method in [39].
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Figure 2.3.1: The modulation function gρ (λ).

2.3 Smoothed Objective Function

The key idea behind the new approach is to replace the original objective

function (2.2.2) with a continuous objective function that is similar to the

original one. As discussed in Section 2.2.2, adding a regularization term results

in a continuous objective function but it cannot solve the singularity issue. Our

approach is to introduce multiplicative terms rather than additive ones.

This function is designed so that it is second order differentiable, i.e., give

ρ > 0,

g (0) = 0, g′ (0) = 0, g′′ (0) = 0,

g (ρ) = 1, g′ (ρ) = 0, g′′ (ρ) = 0.

Towards that end, we define the modulation function

gρ (λ) =


0 if λ ≤ 0,

6
(
λ
ρ

)5

− 15
(
λ
ρ

)4

+ 10
(
λ
ρ

)3

if λ ∈ (0, ρ) ,

1 if λ ≥ ρ.

(2.3.1)

An illustration of the modulation function is given in Fig. 2.3.1.
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We propose to replace the original objective function (2.2.2) with the new

objective function defined as

f̃ (U) =
n∑
i=1

fi (UΩi) · gρi (λmin (UΩi)) , (2.3.2)

where λmin (UΩi) gives the minimum singular value of the matrix UΩi . With

this replacement, the matrix completion problem is formulated as

min
U∈Um,r

f̃ (U ) = 0. (2.3.3)

The smoothed objective function has nice properties described in the fol-

lowing Theorem. It suggests that the smoothed function f̃ is a good approxi-

mation of f .

Theorem 2.3.1. 1. For any ρ1 > 0, · · · , ρn > 0, then f̃ (U) is continuous

everywhere.

2. When ρ1 = · · · = ρn = 0, then f̃ and f differ only at the singular points.

That is, f̃ = f for all U ∈ Um,r\S, where

S =
n⋃
i=1

Si =
n⋃
i=1

{U : λmin (UΩi) = 0} . (2.3.4)

3. For ∀c ∈ R, define the lower level set Uf (c) = {U : f (U) ≤ c}. When

ρ1 = · · · = ρn = 0, Uf̃ (c) is the closure of Uf (c).

The proof is presented in Subsection 2.6.2. Indeed, from the last part

of Theorem 2.3.1, the proposed function f̃ is the best possible lower semi-

continuous approximation of the original discontinuous function f when ρ1 =

· · · = ρn = 0.
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Figure 2.3.2: This is an alternative illustration of the singularity issue and the
smoothed solution. Left: convex case. It is easy to find the optimal. Middle:
singular case. The singular point prevents the searching path to optimal.
Right: Our smooth solution. It lets the searching process pass through.

The effect of adding the modulation functions, intuitively speaking, is to

open “tunnels” for the optimization process to pass through. See Fig. 2.2.1d

for an illustration. The smaller ρis are, the better the function f̃ approximates

the function f , but the narrower the tunnels are, and the slower the conver-

gence rate is. The next Subsection discusses a particular way to choose the

parameters ρis.

2.3.1 A Choice of Parameter ρis

As discussed above, the positive parameters ρis should be chosen as small as

possible for the purpose of approximation, but as large as possible to speed

up the convergence rate. In this Chapter, the tool for choosing ρis is random

matrix theory.
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We use an example to intuitively demonstrate that the parameters ρis may

be different for different columns. Consider a matrix completion problem with

m = 100 and r = 2. Then the variable U ∈ U100,2. Suppose that all the entries

in the first column of XΩ are known but only the first two entries in the

second column of XΩ are revealed, i.e., Ω1 = [m] and Ω2 = {1, 2}. According

to Eq. (2.3.1) it makes no difference for all ρ1 ∈ (0, 1) while λmin(UΩ1) = 1.

However, λmin (UΩ2) < 1 for most U ∈ U100,2. The choice of ρ2 decides how

likely gρ2 (UΩ2) < 1: the larger ρ2 is, the more likely gρ2 (UΩ2) < 1.

The rigorous interpretation of the above observation is as follows. The

space Um,r is compact (Closed and bounded). Hence, the uniform probability

measure µ on Um,r is well defined. Consider a random U ∈ Um,r generated

from the uniform distribution µ. For a given Ωi ⊂ [m], let λ1 ≥ · · · ≥ λr ≥ 0

be the singular values of UΩi . The empirical distribution of λjs is given by

Fi (t) =
1

r
|{j : λj ≤ t}| .

The quantity Eµ [Fi (t)] gives the probability that λmin (UΩi) ≤ t, where Eµ is

the expectation with respect to the probability distribution µ. The parameter

ρi should be chosen so that Eµ [Fi (t)] is small.

Generally speaking, it is difficult to exactly quantify the probability Eµ [Fi (t)].

Nevertheless, two facts are useful in approximating it. Firstly, the empirical

distribution Fi (t) relies only on the size of Ωi, i.e., |Ωi|, rather than the specific

choice of Ωi. Secondly, when m, r, qi → ∞ simultaneously with fixed ratios,

Fi (t) converges to a proper probability distribution. The following theorem

states the asymptotic behavior of λmin (UΩi).

Theorem 2.3.2. Let U ∈ Um,r be randomly generated from the uniform dis-
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tribution on Um,r. Suppose that r ≤ m
2
.5 Let Ωi ⊆ [m] and qi = |Ωi|. Define


αi =

(
1− r

m
− qi

m

)2
, βi =

(
qi
m
− r

m

)2
, if r ≤ qi ≤ m

2
,

αi =
(
qi
m
− r

m

)2
, βi =

(
1− r

m
− qi

m

)2
, if r ≤ m

2
<qi,

 ai =
1+αi−βi−

√
(1+αi−βi)2−4αi
2

,

bi =
1+αi−βi+

√
(1+αi−βi)2−4αi
2

,

and

τi =


√

1− bi if r ≤ qi ≤ m
2
,

√
ai if r ≤ m

2
< qi.

(2.3.5)

Then for any ε > 0, as m, r, qi →∞ with constant ratios,

Pr (λmin (UΩi) ≤ τi − ε)→ 0,

and

Pr (λmin (UΩi) ≤ τi + ε)→ 1.

Note that although the above results are asymptotic, they provide a good

approximation for finite m, r, qi. See [22] for the detailed discussion of the con-

vergence rate and a numerical comparison between the empirical distribution

Fi (t) and the asymptotic distribution.

Our choice of the parameters ρis are based on the above asymptotic results.

Specifically, we set ρi = ητi, where τi is defined in (2.3.5) and η is a constant

independent of individual columns.

5In this Chapter, we only consider the case where r ≤ m
2 because this is the most useful

case in practice.



2.3. SMOOTHED OBJECTIVE FUNCTION 53

2.3.2 Gradient of the Smoothed Objective Function

In this Subsection, we compute ∇f̃ ∈ Rm×r where the (k, `)th entry of ∇f̃ is

given by ∂f̃/∂Uk,`.

To start, note that ∇f̃ =
∑

i∇fi · gρi + fi ·∇gρi . The following proposition

computes ∇fi and ∇gρi . To simplify the notations, we omit the subscript i.

Proposition 2.3.3. Suppose that λmin (UΩ) > 0 and that it is not a repetitive

singular value, i.e., all other singular values of UΩ are strictly larger than λmin.

Let umin and vmin be the left and right singular vectors corresponding to λmin

of UΩ. It holds that

∇f = −2 (xΩ −UΩw)wT , (2.3.6)

where w = U †ΩxΩ, and ∇gρ = dgρ
dλmin

· ∇λmin where

dgρ
dλmin

=



30
ρ

(
λmin

ρ

)4

− 60
ρ

(
λmin

ρ

)3

+ 30
ρ

(
λmin

ρ

)2

if λ ∈ (0, ρ) ,

0 otherwise,

and

∇λmin = uminv
T
min.

The proof of this Proposition is detailed in Subsection 2.6.3.

Remark 2.3.4. When λmin (UΩ) = 0, f and λmin are not differentiable at UΩ.

However, since gρ = 0 and dgρ/dλmin = 0, one may set ∇f̃ = 0 in practice.

Remark 2.3.5. If λmin is a repetitive singular value, i.e., there exists more than

one singular values equaling to λmin, then ∇λmin is not well defined. However,

this happens with probability zero when U is randomly generated from the
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uniform distribution on Um,r. Furthermore, even this happens during the opti-

mization process, directly applying ∇λmin = uminv
T
min does not introduce any

practical issue in our simulations.

2.3.3 An Illustration of the Smoothed Function

In this Subsection, we discuss how our proposed approach addresses the singu-

larity issue with an example. For our proposed algorithm, one has to compute

the smoothed objective function. Recall the Example 1, the smoothed object

function is f̃ = f̃1 + f̃2 = f1g1 +f2g2. According to equation (2.3.1), the singu-

lar value of UΩi is needed. The singular value of UΩ1 = [ ε ε ]T is λ1 =
√

2ε2

and the singular value of UΩ2 = [
√

1− 2ε2 ε]T is λ2 =
√

1− ε2. The proof

of the singular values is shown in Subsection 2.6.4. Let η = 1, it is easy to

compute the value of ρ = 1
3
. For ε ∈ [−0.1, 0], we have 0 ≤ λ1 < ρ and λ2 > ρ.

Then the smooth functions are


g1 = 6(λ1/ρ)5 − 15(λ1/ρ)4 + 10(λ1/ρ)3

g2 = 1

.

Consider the gradient of the first atomic function, as ε → 0, then g1 ap-

proaches to zero. Hence, at position [1, 0, 0]T the value of the first atomic

function of the new objective function is 0. Therefore, the smoothed objec-

tive function is continuous along [
√

1− 2ε2, ε, ε]T and its gradient is always

negative. Then a gradient decent method will find the global minimum. An

intuition on how the proposed smoothing technique addresses the singular is-

sue is given in Fig. 2.2.1d. It opens a tunnel to let the line search process pass

through the singular point. Hence, the singularity issue is addressed.
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2.4 Algorithm Implementation

In the last Section, a new objective function f̃ was defined in (2.3.2). This

Section is devoted to developing an efficient algorithm to solve the optimization

problem (2.3.3). We first briefly describe the generic optimization methods and

then explain how to modify a generic method so that it fits the optimization

problem at hand.

2.4.1 Optimization Methods in Euclidean Space

A line search strategy is essential for optimization methods. The main steps

are summarized as follows. With slight abuse of notations, consider the generic

scenario of minimizing an objective function f (u) where u ∈ Rn. A line search

method updates the variable u iteratively via

uk+1 = uk + αkpk, (2.4.1)

where αk is the step size and pk is the search direction. In the gradient descent

method, pk is taken as −∇fk, while in a Newton method,

pk = −B−1
k ∇fk, (2.4.2)

where Bk is a symmetric and non-singular matrix that approximates the Hes-

sian. When the Hessian approximation Bk is appropriately chosen, the con-

vergence rate of a Newton method is much faster than that of the gradient

descent [58].

We are particularly interested in a quasi-Newton method. The advantage is

that it requires only the gradient of the objective function to be computed: the
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Hessian is estimated using the gradients from multiple iterations. In particular,

let

sk = uk+1 − uk, (2.4.3)

yk = ∇f (uk+1)−∇f (uk) , (2.4.4)

and Bk be an approximation of the Hessian at the point uk. In the quasi-

newton method [58], the most common Hessian approximation is given by

Bk+1sk = yk, which is also known as secant equation. With knowledge of

uk and ∇f (uk) from multiple iterations, one can estimate Bk+1. Let Hk+1

denote the inverse of Bk+1, i.e., Hk+1 = B−1
k+1. The search direction of f(uk)

can be evaluated from

pk = −Hk+1∇f (uk) . (2.4.5)

To avoid computation of matrix inverse, the most popular quasi-Newton

method, Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [58], chooses to

update Hk via

Hk+1 = (I − sky
T
k

yTk sk
)Hk(I −

yks
T
k

yTk sk
)− sks

T
k

yTk sk
. (2.4.6)

A flowchart of the BFGS method is detailed in Algorithm 2.1.

As we will explain in the next Subsection, the BFGS method in Algorithm

2.1 needs to be modified to fit the optimization problem in (2.3.3).

2.4.2 Why Optimize on Grassmann Manifold

In this Subsection, we show why we do not directly apply standard optimiza-

tion techniques. Then we present a global coordinates based BFGS algorithm

on Grassmann manifold in Section. 2.4.3.
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Algorithm 2.1 The BFGS Method [58]

Given a starting point u0, convergence tolerance δ > 0, and the initial approx-
imation H0 = I, perform the following.
k ← 0;
while ‖∇f (uk)‖ > δ

Compute the search direction of f(uk) using Eq. (2.4.5).
Set Eq. (2.4.1) where αk is computed from a line search backtracking

procedure to satisfy the Armijo condition,

f(uk+1) ≤ f(uk) + αk∇fTk pk. (2.4.7)

Compute Eq. (2.4.3) and Eq. (2.4.4). If sTk yk > 0, compute Hk+1by
(2.4.6). Otherwise, Hk+1 = I;

k ← k + 1;

end(while)

We first discuss the necessity of the constraint U ∈ Um,r. It is clear that

for any U ∈ Rm×r and W ∈ Rr×n, the matrix UW has rank at most r.

It looks that restricting the search space to Um,r is unnecessary. We shall

argue that the constraint U ∈ Um,r helps in understanding how good and how

singular an estimate Û is. Recall Example 1. Clearly U ∗ = 1√
3

[1, 1, 1]T is a

global optimum. If we drop the constraint U ∈ Um,r and consider a sequence

U (k) = [k + 1, k, k]T , then it is clear that the `2 distance between U (k−1)

and U (k) is always three for all k. The sequence U (k) does not converge. If

we enforce the constraint U ∈ Um,r, then the equivalent sequence is given

by [k + 1, k, k]T /
√

2k2 + (k + 1)2 which converges to the global optimum U ∗.

The constraint U ∈ Um,r helps in defining the goodness of an estimate Û .

In terms of singularity detection, the constraint U ∈ Um,r is also necessary.

Otherwise, let U ′ = αU where α > 0 is a real number. No matter how well-

conditioned UΩ is, the matrix U ′Ω = (αU )Ω can be made arbitrarily close to
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being singular by decreasing α. From the above discussions, the advantage of

the constraint U ∈ Um,r becomes clear.

We then show the exact space on which the function f and f̃ are defined.

Let V ∈ Ur,r. For any given U ∈ Um,r, Ωi ⊆ [m] and w ∈ Rr, it holds that

(Uw)Ωi
=
(
(UV )

(
V Tw

))
Ωi

and λmin (UΩ1) = λmin

(
(UV )Ω1

)
. As a result,

f (U) = f (UV ) and f̃ (U) = f̃ (UV ). Let span (U) denote the subspace

spanned by the matrix U . It is clear that span (U) = span (UV ).

More formally, the variables of f and f̃ are in the so called Grassmann

manifold. The Grassmann manifold Gm,r is the set of all r-dimensional linear

subspaces in Rm, i.e., Gm,r = {span (U) : U ∈ Um,r}. Given a subspace U ∈

Gm,r, one can always find a matrix U ∈ Um,r such that U = span (U). The

matrix U is referred to as a generator matrix of U and the columns of U are

often referred to as an orthonormal basis of U . Since span (U) = span (UV )

for all V ∈ Ur,r, it is clear that the generator matrix for a given subspace is not

unique. Nevertheless, a given matrix U ∈ Um,r uniquely defines a subspace.

It is therefore common in practice to use U to represent both the matrix and

its spanned subspace.

For the problem at hand, the manifold structure needs to be considered in

implementing an optimization method. In the standard quasi-Newton method

which is designed for the Euclidean space, the difference between two points

U (k+1) − U (k) is used for Hessian estimation. Suppose that U (k) = −U (k+1).

Then U (k+1) − U (k) = 2U (k+1) in the Euclidean space. However, if we take

the Grassmann manifold into consideration, then span
(
U (k+1)

)
= span

(
U (k)

)
and the proper definition of U (k+1)−U (k) (in the Grassmann manifold) should

yield 0.
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2.4.3 From Euclidean Space to Grassmann Manifold

In this Subsection, we will discuss the modifications needed for BFGS method

on Grassmann manifold since the equations of BFGS are not well-defined on

Grassmann manifold. Then a global coordinates based BFGS algorithm on

Grassmann manifold is presented.

To re-define (2.4.1), note that its meaning is to move uk along the direction

pk with step size αk. The same operation can be defined on Grassmann mani-

fold as follows. For a given U ∈ Um,r represent by U = span(U) ∈ Gm,r, define

T as the tangent space at U , which contains all possible valid ’directions’ such

that TU =
{
4 ∈ Rm×r : 4TU = 0

}
. For any given step size t, the obtained

new point U(t) on Grassmann manifold is given by

U1 = U(t) = (U0V4,U4)

 cos Σt

sin Σt

V T
4 , (2.4.8)

where 4 = U4ΣV4 is the compact singular value decomposition of the tan-

gent vector. This actually generates the so called geodesic path, which will

play an essential role in re-defining (2.4.3) and (2.4.4). The details and proof

of Eq. (2.4.8) have been given in [28]. It is worth to note that the gradient

of the objective function f̃(U) on Grassmann manifold is TU 3 ∇f̃(U) =

(I−UUT )∂f̃(U)
∂U

, where (I−UUT ) is the projection on the tangent space TU .

In this Section 2.4.3, for the sake of simplicity, we use subscription (·)1 and

(·)0 to denote the current step and the previous step, respectively.

Similarly, the re-definition of (2.4.3) is based on its geometric interpreta-

tion: moving uk along sk (with unit step size) gives uk+1. To proceed, it is

noteworthy two subtleties. First, the output sk should be in the tangent space
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of uk. Second, extra steps will be needed to compensate the effects when the

matrix u is used to represent the subspace U = span(u). In particular, u and

uv (∀v ∈ Ur,r) represent the same subspace span(u) = span(uv), but moving

u along 4 ∈ Tu will not give the same point as moving uv (v 6= Ir) along

4 ∈ Tu. This claim can be proved by the following proposition.

Proposition 2.4.1. Fix U0,U1 ∈ Um,r and let 40 ∈ Rm×r be the tangent

vector in TU0 such that the geodesic path U (t) given by (2.4.8) satisfies U (0) =

U0 and span(U(1)) = span(U1). Let V1ΛV
T

2 be the singular decomposition of

UT
0 U1. Denote U0V1 and U1V2 by Ū0 and Ū1, respectively. Then, the tangent

vector 4 is given by

TU0 340 = Gdiag([· · · , ai, · · · ])V T
1 , (2.4.9)

where ai = arccosλi, where λi is the ith singular value of Λ. Matrix G =

diag[· · · , gi, · · · ] and

gi =


Ū1,:i−λiŪ0,:i

‖Ū1,:i−λiŪ0,:i‖

0

if λi 6= 1,

if λi = 1.

By using (2.4.8), it is easy to show that

U (1) = U1V2V
T

1 . (2.4.10)

Hence, the above claim is proved. The details of the proof of this propo-

sition refer to Dai et al’s further study Lemma 1 in [19]. Then, on Grass-
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mann manifold, moving U0 along 40 in Eq. (2.4.9) gives U (1) in Eq. (2.4.10).

Furthermore, 40 lies in the tangent space of U 0. The matrix expression of

transporting an arbitrary tangent vector 4 from U0 to U(t) is given in [28, 4]

and [67],

T̄0 = (U0V4,U4)

 − sin Σt

cos Σt

UT
4 + (I −U4U

T
4). (2.4.11)

The transfer operator between two arbitrary tangent spaces is investigated

in the following Lemma.

Lemma 2.4.2. Given our objective function f(U) = ‖XΩ − P(UW )‖2
F . As-

sume we have tangent vectors ∆0 ∈ T0 and 4̄1 ∈ T1. Suppose that 4̄1 = T̄040

and Ū1 = U1V2V
T

1 . Hence, for tangent vector 40 ∈ T0, its parallel vector 41

in tangent space T1 is then

T1 341 = T̄040V1V
T

2 . (2.4.12)

The proof is detailed in Subsection 2.6.5. Eq. (2.4.12) can be reformulated

as in vectorization form and parallel transport gives,

~41 = T0
~4 = (V2V

T
1 ⊗ T̄0) ~40, (2.4.13)

where we use ~(·) denote the vectorization of the matrix (·). Hence, the

parallel transport matrix between two arbitrary tangent spaces of U0 and U1

is obtained,
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T0 = V2V
T

1 ⊗ T̄0, (2.4.14)

where the symbol ⊗ denotes the Kronecker product of operators. Then, ac-

cording to Eq. (2.4.9) and Eq. (2.4.14), on Grassmann manifold, the Eq. (2.4.3)

can be reformulated as a vectorized form

T1 3 S1 : ~S1 = T ~40, (2.4.15)

where in this case Rmr×mr 3 T = Ir ⊗ T0.

In order to re-define Eq. (2.4.4), it is worth to note that on manifolds one

can not apply subtraction between two vectors as they are in different tangent

spaces (Fig. 2.4.1). Based on Eq. (2.4.15), it is straight forward to obtain

T1 3 Y1 : ~Y1 = ∇~f(U1)− T · ∇~f(U0). (2.4.16)

As one needs to calculate Hessian to solve (2.4.5), we have to calculate the

inverse of the approximated Hessian, which is computational expensive. Both

Qi et al. [63] and Savas and Lim [67] use an approximation of the inverse of

the Hessian algorithm. The recursive update formula is
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Figure 2.4.1: An illustration of Parallel transport T̄ (−∇fk) of tangent vector
−∇fk from tangent space Tk to Tk+1 on Grassmann manifoldM, where 4k is
the decent direction. (After [28])

H1 =H̃0 −
H̃0

~Y1
~ST1〈

~Y1, ~S1

〉 − ~S1(H̃0
~Y1)T〈

~Y1, ~S1

〉
+


〈
~Y1, H̃0

~Y1

〉
〈
~Y1, ~S1

〉2 −
1〈

~Y1, ~S1

〉
 ~S1

~ST1 , (2.4.17)

where H ∈ Rmr×mr is the inverse of the approximated Hessian and

H̃0 = TH0T
−1, (2.4.18)

where T−1 : T1 7→ T0 is the inverse step of T . Then, one can obtain the
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quasi-Newton searching direction by

T1 34 : ~4 = −H1∇~f(U1) (2.4.19)

2.4.4 BFGS Algorithm in Global Coordinates

In previous Subsection, we focus on finding the column space, which all the

columns of the matrix UW lie in, is spanned by the columns of U . One

can also use the row space instead. Any details on searching in column/row

space refer to [21]. Here, we will discuss a complicated scenario searching

in column and row space alternatively. In this case, the searching points

are on the column/row space every other iteration. Furthermore, e.g., given

∀Uk−1, Uk+1 ∈ Um×r, we do not know either the update direction 4k−1 ∈ Tk−1

or the geodesic path from Uk−1 to Uk+1. We gave an explicit solution of over

come these two problems in Section 2.4.3. The pseudo code of the alternate

BFGS algorithm on Grassmann manifold, which searches the column and row

space alternatively, is given in Algorithm 2.2. It is worth to note that one has

to change all the subscript (·)0 and (·)1 in Eq. (2.4.15)-(2.4.19) to (·)k−1 and

(·)k+1 respectively, as we search the column/row space alternatively.

2.4.5 BFGS Algorithm in Local Coordinates

In this Subsection, we present an efficient BFGS algorithm on Grassmann man-

ifold. It is obvious that one has to store and transfer the tangents and Hessian

every step in previous BFGS algorithms on Grassmann manifold. Both of the
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Algorithm 2.2 Alternate BFGS Algorithm on Grassmann Manifold

Input: starting point U0 ∈ Um×r, the sparse matrix XΩ, its sparse pattern
Ω, the inverse of Hessian matrix on column space Hc = Imr and the inverse
of Hessian matrix on row space Hr = Imr. Let Hk+1 be the inverse Hessian
matrix at current iteration k + 1. Let k ← 0.

1. If k + 1 < 3, let H1 = Hc and H2 = Hr.

2. Else, solve Eq. (2.4.15) and Eq. (2.4.16).

3. If k + 1 is odd, Hk−1 = Hc, else Hk−1 = Hr.

4. If 〈Sk+1, Yk+1〉 > 0, calculate the Hk+1 with Eq. (2.4.17).

5. End if in step 1.

6. If k+1=odd, Hc = Hk+1, else Hr = Hk+1. End if of step 6.

7. Then, solve Eq. (2.4.19).

8. With a step size a, find a good Uk+1 and Vk+1 that satisfy the armijo
condition, which is f(Uk+1) < f(Uk−1) + a · c · 〈∇f(Uk),4k〉,where c is
an small positive value.

9. Let Uk+1 = orth(V T
k+1), XΩ = XT

Ω and Ω = ΩT .

10. Let k ← k + 1 , return to step 1 until convergence.
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Figure 2.4.2: An illustration of tangent vectors in local coordinates on Grass-
mann manifold. In local coordinates, the tangent vector Dfk is constant in
both tangent spaces Tk and Tk+1. (After [28])

algorithms lack of computational efficiency, especially when the dimension of

the searching subspace is high.

Savas and Lim [67] proposed a local coordinates based BFGS approach to

over come this high computational cost problem. It has been proved [67] that

the local presentation of a tangent D is always constant in the transported

basis U⊥(t), which is T0 3 4 = U⊥D and Tt 3 4(t) = U⊥(t) · D. The

basis U⊥ is the orthogonal complement of U , which spans the tangent space

of U . The transported basis is given by U⊥(t) = T̄ (t) ·U⊥, where T̄ (t) is the

parallel transport operator in Eq. (2.4.11). Considering optimization only in

column space, an illustration of the local presentation of tangents is given in

Fig. 2.4.2. The local presentation of the −∇fk isDfk , and it is constant in the

transported basis U⊥k (t) in the tangent space Tk+1. Hence, in the basis U⊥k (t),

the local presentation of the two quantities Sk+1 and Yk+1 are the same with



2.5. PERFORMANCE STUDY 67

the expressions in Euclidean space. The local presentation of the approximated

Hessian is also proven [67] to be constant in local coordinate. Consequently,

despite one has to parallel transfer the basis U⊥ at each iteration, the BFGS

algorithm on Grassmann manifold in local coordinates is the same with the

BFGS approach in Euclidean space.

Considering optimization in column and row space alternatively, the global

parallel transport operator T̄ (t) is not valid in local coordinates. In other

words, the local presentation of the decent direction D4 shown in Fig. 2.4.2

is unknown. Here, we focus on the parallel transport between two arbitrary

tangent spaces in local coordinates.

Lemma 2.4.3. Recall the settings in Section 2.4.3, let Uk ∈ Um,r and Ūk ∈

Um,r span the same subspace, where Ūk = UkVk+1 for Vk+1 ∈ Ur,r and k ∈

{1, 2}. Let Ū1 = τ(Ū0), where τ denote the standard parallel transport opera-

tor T̄ . Denote
{
b

(0)
1 , · · · , b(0)

r(m−r)

}
⊂ Rmr as a basis of N (U0), then the basis

of N (U1) is
{
b

(1)
1 , · · · , b(1)

r(m−r)

}
⊂ Rmr, where b(1)

i = (V2⊗Im)τ((V1⊗Im)b
(0)
i )

for i ∈ [1, r(m− r)].

The proof of this lemma is given in Subsection 2.6.6.

We investigate the parallel transport of the tangent basis U⊥ between two

arbitrary tangent spaces in local coordinates. Hence, it is easy to extend the

Algorithm 2.2 to local coordinates and the computational cost is deduced.

2.5 Performance Study

In our numerical study, the low-rank matrix X and the index set Ω are uni-

formly randomly generated. In particular, if we decompose the low-rank ma-

trix into X = UXSXV
T
X , then UX ∈ Um,r and VX ∈ Un,r are uniformly dis-
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Figure 2.5.1: Performance improvement of SSE compared with SET.

tributed, and diag (SX) ∈ Rr is Wishart distributed. See [21] for more details

on this random matrix model and its advantages. The index set Ω is randomly

generated from the uniform distribution over {Ω′ ⊂ [m]× [n] : |Ω′| ≤ K} for

some constant K. The sampling rate for a given observation matrix XΩ is

defined as |Ω| / (m× n).

Two scenarios are considered: the noiseless and noisy cases on X. Let

X̂ be the estimated matrix output by a particular algorithm. In the noise-

less case, the criterion for a successful completion is that rank
(
X̂Ω

)
≤ r

and
∥∥∥XΩ − X̂Ω

∥∥∥2

F
≤ εe ‖XΩ‖2

F , where the error tolerance constant εe ≥ 0 is

ideally zero but set to 10−6 in practice. In the noisy case, the observation

matrix is given by XΩ = PΩ (X ′) + PΩ (Z) where X ′ ∈ Rm×n is a ran-

dom low-rank matrix and Z ∈ Rm×n is randomly generated from the stan-

dard Gaussian random matrix with proper variance. Let εn denote the ratio
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Figure 2.5.2: Performance comparison: noiseless case.

‖ZΩ‖2
F / ‖X ′Ω‖

2
F . Then the signal-to-noise ratio (SNR) of XΩ is defined as

10 log10
1
εn
dB. The criterion for a successful completion is that rank

(
X̂Ω

)
≤ r

and
∥∥∥XΩ − X̂Ω

∥∥∥2

F
≤ εn ‖XΩ‖2

F . The success ratio is the rate between the total

number of successful completion and the number of realizations.

In the first experiment, we compare numerical performance of the proposed

algorithm SSE and SET in noiseless case using 9-by-9 matrices. The number

of realizations is 200 under each sampling Rate. The results in both rank

one and rank two cases are shown in Fig. 2.5.1. Higher success rate indicates

better numerical performance. The improvement of the numerical performance

is significant. For rank one case, SSE can consistently complete all the 9-by-9

matrices under any sampling rate.

In the second experiment, we compare the proposed SSE with 7 benchmark

algorithms, i.e., SET [21], ADMiRA [53], OptSpace [47], PF [39], APGL [71],
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Figure 2.5.3: Performance comparison: noisy case.
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Figure 2.5.4: Performance comparison: large matrix case.
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RTRMC [11] and recently proposed NIHT [70]. A set of 50-by-50 rank two ma-

trices were used in both noiseless and noisy cases. The number of iterations is

set to 5000 for all tested algorithms except the SET method [21]: as explained

by the authors of [21], the computational complexity of each iteration in the

SET algorithm is significantly larger than that in other methods; we follow

the authors’ suggestion and set the number of iterations to 500 for the SET

method. We present results in Fig. 2.5.2 and 2.5.3. One interesting scenario is

when the sampling number p of the matrix is close to its degree of freedom, all

the tested algorithms exhibit bad performance (zero success rate). However,

the proposed algorithm SSE ties the success bound of p to the degree of free-

dom. Simulation results clearly demonstrate the performance improvement of

the proposed method for both noiseless and noisy cases. We also interested in

testing the proposed method using large matrix with a higher rank, i.e., a set

of 300-by-300 matrices with rank=12. The results are presented in Fig. 2.5.4.

As one can see from the curves, the proposed method has good performance

especially when the sampling number is close to the oracle rate. In particular,

the oracle rate is 7056 and the SSE method has the best performance at sam-

pling point 0.08 (sample number is 7200, which is very close to the oracle rate

7056) while all other methods have zero success rate.
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2.6 Proofs

2.6.1 Analytical Results for Example 1: Minimizing fu

To start, we first write the explicit forms for fµ,1 (ε) and fµ,2 (ε), respectively,

fµ,1 (ε) = min
w1

∥∥∥∥∥∥∥
 1

1

−
 ε

ε

w1

∥∥∥∥∥∥∥
2

2

+ µw2
1,

fµ,2 (ε) = min
w2

∥∥∥∥∥∥∥
 1

1

−
 √1− 2ε2

ε

w2

∥∥∥∥∥∥∥
2

2

+ µw2
2.

The optimal w1 and w2 can be evaluated by setting the derivative with respect

to w1 and w2 to zero. It can be verified that

w∗1 =
2ε

2ε2 + µ
, and w∗2 =

√
1− 2ε2 + ε

1− ε2 + µ
.

With the explicit values of w∗1 and w∗2, the values of fµ,1 (ε) and fµ,2 (ε) can be

evaluated as follows:

fµ,1 (ε) = 2 (1− εw∗1) = 2− 4ε2

2ε2 + µ
=

2µ

2ε2 + µ
,

and

fµ,2 (ε) =
(

1−
√

1− 2ε2w∗2

)
+ (1− εw∗2)

= 2− 1− ε2 + 2ε
√

1− 2ε2

1− ε2 + µ

= 1 +
µ− 2ε

√
1− 2ε2

1− ε2 + µ
.
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The first derivatives are computed in the following:

f ′µ,1 (ε) = − 8µε

(µ+ 2ε2)2 ,

and

f ′µ,2 (ε) =
2ε
(
µ− 2ε

√
1− 2ε2

)
(1− ε2 + µ)2 −

2−8ε2√
1−2ε2

1− ε2 + µ
.

We shall estimate f ′µ (ε) for several choices of ε. Fix an ε0 ∈
(
−1

4
, 0
)
. Let

µ > 0 be sufficiently small such that µ < |ε0|3 /3 < 0.006. We shall study the

sign of f ′µ (ε) at 0, −
√
µ/2, and ε0. At ε = 0,

f ′µ (0) = f ′µ,1 (0) + f ′µ,2 (0) = − 2

1 + µ
< 0. (2.6.1)

At ε = −
√
µ/2, f ′µ,1 =

√
2µ−

1
2 > 15 as µ < 0.006. To obtain a lower bound on

f ′µ,2 , note that

−2
√

µ
2

(
µ+ 2

√
µ
2

√
1− µ

)(
1− µ

2
+ µ
)2

(a)
> −2

√
µ

2

(
µ+ 2

√
µ

2

√
1− µ

)
(b)
> −2

√
µ (µ+ 2

√
µ)

(c)
> −2

√
µ · 3√µ = −6µ > −0.05,

where (a) holds as
(
1 + µ

2

)
> 1, (b) follows from that µ

2
< µ and 1 − µ < µ,

and (c) holds because √µ > µ for all µ ∈ (0, 1). Furthermore, note that

−
2−4µ√

1−µ

1 + µ
2

(a)
> −2− 4µ

0.9
> −2.45,
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where (a) follows from that
√

1− µ
(
1 + µ

2

)
> 0.9 for all µ < 0.006. As a

result,

f ′µ

(
−
√
µ/2
)
> 15− 0.05− 2.45 > 0. (2.6.2)

To estimate f ′µ (ε0), we first construct an upper bound on f ′µ,1 (ε0):

f ′µ,1 (ε0) =
8µ (−ε0)

(µ+ 2ε20)
2

(a)
<

8µ |ε0|
4ε40

=
2µ

|ε0|3
(b)
<

2

3
,

where (a) follows from that µ + 2ε20 > 2ε20 and (b) is due to the assumption

µ < |ε0|3 /3. To obtain an upper bound on f ′µ,2 (ε0), we note that for the

assumed ranges of ε0 and µ, one has −2ε0

(
µ− 2ε0

√
1− 2ε20

)
/ (1− ε20 + µ)

2
<

0,
√

1− 2ε20 < 1, 1− ε20 + µ < 1, and

− 2− 8ε20√
1− 2ε20 (1− ε20 + µ)

< −2 + 8ε20 < −
3

2
.

Hence, f ′µ,2 (ε) < −3
2
, and

f ′µ (ε0) <
2

3
− 3

2
< 0. (2.6.3)

In summary, we have proved that when ε0 ∈
(
−1

4
, 0
)
and 0 < µ < |ε0|3 /3, one

has f ′µ (0) < 0, f ′µ
(
−
√
µ/2
)
> 0, and f ′µ (ε0) < 0.

2.6.2 Proof of Theorem 2.3.1

Note that f̃ can be written as a summation of finite many atomic functions, i.e.,

f̃ =
∑

i f̃i =
∑

i figρi . The statements in the theorem hold if these statements

hold for each atomic function f̃i = figρi . For notational simplicity, we drop the

subscript i and ρi in this proof.
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We first show that f̃ is continuous for positive ρ, that is, for any convergent

sequence Uk → U , one has f̃ (Uk) → f̃ (U). Towards this end, note that for

any ε > 0, when k is sufficiently large,

∣∣∣f̃ (Uk)− f̃ (U)
∣∣∣

= |f (Uk) g (λmin(Uk))− f (Uk) g (λmin(U))

+f (Uk) g (λmin(U))− f (U) g (λmin(U))|

≤ |f (Uk)| · |g (λmin(Uk))− g (λmin(U))|

+ |f (Uk)− f (U)| g (λmin(U))

≤ ‖xΩ‖2
2 ε+ |f (Uk)− f (U)| · |g (λmin(U))| .

We discuss this upper bound for two different cases. Define the set of singular

points of f by S = {U ∈ Um,r : λmin (UΩ) = 0}. When U ∈ Um,r\S, then f is

continuous at a neighborhood of U . For sufficiently large k, |f (Uk)− f (U)| ·

|g (U)| ≤ ε · 1 = ε. When U ∈ S, then g (U) = 0 and |f (Uk)− f (U)| ·

|g (U)| = 0 < ε. Combining the above results, one has
∣∣∣f̃ (Uk)− f̃ (U)

∣∣∣ ≤ c · ε

for some fixed constant c when k is sufficiently large. It follows that the

function f̃ is continuous.

The second part of this theorem is clear from the fact that g (U) = 1 for

all U ∈ Um,r\S.

The proof of the third part is sketched as follows. We first prove that

Uf (c) ⊆ Uf̃ (c) when ρ1 = · · · = ρn = 0. From the continuity of f̃ , it is

clear that for all positive ρ > 0, the level set
{
U : f̃ρ (U) ≤ 0

}
is closed.

Furthermore, for any given ρ(1) > ρ(2), it holds that gρ(1) (U) ≤ gρ(2) (U)

and f̃ρ(1) (U) ≤ f̃ρ(2) (U). It then follows that Uf̃
ρ(1)
⊇ Uf̃

ρ(2)
. As a result,
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Uf̃ (c) = limρ(k)↓0
⋂K
k=1 Uf̃

ρ(k)
(c) is a closed set. Combining the fact that

Uf (c) ⊆ Uf̃ (c), it follows that Uf (c) ⊂ Uf̃ (c).

Then we prove the converse, i.e., Uf̃ (c) ⊆ Uf (c). This part is trivial

when c < 0. We shall focus on the case that c ≥ 0. Consider any point

U ∈ Uf̃ (c) \Uf (c). We shall show that there is a sequence U (k), k = 1, 2, · · · ,

such that U (k) ∈ Uf and U (k) → U . By assumption U ∈ Uf̃ (c) \Uf (c), it

is clear that f̃ (U) 6= f (U ) and U is a singular point. By the construction

of f̃ = f · g, it is clear that f (U) > c and g (U) = 0. Since the columns

of UΩ ∈ Rm×r are linearly dependent, by singular value decomposition, the

matrix UΩ can be written as UΩ =
∑z

`=1 λ`u`v
T
` where z < r is the number

of nonzero singular values, λ` is the `th nonzero singular value, u` and v` are

the corresponding left and right singular vectors respectively. We fix a vector

vz+1 ∈ Rr such that v1, · · · ,vz,vz+1 are orthonormal. Now define the project

residue vector xΩ,r produced by projecting xΩ onto the subspace spanned

by UΩ, i.e., xΩ,r = xΩ − UΩU
†
ΩxΩ. By the assumption that f (U) 6= 0,

xΩ,r 6= 0. Normalize it to x′Ω,r so that
∥∥x′Ω,r∥∥2

= 1. Then it is clear that

u1, · · · ,uz,x′Ω,r are orthonormal. Define U (k) = U+ 1
k
x′Ω,rv

T
z+1 so that U (k)

Ω =∑z
`=1 λ`u`v

T
` + 1

k
x′Ω,rv

T
z+1. It is straightforward to verify that f

(
U (k)

)
= 0 ≤ c

and U (k) → U . As a result, U ∈ Uf . The third part of this theorem is

therefore proved.

2.6.3 Proof of Proposition 2.3.3

The explicit proof of the claim Eq. (2.3.6) is given in the Appendix A of [21].

The smooth function (2.3.2) is about the minimum singular value of the matrix

UΩi ∈ Rqi×r. For simplicity, we use a new notation in the following formulas,
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where Ai = UΩi . We have to calculate the Singular SVD of the matrix Ai,

Ai = UΛV T (2.6.4)

After T. Papadopoulo and M.I.A Louralis’s work [59], we can compute the

Jacobian of the SVD,

UT ∂Ai

∂ajk
V = Ωjk

UΛ +
∂Λ

∂ajk
+ ΛΩjk

V , (2.6.5)

where ajk refers to the (j, k)-th element of the matrix Ai, Ωjk
U = UT ∂U

∂ajk
and

Ωjk
V = ∂V T

∂ajk
V . Since Ωjk

U and Ωjk
V are skew symmetric, all the diagonal elements

are zeros. Hence it is easy to obtain the first derivatives with respect to ajk of

the r-th singular value,

∂λr
∂ajk

= ujrvkr. (2.6.6)

Then, the first order derivative of the minimum singular value is

∇λmin = ∇λr =
∂λr
∂Ai

= U:,rV
T

:,r . (2.6.7)

It is easy to proof that

dgρ
dλmin

=



30
ρ

(
λmin

ρ

)4

− 60
ρ

(
λmin

ρ

)3

+ 30
ρ

(
λmin

ρ

)2

if λ ∈ (0, ρ) ,

0 otherwise.

Hence, the claim of ∇gρ = dgρ
dλmin

· ∇λmin is proved.
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2.6.4 Proof of Singular Values in Example 2.2.2

For any U = [ u1 u2 ]T , its singular value is given by using eigenvalue de-

composition,

UTU − λ2I = 0

where I denotes a identity matrix. Then, λ =
√
u2

1 + u2
2. In this example,

UΩ1 = [ ε ε ]T , hence λ1 =
√
ε2 + ε2 =

√
2ε2. For UΩ2 = [

√
1− 2ε2 ε]T ,

hence λ1 =
√

(1− 2ε2) + ε2 =
√

1− ε2.

2.6.5 Proof of Lemma 2.4.2

Consider our objective function f(U) = ‖XΩ − P(UW )‖2
F and its first deriva-

tive ∇f(U) = XrU
T , we have

∇f(UV ) = Xr(V
TW )T = XrW TV = ∇f(U) · V . (2.6.8)

Now consider Ūk+1 = Uk+1V2V
T

1 and Eq. (2.6.8), it is easy to obtain

∇f(Uk+1) = ∇f(Ūk+1)V1V
T

2

This equation still holds when we subtract 41 from ∇f(Uk+1) and 4̄1 from

∇f(Ūk+1), which gives

∇f(Uk+1)−41 = (∇f(Ūk+1)− 4̄1)V1V
T

2

∇f(Uk+1)−41 = (∇f(Ūk+1)V1V
T

2 − 4̄1V1V
T

2

41 = 4̄1V1V
T

2

Hence, given an arbitrary tangent vector 40 ∈ Tk−1 and consider 4̄1 =
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T̄k−140, its parallel vector in tangent space Tk+1 is then

Tk+1 3 41 = T̄k−1 · 40 · V1V
T

2 .

2.6.6 Proof of Lemma 2.4.3

Given the objective function at U0, f(U0) = min
W
‖XΩ − PΩ(U0W )‖2

F . One

can obtain its gradient G0 = ∇f(U0) = −2XrW
T
U0
, where Xr = XΩ −

PΩ(UWU0). Consequently, it is easy to find

f(Ū0) = f(U0V1) = min
W

∥∥XΩ − PΩ(U0V1V
T

1 W )
∥∥2

F

and the gradient Ḡ0 is

Ḡ0 = ∇f(Ū0)

= ∇f(U0V1)

= −2Xr(V
T

1 WU0)T

= −2XrW
T
U0
V1

= G0V1

The gradient G0 can be decomposed as a sum of its basis with different
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weights vec(G0) =
∑r(m−r)

i=1 b
(0)
i ci, then

Ḡ0 = G0V1

= (

r(m−r)∑
i=1

B
(0)
i ci)V1

=

r(m−r)∑
i=1

B
(0)
i V1ci

=

r(m−r)∑
i=1

B̄
(0)
i ci, (2.6.9)

where B(0)
i ∈ Rm×r is the matrix form of b(0)

i ∈ Rmr. Hence,

b̄
(0)
i = (V T

1 ⊗ Im)b
(0)
i i ∈ [1, ..., r(m− r)]. (2.6.10)

Applying the above results to U1 ∈ Um,r and Ū1 ∈ Um,r, we can drive

b
(1)
i = (V2 ⊗ Im)b̄

(1)
i i ∈ [1, ..., r(m− r)]. (2.6.11)

According to Eq. (2.6.10), Eq. (2.6.11) and Ū1 = τ(Ū0), the relation be-

tween b(1)
i and b(0)

i is

b
(1)
i = (V2 ⊗ Im)b̄

(1)
i

= (V2 ⊗ Im)τ
(
b̄

(0)
i

)
= (V2 ⊗ Im)τ((V T

1 ⊗ Im)b
(0)
i ).



Chapter 3

Blind Source Separation

3.1 Introduction

Blind source separation has been investigated during the last two decades.

Early studies focus on the instantaneous and (over-)determined BSS problem,

and address the problem under the framework of independent component anal-

ysis (ICA) [43], assuming that the sources are statistically independent. This

has led to some well-known approaches, such as Infomax [7], maximum likeli-

hood estimation [33], the maximum a posterior (MAP) [8], and FastICA [43].

Convolutive and/or underdetermined BSS problems have also been extensively

studied especially in the speech processing applications, where the sensor mea-

surements are usually modeled as convolutive (often underdetermined) mix-

tures of the original sources due to the presence of room reverberations (and

often more sources than sensors). Effort in this direction has led to algorithms

such as degenerate unmixed estimation technique (DUET) [45], non-negative

matrix factorization (NMF) [52], and sparse representation technique [85].

In this Chapter, we focus on blind image separation application, in which

81
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the instantaneous model is usually adopted. To address this problem, several

approaches have been proposed in the literature, including, for example, the

Bayesian approaches based on Markov random field model (MRF) [46], sparse

component analysis (SCA) [37] and morphological component analysis (MCA)

[69] based on sparse representations. In MCA, source separation is addressed

by decomposing the images into different morphological components in terms

of sparsity of each component in a signal dictionary. The MCA has also been

extended to multichannel case as multichannel MCA (MMCA) [9] and general-

ized MCA (GMCA) [10]. In MMCA, each source is assumed to be sparse in a

specific transform domain. However, in GMCA, each source can be represented

by the linear combination of morphological components and each component

has a sparse representation by a specific dictionary. Recently, MMCA is further

adapted to Blind MMCA (BMMCA) [3] based on learned dictionary for sepa-

rating mixed images. This method is motivated by the idea of image denoising

using a learned dictionary from corrupted image in [30], which in principle

extends the denoising problem to BSS. The BMMCA method is interesting in

that the dictionary is directly trained from the mixtures, alleviating the issue

of requiring training data, and as a result the algorithm can still perform in

a blind manner. However, the BMMCA method trains multiple dictionaries

for different sources, and in each iteration only updates one atom, render-

ing a potentially ineffective sparse representation of the image sources and a

computationally inefficient procedure.

In this Chapter, we propose a new method, termed SparseBSS, which not

only addresses the above limitations but also has some interesting new proper-

ties (discussed below). The implementation is based on simultaneous codeword

optimization (SimCO) [23] framework on Grassmann manifolds, which ensures
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that the constraints on the column norms of the mixing matrix and dictionar-

ies are satisfied. Numerical experiments for blind image separation show the

advantages of SparseBSS over the ICA, GMCA, and BMMCA methods.

The major differences of our proposed algorithm from the existing methods

include:

• Different from most dictionary based BSS algorithms where multiple

dictionaries are used, we use only one dictionary to sparsely represent

different sources. On one hand, this reduces the computational cost. On

the other hand, there is no noticeable performance difference between the

two approaches when the single dictionary used contains sufficient many

codewords (the number of codewords is still less than that of multiple

dictionaries combined).

• Formulating the overall separation problem into two sub-problems, we

adapt the recently proposed SimCO optimization method [23] to solve

both. The advantage of unifying the two stages is that, in practice, the

same algorithm framework and codes can be used for both stages, thus

significantly reducing the implementation effort.

• Another important reason to adapt the SimCO framework is to alleviate

the possible ill-convergence problem existing in the traditional dictionary

learning methods, e.g., K-SVD [5] and MOD [31]. In [23], it was observed

that singular points, rather than the local minima, tend to be the major

obstacle preventing algorithm from converging to a global minimizer. By

adopting regularized SimCO, we are able to force the search path away

from singular points and improve the performance.

• Also, we investigated the smoothed technique in Chapter 2 to solve the
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singular issue in SimCO, termed smoothed SimCO . Similarly, a continu-

ous objective function is proposed to replace the original one.

The remainder of this Chapter is organised as follows. Section 3.2 intro-

duces the background of the BSS problem. Section 3.3 describes the frame-

work of the BSS problem based on dictionary learning. A proposed algorithm

SparseBSS is introduced and compared in details with the related benchmark

algorithm BMMCA. In Section 3.4, we briefly introduce the background of dic-

tionary learning algorithms and then discuss the important observation of the

singularity issue, which is a major reason for the failure of dictionary learning

algorithms and hence dictionary learning based BSS algorithms. Afterwards,

two available approaches are presented to address this problem. We conclude

our work in the last Subsection.

3.2 Background

Typically a linear mixture model is assumed where the mixtures Z ∈ Rr×N

are described as Z = AS + V . Each row of S ∈ Rs×N is a source and A ∈

Rr×s models the linear combinations of the sources. The matrix V ∈ Rr×N

represents additive noise or interference introduced during mixture acquisition

and transmission.

Usually, in the BSS problem, the only known information is the mixtures

Z and the number of sources. One needs to determine both the mixing matrix

A and the sources S, i.e., mathematically, one needs to solve

min
A,S
‖Z −AS‖2

F .



3.2. BACKGROUND 85

Such a problem has an infinite number of solutions, i.e., the problem is ill-

posed. In order to find the true sources and the mixing matrix (subject to scale

and permutation ambiguities), it is often required to add extra constraints to

the problem formulation.

Sparsity prior is another property that can be used for BSS. Many natural

signals are sparse under some dictionaries [17]. The mixtures, viewed as a

superposition of sources, are in general less sparse compared to the original

sources. Based on this fact, the sparse prior has been used in solving the BSS

problem from various perspectives since 2001, e.g., sparse ICA (SPICA) [12]

and SCA [37]. In this approach, there is typically no requirement that the

original sources have to be independent. As a result, these algorithms are ca-

pable of dealing with highly correlated sources, for example, in separating two

superposed identical speeches, with one being a few samples delayed version of

the other. Jourjine et al., proposed an SCA based algorithm in [45]. SCA al-

gorithms look for a sparse representation under predefined bases such as DCT,

wavelet, curvelet, etc. MCA [69] and its extended algorithms for multichannel

cases, MMCA [9] and GMCA [10], are also based on the assumption that the

original sources are sparse in different bases instead of explicitly constructed

dictionaries. However, these algorithms do not exhibit an outstanding perfor-

mance since in most cases the predefined dictionaries are too general to offer

sufficient details of sources when used in sparse representation.

A method to address this problem is to learn data-specific dictionaries. In

[29], the author advised to train a dictionary from the mixtures/corrupted-

images and then decompose it into a few dictionaries according to the prior

knowledge about the main components in different sources. This algorithm

is used for separating images with different main frequency components (e.g.,
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Cartoon and Texture images) and obtained satisfactory results in image de-

noising. Peyré et al. proposed in [61] to learn dictionary from a set of exemplar

images for each source. Xu et al., [79] proposed an algorithm which allows the

dictionaries to be learned from the sources or the mixtures. In most BSS prob-

lems, however, dictionaries learned from the mixtures or from similar exemplar

images rarely well represent the original sources.

To get more accurate separation results, the dictionaries should be adapted

to the unknown sources. The motivation is clear from the assumption that the

sources are sparsely represented by some dictionaries. The initial idea of learn-

ing dictionaries while separating the sources was suggested by Abolghasemi et

al. [3]. They proposed a two-stage iterative process. In this process, each

source is equipped with a dictionary, which is learned in each iteration, right

after the previous mixture learning stage. Considering the size of dictionaries

being much larger than the mixing matrix, the main computational cost is on

the dictionary learning stage. This two-stage procedure was further developed

in Zhao et al. [82]. The method was termed as SparseBSS, which employs a

joint optimization framework based on the idea of SimCO dictionary update

algorithm [23]. Furthermore, from the viewpoint of the dictionary redundancy,

SparseBSS uses only one dictionary to represent all the sources, and is there-

fore computationally much more efficient than using multiple dictionaries as

in [3]. This joint dictionary learning and source separation framework is the

focus of this Chapter.
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3.3 Framework of Dictionary Learning Based BSS

Problem

We consider the following linear and instantaneous mixing model. Suppose

that there are s source signals of the same length, denoted by s1, s2, · · · , ss

respectively, where si ∈ R1×N is a row vector to denote the ith source. Assume

that these sources are linearly mixed into l observation signals, denoted by

z1, z2, · · · , zl respectively where zj ∈ R1×N . In the matrix format, denote

S =
[
sT1 , s

T
2 , · · · , sTs

]T ∈ Rs×N and Z =
[
zT1 , z

T
2 , · · · , zTl

]T ∈ Rl×N . Then the

mixing model is given by

Z = AS + V , (3.3.1)

where A ∈ Rl×s is the mixing matrix and V ∈ Rl×N is denoted as zero mean

additive Gaussian noise. We also assume that l ≥ s, i.e., the under-determined

case will not be discussed here.

3.3.1 Separation with Dictionaries Known in Advance

For some BSS algorithms, such as MMCA [9], orthogonal dictionaries Di’s

are required to be known a priori. Each source si is assumed to be sparsely

represented by a different Di. Hence, we have si = Dixi with xi’s being

sparse. Given the observation Z and the dictionaries Di’s, MMCA [9] aims to

estimate the mixing matrix and sources, based on the following form:

min
A,S
‖Z −AS‖2

F +
n∑
i=1

λi

∥∥∥siD†i∥∥∥
1
. (3.3.2)
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Here λi > 0 is the weighting parameter determined by the noise deviation σ,

‖·‖F represents the Frobenius norm, ‖·‖1 is the `1 norm and D†i denotes the

pseudo-inverse of Di. Predefined dictionaries generated from typical mathe-

matical transforms, e.g., DCT, wavelets and curvelets, do not target to particu-

lar sources, and thus do not always provide sufficiently accurate reconstruction

and separation results. Elad et al. [29] designed a method first to train a re-

dundant dictionary by K-SVD algorithm in advance, and then decompose it

into a few dictionaries, one for each source. This method works well when the

original sources have components that are largely different from each other un-

der some unknown mathematical transformations (e.g. Cartoon and Texture

images under the DCT transformation). Otherwise the dictionaries found may

not be appropriate in the sense that they may fit better to the mixtures rather

than the sources.

3.3.2 Separation with Unknown Dictionaries

3.3.2.1 SparseBSS Algorithm Framework

According to my best knowledge, BMMCA and SparseBSS are the two most

recently BSS algorithms which implement the idea of performing source sepa-

ration and dictionary learning simultaneously. We focus on Sparse BSS in this

Chapter. In SparseBSS, one assumes that all the sources can be sparsely repre-

sented under the same dictionary. In order to obtain enough training samples

for dictionary learning, multiple overlapped segments (patches) of the sources

are taken. To extract small overlapped patches from the source image si, a

binary matrix Pk ∈ Rn×N is defined as a patching operator1 [82]. The product

1Note that in this Chapter Pk is defined as a patching operator for image sources. The
patching operator for audio sources can be similarly defined as well.
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Pk ·sTi ∈ Rn×1 is needed to obtain and vectorize the kth patch of size
√
n×
√
n

taken from image Si. Denote P = [P1, ...,PK ] ∈ Rn×KN , where K is the num-

ber of patches taken from each image. Then the extraction of multiple sources

S is defined as PS = ([P1, ...,PK ])(
[
sT1 , s

T
2 , ..., s

T
s

]
⊗ IK) = P · (ST ⊗ IK) ∈

Rn×Ks, where symbol ⊗ denotes the Kronecker product and IK indicates the

identity matrix. The computational cost associated with converting from im-

ages to patches is low. Each column of PS represents one vectorized patch.

We sparsely represent PS by using only one dictionaryD ∈ Rn×d and a sparse

coefficient matrix X ∈ Rd×Ks, which suggests PS ≈ DX. This is different

from BMMCA, where multiple dictionaries are used for multiple sources.

With these notations, the BSS problem is formulated as the following joint

optimization problem

min
A,S,D,X

λ ‖Z −AS‖2
F + ‖DX − PS‖2

F . (3.3.3)

The parameter λ is introduced to balance the measurement error and the

sparse approximation error, and X is assumed to be sparse.

To find the solution of the above problem, we propose a joint optimization

algorithm to iteratively update the following two pairs of variables {D,X}

and {A,S} over two stages until a (local) minimizer is found. Note that in

each stage there is only one pair of variables to be updated simultaneously by

keeping the other pair fixed.

• Dictionary learning stage

min
D,X
‖DX − PS‖2

F , (3.3.4)
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• Mixture learning stage

min
A,S

λ ‖Z −AS‖2
F + ‖DX − PS‖2

F . (3.3.5)

Without being explicit in (3.3.3), a sparse coding process is involved where

greedy algorithms such as orthogonal matching pursuit (OMP) [60] and sub-

space pursuit (SP) [20] are used to solve

min
X
‖X‖0 , s.t. ‖DX − PS‖2

F ≤ ε,

where ‖X‖0 counts the number of nonzero elements in X, the dictionary D

is assumed fixed, and ε > 0 is an upper bound on the sparse approximation

error.

During the optimization, further constraints are made on the matrices A

and D. Consider the dictionary learning stage. Since the performance is

invariant to scaling and permutations of the dictionary codewords (columns

of D), we follow the convention in the literature, e.g., [23], and enforce the

dictionary to be updated on the set

D =
{
D ∈ Rn×d : ‖D:,i‖2 = 1, 1 ≤ i ≤ d

}
, (3.3.6)

where D:,i stands for the ith column of D. A detailed description of the

advantage by adding this constraint can be found in [23]. Sparse coding, once

performed, provides the information about which elements of X are zeros and

which are non-zeros. Define the sparsity pattern by Ω = {(i, j) : Xi,j 6= 0},

which is the index set of the nonzero elements of X. Define XΩ as the set of

all matrices conforming to the sparsity pattern Ω. This is the feasible set of
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the matrixX. The optimization problem for the dictionary learning stage can

be written as

min
D∈D

fµ (D) = min
D∈D

min
X∈XΩ

‖DX − PS‖2
F + µ ‖X‖2

F ,

= min
D∈D

min
X∈XΩ

∥∥∥∥∥∥∥
 PS

0

−
 D

√
µI

X
∥∥∥∥∥∥∥

2

F

. (3.3.7)

The term µ ‖X‖2
F introduces a penalty to alleviate the singularity issue. See

more details in Section 3.4.3.

In the mixture learning stage, similar to the dictionary learning stage, we

constrain the mixing matrix A in the set

A =
{
A ∈ Rl×s : ‖A:,i‖2 = 1, 1 ≤ i ≤ s

}
. (3.3.8)

Otherwise if the mixing matrix A is scaled by a constant c and the source S

is inversely scaled by c−1, then for any {A,S} we can always find a solution

{cA, c−1S|c > 1} which further decreases the objective function (3.3.3) from

λ ‖Z −AS‖2
F + ‖DX − PS‖2

F to λ ‖Z −AS‖2
F + c−2 ‖DX − PS‖2

F . Now if

we view the sources S ∈ Rs×n as a “sparse” matrix with the sparsity pattern

Ω′ = {(i, j) : 1 ≤ i ≤ s, 1 ≤ j ≤ N}, then the optimization problem for the

mixture learning stage is exactly the same as that for the dictionary learning

stage:

min
A∈A

fλ (A) =min
A∈A

min
S∈Rs×n

λ ‖Z −AS‖2
F +

∥∥P† (DX)− S
∥∥2

F

=min
A∈A

min
S∈XΩ′

∥∥∥∥∥∥∥
 √

λZ

P† (DX)

−
 √λA

I

S
∥∥∥∥∥∥∥

2

F

, (3.3.9)
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where the fact that Rs×n = XΩ′ has been used and P† (·) is the unpatching

operator. Here, we do not require the prior knowledge about the scaling matrix

in front of the true mixing matrix [10], as otherwise required in MMCA and

GMCA algorithms.

To conclude this Subsection, we emphasize the following treatment of the

optimization problems (3.3.7) and (3.3.9). Both of them involve a joint opti-

mization over two variables, i.e., D andX for (3.3.7) and A and S for (3.3.9).

Note that if D and A are fixed, then the optimal X and S can be easily

computed by solving the corresponding least squares problems. Motivated by

this fact, we write (3.3.7) and (3.3.9) as min
D∈D

fµ (D) and min
A∈A

fλ (A) respec-

tively, when fµ (D) and fλ (A) are properly defined in (3.3.7) and (3.3.9). In

this way, the optimization problems, at least from the surface, only involve one

variable. This helps the discovery of the singularity issue and the developments

of handling singularity. See Section 3.4 for details.

3.3.2.2 Implementation Details of SparseBSS

The dictionaries at the beginning and the end of the kth iteration, denoted

by D(k) and D(k+1) respectively, can be related by D(k+1) = D(k) + α(k)η(k)

where α(k) is an appropriately chosen step size and η(k) is the search direc-

tion. The step size α(k) can be determined by Armijo condition or Golden

selection presented in [58]. The search direction η(k) can be determined by a

variety of gradient methods [28, 58]. The decision of η(k) plays the key role

which directly affects the convergence rate of the whole algorithm. Generally

speaking, a Newton direction is a preferred choice (compared with the gradi-

ent descent direction) [58]. In many cases, direct computation of the Newton

direction is computationally prohibitive. Iterative methods can be used to
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search the Newton direction. Take the Newton Conjugate Gradient (Newton

CG) method as an example. It starts with the gradient descent direction η0

and iteratively refines it towards the Newton direction. Denote the gradient

of fµ (D) as ∇fµ (D). Denote ∇η (∇fµ (D)) as the directional derivative of

∇fµ (D) along η [41]. In each line search step of the Newton CG method, in-

stead of computing the Hessian ∇2fµ (D) ∈ Rmd×md explicitly, one only needs

to compute ∇η (∇fµ (D)) ∈ Rm×d. The required computational and storage

resources are therefore much reduced.

When applying the Newton CG to minimize fµ (D) in (3.3.7), the key

computations are summarized below. Denote D̃ = [ DT µI ]T and let Ω (:, j)

be the index set of nonzero elements in X:,j. We consider D̃i = D̃:,Ω(:,i) ∈

R(m+l)×l with m > l. Matrix D̃i is a full column rank tall matrix. We denote

fi(D̃i) = min
xi
‖yi − D̃xi‖2

2

and the optimal

x∗i = arg min
xi
‖yi − D̃xi‖2

2.

Denote D̃†i as the pseudo-inverse of D̃i. Then we have ∂f
∂xi
|x∗i = 0, where

x∗i = D̃†iyi, and ∇fi(D̃i) can be written as

∇fi(D̃i) =
∂f

∂D̃i

+
∂f

∂xi

∂xi

∂D̃i

= −2(yi − D̃ix
∗
i )x

∗T
i + 0 (3.3.10)
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To compute ∇η
(
∇fi(D̃i)

)
, we have

∇η
(
∇fi(D̃i)

)
= 2∇η

(
D̃ix

∗
i − yi

)
x∗Ti + 2

(
D̃ix

∗
i − yi

)
∇ηx∗Ti

= 2∇ηD̃ix
∗
ix
∗T
i + 2D̃i∇ηx∗ix∗Ti + 2

(
D̃ix

∗
i − yi

)
∇ηx∗Ti

= 2ηx∗ix
∗T
i + 2D̃i∇ηx∗ix∗Ti + 2

(
D̃ix

∗
i − yi

)
∇ηx∗Ti ,

(3.3.11)

where

∇ηx∗ = −(D̃TD̃)−1
((
D̃Tη + ηTD̃

)
D̃† − ηT

)
y. (3.3.12)

From the definition of D̃i, Di is a sub-matrix of D̃i, therefore ∇fi(Di) and

∇η (∇fi(Di)) are also respectively sub-matrices of∇fi(D̃i) and∇η
(
∇fi(D̃i)

)
,

i.e., ∇fi(Di) =
(
∇fi(D̃i)

)
1:m,:

and ∇η (∇fi(Di)) =
(
∇η
(
∇fi(D̃i)

))
1:m,:

.

In addition, it is also worth noting that the SparseBSS model, using one

dictionary to sparsely represent all the sources will get almost the same per-

formance as using multiple but same-sized dictionaries when the dictionary

redundancy d
n
is large enough. As a result it is reasonable to train only one

dictionary for all the sources. An obvious advantage for using one dictionary

is that the computational cost does not increase when the number of sources

increases.

3.3.3 Blind MMCA and Its Comparison to SparseBSS

BMMCA [3] is another recently proposed BSS algorithm based on adaptive

dictionary learning. Without knowing dictionaries in advance, BMMCA algo-

rithm also trains dictionaries from the observed mixture Z. Inspired by the
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hierarchical scheme used in MMCA and the update method in K-SVD, the sep-

aration model in BMMCA is made up of a few rank-1 approximation problems,

where each problem targets on the estimation of one particular source

min
A:,i,si,Di,Xi

λ ‖Ei −A:,isi‖2
F + ‖DiXi −Rsi‖2

2 + µ ‖Xi‖0 . (3.3.13)

Different from the operator P defined earlier in SparseBSS algorithm, the

operator R in BMMCA is used to take patches from only one estimated image

si. Di is the trained dictionary for representing source si. Ei is the residual

which can be written as

Ei = Z −
∑
j 6=i

A:,jsj. (3.3.14)

Despite being similar in problem formulation, BMMCA and SparseBSS

differ in terms of whether the sources share a single dictionary in dictionary

learning. In the SparseBSS algorithm, only one dictionary is used to provide

sparse representations for all sources. BMMCA requires multiple dictionaries,

one for each source. In the mixing matrix update, BMMCA imitates the

K-SVD algorithm by splitting the steps of update and normalization. Such

two-step based approach does not bring the expected optimality of A ∈ A,

thereby giving inaccurate estimation, while SparseBSS keepsA ∈ A during the

optimization process. In BMMCA, the authors claim that the ratio between

the parameter λ and the noise standard deviation σ is fixed to 30, which will

not guarantee good estimation results at various noise levels.
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3.4 Dictionary Learning and the Singularity Is-

sue

As becoming clear from previous discussions, dictionary learning plays an es-

sential role in solving the BSS problem when the sparse prior is used, and

hence is the focus of this Section. We firstly briefly introduce the relevant

background, then discuss an interesting phenomenon, the singularity issue in

the dictionary update stage, and finally present two approaches to handle the

singularity issue. For the readers who are more interested in the SparseBSS

algorithm itself may consider this Section as optional and skip to Section 3.5.

3.4.1 Brief Introduction of Dictionary Learning Algorithms

One of the earliest dictionary learning algorithms is the method of optimal di-

rections (MOD) [31] proposed by Engan et al. The main idea is as follows: in

each iteration, one first fixes the dictionary and uses OMP [60] or FOCUSS [36]

to update the sparse coefficients, then fixes the obtained sparse coefficients and

updates the dictionary in the next stage. MOD was later modified to iterative

least squares algorithm (ILS-DLA) [32] and recursive least squares algorithm

(RLS-DLA) [68]. Aharon et al. developed the K-SVD algorithm [5]. In each

iteration, the first step is to update the sparse coefficients in the same way as in

MOD. Then in the second step, one fixes the sparse pattern, and updates the

dictionary and the nonzero coefficients simultaneously. In particular, the code-

words in the dictionary are sequentially selected: the selected codeword and

the corresponding row of the sparse coefficients are updated simultaneously

by using SVD. More recently, Dai et al. [23] considered the dictionary learn-
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ing problem from a new perspective. They formulated dictionary learning as

an optimization problem on manifolds and developed simultaneous codeword

optimization (SimCO) algorithm. In each iteration, SimCO allows multiple

codewords of the dictionary to be updated with corresponding rows of the

sparse coefficients jointly. This new algorithm can be viewed as a general-

ization of both MOD and K-SVD. Some other dictionary learning algorithms

are also developed in the past decade targeting on various circumstances. For

example, based on stochastic approximations, Mairal et al. [54] proposed an

online algorithm to address the problem with large data sets.

Theoretical or in-depth analysis of the dictionary learning problem was

meantime in progress as well. Gribonval et al. [38], Geng et al. [34] and Je-

natton et al. [44] studied the stability and robustness of the objective function

under different probabilistic modeling assumptions, respectively. In addition,

Dai et al. observed in [23] that the dictionary update procedure may fail to

converge to a minimizer. This is a common phenomenon happening in MOD,

K-SVD and SimCO. Dai et al. further observed that ill-conditioned dictionar-

ies, rather than stationary dictionaries, are the major reason that has led to the

failure of the convergence. To alleviate this problem, regularized SimCO was

proposed in [23]. The empirical performance improvement was observed. The

same approach was also considered in [80] however without detailed discussion

on the singularity issue.

3.4.2 Singularity Issue and Its Impacts

In dictionary update stage of existing mainstream algorithms, singularity is

observed as the major reason leading to failures [23, 84]. Simulations in [23]

suggests that the mainstream algorithms fail mainly because of singular points
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in the objective function rather than non-optimal stationary points. As dic-

tionary learning is an essential part of the aforementioned SparseBSS, the

singularity issue also has a negative impact on the overall performance of BSS.

To explain the singularity issue in dictionary update, we first formally define

the singular dictionaries.

Definition 3.4.1. A dictionary D ∈ Rm×d is singular under a given sparsity

pattern Ω if there exists an i ∈ [n] such that the corresponding sub-dictionary

Di ,D:,Ω(:,i) is column rank deficient. Or equivalently, the minimum singular

value of Di, denoted as λmin (Di), is zero.

A dictionary D ∈ Rm×d is said to be ill-conditioned under a given sparsity

pattern Ω if there exists an i ∈ [n] such that the condition number of the

sub-dictionary Di is large, or equivalently λmin (Di) is close to zero.

Definition 3.4.2. ([23]) Define the condition number of a dictionary D as:

κ (D) = max
i∈[n]

λmax (Di)

λmin (Di)
,

where λmax (Di) and λmin (Di) represent the maximum and the minimum sin-

gular value of the sub-dictionary Di respectively.

The word “singular” comes from the fact that f (D) = min
X∈XΩ

‖Y −DX‖2
F
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is not continuous at a singular dictionary2 and the corresponding

X (D) , arg min
X∈XΩ

‖Y −DX‖2
F

is not unique. The singularity of f (D) leads to convergence problems. Bench-

mark dictionary update procedures may fail to find a globally optimal solution.

Instead they converge to a singular point of f (D), i.e., a singular dictionary.

Ill-conditioned dictionaries are in the neighborhood of singular ones. Al-

gorithmically when one of the λmin (Di)s is ill-conditioned, the curvature of

f (D) is quite large and the value of the gradient fluctuates dramatically. This

seriously affects the convergence rate of the dictionary update process.

Furthermore, ill-conditioned dictionaries also bring a negative effect on

the sparse coding stage. Denote yi and xi as the ith column of Y and X

respectively. Consider a summand of the formulation in sparse coding stage

[5, 23], i.e.,

min
xi
‖yi −Dxi‖2

F + ‖xi‖0 .

An ill-conditioned D corresponds to a very large condition number, which

breaks the RIP [15], and results in the unstable solutions: with small perturba-

tions added on the training sample Y , the solutions ofX deviate significantly.

2An illustration: take Y , D, X as scalars. If Y 6= 0, there exists a singular point at
D = 0 on f (D) = min

X
‖Y −DX‖2F , where X can be assigned as any real number.
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3.4.3 Regularized SimCO

The main idea of regularized SimCO lies in the use of an additive penalty term

to avoid singularity. Consider the objective function fµ
(
D̃
)
in (3.3.7),

fµ

(
D̃
)

= min
X∈XΩ

‖DX − P (S)‖2
F + µ ‖X‖2

F ,

= min
X∈XΩ

∥∥∥∥∥∥∥
 P (S)

0

−
 D

√
µI

X
∥∥∥∥∥∥∥

2

F

. (3.4.1)

As long as µ 6= 0 (µ > 0 in our case), the block µI guarantees the full column

rank of D̃ = [ DT µI ]T . Therefore, with the modified objective function

fµ

(
D̃
)
, there is no singular point so that gradient descent methods will only

converge to stationary points.

This regularization technique is also applicable to MOD [23]. It is verified

that this technique effectively mitigates the occurrence of ill-conditioned dic-

tionary although at the same time some stationary points might be generated.

To alleviate this problem, one can decrease gradually the regularization pa-

rameter µ during the optimization process [23]. In the end µ will decrease to

zero. Nevertheless, it is still not guaranteed to converge to a global minimum.

Similar to the regularized method in Chapter 2, the regularized SimCO fails

at the singular point. As a result, another method to address the singularity

issue is introduced below.

3.4.4 Smoothed SimCO

Also aiming at handling the singularity issue, smoothed SimCO [84] is to re-

move the singularity effect by multiplicative functions. The intuition is ex-
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plained as follows. Write f (D) into a summation of atomic functions

f(D) = ‖Y −DX‖2
F

=
∑
i

‖Y:,i −DiXΩ(:,i),i‖2
2 (3.4.2)

=
∑
i

fi(Di),

where each fi(Di) is termed as an atomic function and Di is defined in Defi-

nition 3.4.1. Let I be the index set corresponding to the Di’s of full column

rank. Define an indicator function XI s.t. XI (i) = 1 if i ∈ I and XI (i) = 0

if i ∈ Ic. Use XI (i) as a multiplicative modulation function and apply it to

each fi (Di). Then one obtains

f̄(D) =
∑
i

fi(Di)XI (i) =
∑
i∈I

fi(Di). (3.4.3)

This new function f̄ is actually the best possible lower semi-continuous ap-

proximation of f and there is no new stationary point created.

Motivated from the above, we define

f̃(D) =
∑
i

fi(Di)gρ (λmin (Di)) , (3.4.4)

where the shape of gρ(·) is given in Fig. 2.3.1. The function gρ(·) has the

following properties: 1) gρ (λmin) = 0 for all λmin ≤ 0; 2) gρ (λmin) = 1 for all

λmin (Di) > δ > 0, where δ is a threshold; 3) gρ(·) is monotonically increasing;

4) gρ(·) is second order differentiable. When using λmin (Di) as the input

variable for gρ(·) and the positive threshold δ → 0, λmin (Di) becomes an
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indicator function indicating whether Di has a full column rank, i.e.,

gρ (λmin (Di)) =


1 ifDi has full column rank;

0 otherwise.

The modulated objective function f̃ has several good properties which do not

exhibit in the regularized objective function (3.4.1). In particular, we have the

following theorems.

Theorem 3.4.3. Consider the smoothed objective function f̃ and the original

objective function f defined in (3.4.4) and (3.4.2) respectively.

1. When δ > 0, ∀i, f̃(D) is continuous.

2. Consider the limit case where δ → 0 with δ > 0, ∀i. The following

statements hold:

(a) f̃(D) and f(D) differ only at the singular points.

(b) f̃(D) is the best possible lower semi-continuous approximation of

f(D).

Theorem 3.4.4. Consider the smoothed objective function f̃ and the original

objective function f defined in (3.4.4) and (3.4.2) respectively. For any a ∈ R,

define the lower level set Df (a) = {D : f(D) ≤ a}. It is provable that when

δ → 0, Df̃ (a) is the closure of Df (a).
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In practice, we always choose a δ > 0. The effect of a positive δ, roughly

speaking, is to remove the barriers created by singular points, and replace them

with “tunnels”, whose widths are controlled by δ, to allow the optimization

process to pass through. The smaller the δ is, the better f̃ approximates f ,

but the narrower the tunnels are, and the slower the convergence rate will be.

As a result, the threshold δ should be properly chosen. A detailed discussion

of choosing δ is presented in [83]. Compared with the choice of the parameter

(µ) in the regularized SimCO [23], the choice of the smoothing threshold δ is

easier: one can simply choose a small δ > 0 without decreasing it during the

process.

3.4.5 Implementation of Smoothed SimCO

In this Subsection, we present a Newton CG implementation to minimize the

objective function f̃ (D). Most optimization methods are based on the so

called line search strategy. The dictionaries at the beginning and the end of

the k-th iteration, denoted by D(k) and D(k+1) respectively, can be related

by D(k+1) = D(k) + α(k)η(k) where α(k) is the appropriately chosen step size

and ηk is the search direction. The step size α(k) can be determined by us-

ing criteria presented in [58]. The search direction η(k) plays the key role in

determining the convergence rate. Generally speaking, a Newton direction is

preferred (compared with the gradient descent direction) [58]. In a standard

Newton method, the computation of the Newton direction requires the Hessian

of the objective function. Note that in the problem at hand, the variable D

has size m × d and hence the corresponding Hessian has size md × md. To

compute the Hessian explicitly, it requires large computational resource as well

as extra-ordinary storage resource. By contrast, Newton CG provides a means
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to compute the Newton direction without explicitly computing the Hessian.

More specifically, the Newton CG method starts with the gradient descent

direction η0 and iteratively refines it towards the Newton direction. The de-

tailed steps in find a good search direction are given in Algorithm 3.1. In each

iteration, instead of computing the Hessian ∇2f̃ explicitly, one only needs to

compute ∇η
(
∇f̃
)

where ∇η (·) denotes the directional gradient. Note that

∇η
(
∇f̃
)
∈ Rm×d. The required computational and storage resources are

much less than working with the Hessian directly.

Algorithm 3.1 The Newton CG algorithm: find the search direction.
Input: D; Output: η.
Define: P (η:,i) = (I −D:,iD

T
:,i)η:,i.

For k = 0, 1, 2, ...

Define tolerance εk = min

(
0.5,

√∥∥∥∇f̃∥∥∥)∥∥∥∇f̃∥∥∥.
Set z0 = 0, r0 = ∇f̃ , d0 = −r0 = −∇f̃ .
For j = 0, 1, 2, ...

Set Hj = ∇dj
(
∇f̃
)
.

∀i, let (Hj):,i = P
(

(Hj):,i

)
.

If tr
(
dTjHj

)
6 0

If j = 0
returnη = −∇f̃ .

else
returnη = zj.

Set αj = tr
(
rTj rj

)
/tr
(
dTjHj

)
.

Set rj+1 = rj + αjHj.
If ‖rj+1‖ < εk

returnη = zj+1.
Set βj+1 = tr

(
rTj+1rj+1

)
/tr
(
rTj rj

)
.

Set dj+1 = −rj+1 + βj+1dj.
end
∀i, let η:,i = P (η:,i).

Here, we focus on the computation of ∇f̃ . By the linearity of the differen-
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tiation, it holds that

∇f̃ =
∑
i

(∇fi) · gδi + fi · (∇gδi) .

Denote D:,Ω(:,i) by Di. Then it can be verified that

∇fi (Di) = −2 (yi −Dix
∗
i )x

∗T
i . (3.4.5)

where yi is the ith column of Y and the corresponding optimal x∗i is defined

via x∗i = D†iyi. For the g function, it holds that when λmin (Di) 6= 0 and

λmin (Di) is not repetitive (all other singular values are different from λmin),

∇gδi (Di) =
dgδi
dλmin

· ∇λmin (Di) =
dgδi
dλmin

·
(
umin,iv

T
min,i

)
,

where umin,i and vmin,i are the left and right singular vectors corresponding to

the minimum singular value of Di respectively.

Remark 3.4.5. If λmin (Di) = 0 or λmin (Di) is repetitive, then ∇λmin (Di) is

not well defined. However this happens with probability zero when the dic-

tionary is randomly generated from the uniform distribution on D. Further-

more, even this happens during the optimization procedure, directly applying

∇λmin (Di) = umin,iv
T
min,i does not introduce any practical issue in our simu-

lations.
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3.5 Algorithm Testing on Practical Applications

3.5.1 Empirical Tests for Smoothed SimCO

The settings for the numerical tests are as follows. The training samples are

generated according to Y = DtrueXtrue +W where W ∈ Rm×n are Gaussian

noise (W = 0 for the noiseless case). The dictionary Dtrue is randomly gener-

ated from the uniform distribution on D. Regarding the sparse coefficients, we

assume that each column of Xtrue contains exactly s many non-zero elements

of which the locations are randomly generated from the corresponding uniform

distribution. The nonzero elements of Xtrue are randomly generated from the

standard Gaussian distribution. To separate the effect of sparse coding, we also

assume that the sparse coding stage is perfect, i.e., the true sparsity pattern

Ωtrue is available.

Both noiseless and noisy case are considered in the tests. Let D̂ and X̂ be

the learned dictionary and the corresponding sparse coefficients, respectively.

The normalized learning error is defined as
∥∥∥Y − D̂X̂∥∥∥2

F
/n. The criteria for

success learning are designed for both cases using the normalized learning error:

in the noiseless case, a success is claimed when
∥∥∥Y − D̂X̂∥∥∥2

F
/n ≤ εe ‖Y ‖2

F

where the constant εe is ideally zero but set to 10−6 in practice; for the noisy

case, the criterion for a successful learning is given by
∥∥∥Y − D̂X̂∥∥∥2

F
/n ≤

εn ‖Y ‖2
F where εn := ‖W ‖2

F /n/ ‖DtrueXtrue‖2
F .

In the tests, four algorithms, namely MOD, K-SVD, regularized SimCO,

and smoothed SimCO, are compared. For each of these algorithms, the maxi-

mum number of iterations is set to 1000. For regularized SimCO, the regular-

ization constant is initially set as µ = 0.1 and then reduced to µ/10 after every

100 iterations. In smoothed SimCO, the thresholds δi’s are set to (0.001, 0.2)
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(a) Noiseless case: normalized distortion.
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(b) Noisy case: normalized distortion.

Figure 3.5.1: The performance comparison.
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Figure 3.5.2: Noiseless case: success rate.

for the first 500 iterations and then to (0, 0) for the rest 500 iterations. (Note

that δi = δj due to the simulation setting.)

The simulation results are presented in Fig. 3.5.1-3.5.2, where the first two

sub-figures compare the normalized distortion and the last one focuses on the

success rate. The advantage of the proposed smoothed SimCO is clear for both

noiseless and noisy cases. In terms of success rate, smoothed SimCO reaches

100% success rate when the number of training samples n > 60 while MOD

and K-SVD could not achieve 100% success rate even when n ≥ 84. It is also

interesting to observe the dip in the success rate when n is in the middle-range

(Fig. 3.5.2). This is expected. On one hand, the success rate should increase

when the number of training samples becomes larger. On the other hand,
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when the number of training samples is extremely low, for example, n = 1, the

learning problem becomes trivial. Hence, the most difficult case is when n is

in the middle-range.

3.5.2 Algorithm Testing on BSS Problem

In this Section we present numerical results of the SparseBSS method compared

with some other mainstream algorithms. We first focus on speech separation

where an equal determined case will be considered. Then we show an example

for blind image separation, where we will consider an overdetermined case. As

final remarks, smoothed SimCO has several theoretic advantages over regular-

ized SimCO. However, the computations of (λmin (Di))’s introduce extra cost.

The choice between these two methods will depend on the size of the problem

under consideration. Here, we use the regularized SimCO for SparseBSS.

In the speech separation case, two mixtures are used which are the mixtures

of two audio sources. Two male utterances in different languages are selected

as the sources. The sources are mixed by a 2 × 2 random matrix A (with

normalized columns). For the noisy case, a 20 dB Gaussian noise was added

to the mixtures. See Fig. 3.5.3 for the sources and mixtures.

We compare SparseBSS with two benchmark algorithms including FastICA

and QJADE [18]. The BSSEVAL toolbox [75] is used for the performance

measurement. In particular, an estimated source ŝ is decomposed as ŝ =

starget+einterf+enoise+eartif , where starget is the true source signal, einterf denotes

the interferences from other sources, enoise represents the deformation caused

by the noise, and eartif includes all other artifacts introduced by the separation

algorithm. Based on the decomposition, three performance criteria can be
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Figure 3.5.3: Two speech sources and the corresponding noisy mixtures (20 dB
Gaussian noise).

defined: the source-to-distortion ratio SDR = 10 log10
‖starget‖2

‖einterf+enoise+eartif‖2
, the

source-to-artifact ratio SAR = 10 log10
‖starget+einterf+enoise‖2

‖eartif‖2
, and the source-to-

interference ratio SIR = 10 log10
‖starget‖2

‖einterf‖2
. Among them, the SDR measures

the overall performance (quality) of the algorithm, and the SIR focuses on

the interference rejection. We investigate the gains of SDRs, SARs and SIRs

from the mixtures to the estimated sources. For example, 4SDR = SDRout−

SDRin, where SDRout is calculated from its definition and SDRin is obtained

by letting ŝ = Z with the same equation. The results (in dB) are summarized

in Table 3.1.
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4SDR 4SIR 4SAR
QJADE 60.661 60.661 -1.560
FastICA 57.318 57.318 -0.272
SparseBSS 69.835 69.835 1.379

(a) The noiseless case.

4SDR 4SIR 4SAR
QJADE 7.453 58.324 -1.245
FastICA 7.138 40.789 -1.552
SparseBSS 9.039 62.450 0.341

(b) The noisy case.

Table 3.1: Separation performance of the SparseBSS algorithm as compared
to FastICA and QJADE. The proposed SparseBSS algorithm performs better
than the benchmark algorithms. Table 3.1a. For the same algorithm, the
4SDR and 4SIR are the same in noiseless case. The 4SDRs and 4SIRs
for all the tested algorithms are large and similar, suggesting that all the
compared algorithms perform very well. The artifact introduced by SparseBSS
is small as its 4SAR is positive. Table 3.1b. In the presence of noise with
SNR = 20 dB, SparseBSS excels the other algorithms in 4SDR, 4SIR and
4SAR. One interesting phenomenon is that the 4SDRs are much smaller
than those in the noiseless case, implying that the distortion introduced by the
noise is trivial. However, SparseBSS still has better performance.
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The selection of λ is an important practical issue since it is related to the

noise level and largely affects the algorithm performance. From the optimiza-

tion formulation (3.3.3), it is clear that with a fixed SNR, different choices of

λ may give different separation performance. To show this, we use the esti-

mation error
∥∥∥Atrue − Â

∥∥∥2

F
of the mixing matrix to measure the separation

performance, where Atrue and Â are the true and estimated mixing matrices,

respectively. The simulation results are presented in Fig. 3.5.4. Consistent

with the intuition, simulations suggest that the smaller the noise level the

larger the optimal value of λ. The results in Fig. 3.5.4 help in setting λ when

the noise level is known a priori.

Next, we show an example for blind image separation, where we consider

an overdetermined case. The mixed images are generated from two source

images using a 4 × 2 full rank column normalized mixing matrix A with its

elements generated randomly according to a Gaussian process. The mean

squared errors (MSEs) are used to compare the reconstruction performance of

the candidate algorithms when no noise is added. MSE is defined as MSE =

(1/N) ‖χ− χ̃‖2
F , where χ is the source image and χ̃ is the reconstructed image.

The lower the MSE, the better the reconstruction performance. Table 3.2

illustrates the results of four tested algorithms. For the noisy case, a Gaussian

white noise was added to the four mixtures with σ = 10. We use the Peak

Signal-to-Noise Ratio (PSNR) to measure the reconstruction quality, which

is defined as, PSNR = 20log10( MAX√
MSE

), where MAX indicates the maximum

possible pixel value of the image, (e.g.,MAX = 255 for a uint-8 image). Higher

PSNR indicates better quality. The noisy observations are illustrated in Fig.

3.5.5(b). For the BMMCA test, a better performance was demonstrated in [3].
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Figure 3.5.4: Relation of the parameter λ to the estimation error of the mixing
matrix under different noise levels. The signal-to-noise ratio (SNR) is defined
as ρ = 10 log10 ‖AS‖

2
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2
F dB.

We point out that here a different true mixing matrix is used. And further

more, in our tests the patches are taken with a 50% overlap (by shifting 4

pixels from the current patch to the next) while in [3] the patches are taken

by shifting only one pixel from the current patch to the next.

FastICA GMCA BMMCA SparseBSS
Lena 8.7489 4.3780 3.2631 3.1346
Boat 18.9269 6.3662 12.5973 6.6555

Table 3.2: Achieved MSEs of the algorithms in a noiseless case.



114 CHAPTER 3. BLIND SOURCE SEPARATION

Figure 3.5.5: Two classic images, Lena and Boat were selected as the source
images, which are shown in (a). The mixtures are shown in (b). The separation
results are shown in (c)-(f). We compared SparseBSS with other benchmark
algorithms: FastICA [42], GMCA [10] and BMMCA [3]. We set the overlap
percentage equal to 50% for both BMMCA and SparseBSS. The recovered
source images by the SparseBSS tend to be less blurred as compared to the
other three algorithms.
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Figure 3.5.6: Compare the performance of estimating the mixing matrix for
all the methods in different noise standard deviation σs. In this experiment,
σ varies from 2 to 20. The performance of GMCA is better than that of Fas-
tICA. The curve for BMMCA is not available as the setting for the parameters
is too sophisticated and inconsistent for different σ to obtain a good result.
SparseBSS outperforms the compared algorithms.

At last, we show another example of blind image separation to demonstrate

the importance of the singularity aware process. In this example, we use two

classic images Lena and Texture as the source images (Fig. 3.5.7(a)). Four

noiseless mixtures were generated from the sources. The separation results are

shown in Fig. 3.5.7(b) and (c). Noting that images like Texture contain a

lot of frequency components corresponding to a particular frequency. Hence

an initial dictionary with more codewords corresponding to the particular fre-

quency may perform better for the estimation of these images. Motivated by
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(a) Original

PSNR=30.130dB

PSNR=33.233dB

(b) Rearranged DCT (mu=0.05)

PSNR=14.244dB

PSNR=23.585dB

(c) Rearranged DCT (mu=0)

Figure 3.5.7: The two source images Lena and Texture are shown in (a). The
separation results are shown in (b) and (c). The comparison results demon-
strate the importance of the singularity aware process.

this, in Fig. 3.5.7(b) the initial dictionary is generated from an over-complete

DCT dictionary but contains more high frequency codewords. Such choice can

lead to better separation results. At the same time, the very similar dictionary

codewords may introduce the risk of singularity issue.

The major difference between Fig. 3.5.7(b) and (c) is that: in Fig. 3.5.7(b)

the regularized SimCO process (µ = 0.05) is introduced, while in Fig. 3.5.7(c)

there is no regularization term in the dictionary learning stage. As one can

see from Fig. 3.5.7(b) performs much better than Fig. 3.5.7(c). By checking

the condition number when the regularized term is not introduced (µ = 0),

the value stays in a high level as expected (larger than 40 in this example).

This confirms the necessity of considering the singularity issue in BSS and the

effectiveness of the proposed singularity aware approach.
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3.6 Conclusions

In conclusion, we introduced a development of the blind source separation algo-

rithms based on dictionary learning. In particular, we focus on the SparseBSS

algorithm and the optimization procedures. We compared SparseBSS in de-

tails with the related benchmark algorithm BMMCA. We also discussed the

important observation of the singularity issue, which is a major reason for the

failure of dictionary learning algorithms and hence dictionary learning based

BSS algorithms. Afterwards, two available approaches are presented to address

this problem. We designed smoothed SimCO adapted to the smooth technique

in Chapter 2. It has comparable results than the regularized SimCO.





Chapter 4

Robust Face Recognition

4.1 Introduction

The aim of robust face recognition problem is to recognize a test face image that

may be corrupted by arbitrary noise [81, 77]. It has been demonstrated that

sparse signal processing can solve this problem with impressive performance.

Mathematically, a vector x is sparse if only a small fraction of components

in x are significant while the majority of the components are zero or close to

zero. Sparse recovery problem is to solve the linear inverse problem

y = Ax+w, (4.1.1)

where the observation y ∈ Rm and the mixing matrix A ∈ Rm×n are given,

the unknown signal x ∈ Rn is assumed to be sparse, and the noise w ∈ Rn

is often white Gaussian. In the robust face recognition setting [81, 77], the

vector y is the test face image, the matrix A is derived from training samples,

the sparse vector x contains feature coefficients and w is noise (assumed to be

119
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relatively sparse).

There are many algorithms to solve the sparse recovery problem. They

can be divided into two categories: greedy algorithms and `1-minimization

approaches. Greedy algorithms, such as OMP [60], SP [20], are fast while

may not work well in some cases. `1-minimization is an efficient alternative

approach to the sparse recovery problem. It has been a hugely successful ap-

proach in the past decade. Despite those existing methods, in this Chapter,

we are particularly interested AMP algorithms [26, 27, 64], which are based on

loopy belief propagation. Those alternative algorithms deliver both low com-

putational cost and performance guarantees whileA has i.i.d. Gaussian entries

of zero mean. Unfortunately, the transform matrix A in the face recognition

problem is not Gaussian. Experiments in[81] gave pessimistic results.

Recently, several variants of Generalized AMP (GAMP) algorithm [64] have

been proposed to handle non-Gaussian mixing matrices. The ADMM-GAMP

algorithm [65] has provable convergence guarantees with arbitrary measure-

ment matrix. It requires solving an additional least squares problem in each

iteration. That makes the ADMM-GAMP algorithm lacks of computational

efficiency. Swept AMP (SwAMP)[55] offers more robust results as it requires a

sequential updating procedure rather in parallel. Also, it is not a fast approach

compared with other variants in the literature. Vila et. al. [74] proposed an

adaptive version of Damped-GAMP [66]. This so called AD-GAMP method

adaptively updates the damping coefficient, which is determined by the peak-

to-average ratio of the squared singular values inA. In AD-GAMP, it partially

updates the variables tuned by the damping coefficient. In this Chapter, we

study the AD-GAMP algorithm for the robust face recognition problem.

Those GAMP based methods assume known prior information about the



4.1. INTRODUCTION 121

signal. For example, the sparse signal is Bernoulli-Gaussian, the measure-

ment noise is additive Gaussian, etc. However, the hyper-parameters in those

probability distributions are often not known a prior in practice. Gaussian

Mixture-GAMP (GM-GAMP) [73] use EM method to estimate the hyper-

parameters. It assumes the sparse signal is Gaussian mixture distributed and

the noise is AWGN. Bernoulli-Gaussian GAMP (BG-GAMP) [72] assumes a

BG distributed sparse signal, which is a special case of GM in GM-GAMP

[73].

The main contribution 1 of this Chapter include:

• Successfully solve the robust face recognition problem using the AMP

framework. AD-GAMP is adapted to address the issue that the mixing

matrix A in face recognition is far from the standard Gaussian random

matrix.

• Motivated by the nature of Wright et al.’s framework [77], we model the

unknown signal x using a statistical model involving Bernoulli-Gaussian

priors. The major difference between our model and the benchmark

[77] is that in this work the sparse signal is divided into two segments

— one corresponds to the feature coefficients and the other is linked to

anomalies to achieve robustness — and different segments have different

hyper-parameters. Hence, it terms Dual BG-GAMP in this Chapter.

• Then a Dual EM method is employed to estimate the unknown hyper-

parameters associated with the two segments. With the EM and AD-

GAMP coupled together, our method achieves better recognition perfor-

mance than the `1-minimization benchmarks in the review paper [81],
1This work was supported in part by Defence Science and Technology Laboratory (Dstl)

under Grant No: DSTLX-1000081291.
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Figure 4.2.1: Overview of the SRC framework. The test image (left), which
is occluded by a sunglasses. It is equal to the sparse linear combinations of
the training images (middle) plus error image (right). The sparse coefficient
(red) indicate the corresponding true identity, which is bounded in a red box
in the training images (middle). This graph is only for demonstration. There
are hundreds or even thousands of training images in the test.

much better than the pessimistic results of the original AMP [81]. Simu-

lation results also demonstrate that the algorithm is quite robust to the

initial values of hyper-parameters, and exhibits low computational cost

thanks to the efficiency of the AMP framework.

The remainder of this Chapter is organized as follows. Section 4.2 introduces

the robust face recognition problem and AMP algorithm. Section 4.3 is devoted

to describing the proposed Dual update method based on AMP for robust

face recognition. The empirical performance improvement is demonstrated in

Section 4.4. This work is concluded in the last Section.
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4.2 Preliminary Research

4.2.1 Robust Face Recognition

Unlike traditional dictionary learning approaches, the authors of [77] let the

training samples be the dictionary in the sparse representation based clas-

sification (SRC) framework. Each testing image is assumed to be a sparse

linear combination of the training set. The mathematical model is as follows,

y0 = [A1,A2, ...,As][x
T
1,0,x

T
2,0, ...,x

T
s,0]T = Ax0, where y ∈ Rm is the vec-

torized test image, the sub-matrix Ai ∈ Rm×l and each block xi,0 ∈ Rl for

i ∈ [1, ..., s]. Each column of A is a vectorized training image. Here, the Ai

contains l different images all for the ith identity. For simplicity, let A ∈ Rm×n

here. An overview of this framework is shown in Fig. 4.2.1. In this case, the

columns of transform matrix A are correlated, hence the AMP algorithms do

not have convergence guarantees.

In [77, 76], the authors consider two fundamental issues in face recognition

problem. Firstly, the role of feature extraction. In other words, one is aiming

to project high dimensional testing data into low dimensional feature spaces,

which is still informative for sparse representation. Secondly, the occlusion

is an obstacle to recognition. In practice, a fraction of test images is often

corrupted. In [77, 76], the robust SRC model is,

y = y0 + e0 = [A, I]

 x0

e0

 , (4.2.1)

where y ∈ Rm is a down sampled vectorized image with sparse occlusion e0,

and I ∈ Rm×m is an identity matrix. Eq. (4.2.1) can then be simplified as,
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y = Φ

 x0

x1

 ,= Φx, (4.2.2)

where Φ = [A, I] ∈ Rm×(n+m) and the lower part of the sparse coefficient

x1 = e0 ∈ Rm. Then, it considers the following `1 problem,

x̂ = arg min ‖x‖1 s.t. y = Φx.

After one get the estimated sparse coefficient x̂ = [x̂T0 , x̂
T
1 ]T , we can assign

the tested object to i∗ by applying the Sparsity Concentration Index (SCI) in

[77],

i∗ = arg max
i

=
s · ‖δi(x̂0)‖1 / ‖x̂0‖1 − 1

s− 1
,

where δi(·) is an operator that keeps the i-th block of (·). In other words, the

SCI finds best block of x̂0, which has the most number of non zero elements

concentrated in δi(x̂0) out of s blocks.

4.2.2 AMP/GAMP for SRC

The AMP is a powerful tool to solve the `1 problem since it exhibits both

low reconstruction error and low computational complexity compared with

benchmarks. However, this mechanism only achieves the desired asymptotical

optimal performance when the linear transform is standard Gaussian. The

GAMP accommodates more general signal models. Here, we consider GAMP

for simplicity. GAMP is also flexible to couple with the EM approach to

learn the unknown hyper-parameters such as sparsity values, which is more

applicable to real-time applications.

In robust face recognition problem, the measurement matrix Φ violates
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two assumptions which are critical for AMP approaches. The first one is the

non-zero mean assumption of the measurement matrix in practice. It has been

shown in [13] that even with a small positive mean of the i.i.d measurement

matrix, the algorithm may diverge. There are three ways of solving this prob-

lem. First, remove the mean of the matrix in pre-processing, which is common

in image processing fields. Second, modify the update procedure from parallel

to sequential, since the parallel update is more problematic [55][13]. Third,

modify the mathematical model/measurement matrix to remove the mean, as

in [74]. In our case, we remove all the means of the training and testing images.

The non-zero mean value of the measurement matrix Φ is dominated by the

identity matrix. In this case, the mean value is roughly m
m(n+m)

= 1
n+m

. If the

number of training images is fixed to n, a larger sampling size m leads smaller

mean value. If n or m is large enough, the mean value of the measurement

matrix Φ is close to zero. Then, the non-zero mean issue will not affect the

convergence of the algorithm. The second assumption of AMP is that the

matrix Φ is i.i.d, which is impractical for robust face recognition problem, i.e.,

the columns are correlated. A review of fast `1−minimization algorithms has

been studied in [81]. The authors of [81] also added AMP in comparison. In

their i.i.d Gaussian experiments, AMP is shown to be the fastest algorithm

with near-machine precision. Not surprisingly, AMP fails as it is not capa-

ble of handling the general measurement matrix Φ [81]. We shall address

the correlation issue of the measurement matrix using the damping approach

AD-GAMP [74] and learn the unknown hyper-parameters using the EM em-

bedded BG-GAMP algorithm [72]. However, simply combined algorithm can

not achieve better recognition rate than benchmark algorithms. Adapting to

the structure of the sparse signal in SRC framework, we designed a new dual
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updating approach based on the combination of those two algorithms. More

details of our method are presented in next Section.

4.3 An AMP Based Method

4.3.1 Dual BG-GAMP

In this Chapter, we consider the two segments of the sparse signal in the

robust SRC model (4.2.2) to have different hyper-parameters. Furthermore,

we assume the two segments sparse coefficients x0 and x1 are both Bernoulli-

Gaussian distributed. Hence, it terms dual BG-GAMP here. One can then

apply the EM embedded BG-GAMP algorithm [72] to learn the unknown

hyper-parameters that associated with the sparse signal, e.g., the sparsities,

mean values and the variances.

In our approach, we consider the upper part x0 and the lower part x1 of the

sparse coefficient x that are ideally not identically distributed. In other words,

we consider each of them has different hyper-parameters, i.e., sparsity levels εs,

mean values θs and variances φs. Then, for the signal x = [xT0 , x
T
1 ]T ∈ R(n+m),

which is assumed to be drawn i.i.d from the pdf

PX(xjk; εk, θk, φk)=(1−εk)δ(xjk)+εkN (xjk; θk, φk), (4.3.1)

where δ(·) denotes the Dirac function, k ∈ {0, 1}, j = 1, 2, ..., (n+m), and

N (·; θ, φ) is the Gaussian pdf. In this Chapter, we introduce parameter k that

indicates which the element xjk belongs to, either x0 or x1. In particular, if

k = 0, then j = 1, ..., n, otherwise j = (n+1), ..., (n+m). For the AWGN noise

w is assumed to be independent of x with variance ψ, PW (w;ψ) = N (w; 0, ψ).
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In this case, we define the unknown hyper-parameters of the prior distribution

as qk , [εk, θk, φk, ψ]. It is noteworthy to mention if we drop the subscription

k in Eq. (4.3.1), it becomes the standard BG in [72].

In the GAMP, one is aiming to estimate the input x and the noiseless

output z = Φx of the transform. The probabilistic relationships in the input

and output models are defined in table (4.1) [72]. The standard BG input scalar

estimation function gin and the AWGN output scalar estimation function gout

are already given in [72] and [64], respectively.

4.3.2 Adaptive Damping

AMP/GAMP approach does not work well while the matrix A is general [81],

e.g., column correlated in robust SRC model. Among the various ways of

addressing this issue, we are interested in the AD-GAMP [74] approach. In

Damped-GAMP, Rangoon et al. [66] introduced a damping parameter β to

adjust the updates of adjacent iterations so that it converges under general

transform. It is shown that the damping parameter is proportional to the

peak-to-average ratio of the squared singular value of the transform matrix.

If this ratio is sufficiently small, the GAMP converges. This scenario explains

why AMP performs well when the transaction is large i.i.d Gaussian. The

damping approach guarantees the convergence when the transaction is general

while it slows down the progress of convergence. In [74], the authors proposed

an adaptive damping GAMP scheme to find a good damping parameter to

prevent slowing down the updates procedure too much.

In this Chapter, we consider the combination of the Dual BG-GAMP and

the AD-GAMP approaches, which is shown in Algorithm 4.1. Here we assume

the dual hyper-parameters satisfies Eq. (4.3.1), where it is different from the
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PZ|Y (z | y; ẑ, µz) =
PY |Z(y | z)N (z; ẑ, µz)∫
z′ PY |Z(y | z′)N (z′; ẑ, µz)

gout(y, ẑ, µ
z) =

y − ẑ
µz + ψ

g′out(y, ẑ, µ
z) = − 1

µz + ψ

PX|Y (x | y; r̂, µr) =
PX(x)N (x; r̂, µr)∫
x′ PX(x′)N (x′; r̂, µr)

π(r̂, µr; qk) =
1

1 + ( εk
1−εk

N (r̂;θ,φ+µr)
N (r̂;0,φ+µr))

−1

γ(r̂, µr; qk) =
r̂/µr + θ/φ

1/µr + 1/φ

ν(r̂, µr; qk) =
1

1/µr + 1/φ

gin(r̂, µ
r; qk) = π(r̂, µr; qk)γ(r̂, µr; qk)

µrg′in(r̂, µ
r; qk) = π(r̂, µr; qk)(ν(r̂, µr; qk)

+ |γ(r̂, µr; qk)|2)
−(π(r̂, µr; qk))

2 |γ(r̂, µr; qk)|2

Table 4.1: Definitions: the input and output probabilistic relationships PX|Y
and PZ|Y . The associated BG input scalar estimation function and the AWGN
output scalar estimation function [72][64].
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original BG in [72]. In the GAMP, one is aiming to estimate the input x and the

noiseless output z = Φx of the transform. The probabilistic relationships in

the input and output models are defined in [72]. The standard BG input scalar

estimation function gin and the AWGN output scalar estimation function gout

are already given in [72] and [64], respectively. As one can find in Eq. (6-7), (9-

11), β(t) is the adaptive damping parameter. At the very end of this algorithm,

the damping parameter is tuned according to current estimation x̂(t+ 1) and

the MMSE cost J(t + 1), adaptively. Here, J(t + 1) = JBethe(t + 1), which is

the Bethe Free Energy function. Here, we refer [65][74] for more details about

AD-GAMP. It is straightforward to obtain BG-GAMP algorithm by letting

β(t) = 1 and ignore the adapting step in Algorithm 4.1.

4.3.3 Dual Expectation Maximization

We use EM algorithm to estimate the hyper-parameters in Algorithm (4.1).

The EM [24][57] is a well-established method for maximum likelihood estima-

tion with hidden variables. An explicit EM algorithm has been given in [72]

for BG-GAMP. It updates hyper-parameters sequentially where updating one

parameter by fixing all the other parameters simultaneously. The designed al-

gorithm calls Algorithm 4.1 after each Dual EM update step. In other words,

we upgrade the parameters in the outer algorithm (Dual EM) and perform the

Dual BG-AD-GMAP using the new parameters in the inner algorithm. In our

case, the EM update is,

∀k : qh+1
k = arg max

q
E{lnP (xk,w; qk) | y; qhk},
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Algorithm 4.1 Inner algorithm (Dual BG-AD-GAMP) with AWGN output.
Initialization:

∀j : x̂jk(1) =

∫
xk

xjkPX(xjk)

∀j : µxjk(1) =

∫
xk

|xjk − x̂jk(1)|2 PX(xjk)

∀i : ûi(0) = 0

β(1) = 1, βmax ∈ (0, 1], βmin ∈ (0, βmax], Gpass ≥ 1, Gfail < 1, ε > 0
for t = 1, 2, 3,...

∀i : ẑi(t) =

(n+m)∑
j=1

Φij x̂jk(t) (4.3.2)

∀j : x̃jk(t) = β(t)x̂jk(t) + (1− β(t))x̃jk(t− 1) (4.3.3)

∀i : µzi (t) = β(t)

(n+m)∑
j=1

|Φij |2 µxjk(t) (4.3.4)

+(1− β(t))µzi (t− 1)

∀i : p̂i(t) = ẑi(t)− µzi (t)ûi(t− 1) (4.3.5)
∀i : ûi(t) = β(t)gout(yi, p̂i(t), µ

z
i (t)) (4.3.6)

+(1− β(t))ûi(t− 1)

∀i : µui (t) = β(t)(−g′out(yi, p̂i(t), µzi (t))) (4.3.7)
+(1− β(t))µui (t− 1)

∀j : µrjk(t) = β(t)(

(n+m)∑
j=1

|Φij |2 µui (t))−1 (4.3.8)

+(1− β(t))µrjk(t− 1)

∀j : r̂jk(t) = x̃jk(t) + µrjk(t)
m∑
i=1

Φ∗ij ûi(t) (4.3.9)

∀j : µxjk(t+ 1) = µrjk(t)g
′
in(r̂jk(t), µ

r
jk(t)) (4.3.10)

∀j : x̂jk(t+ 1) = gin(r̂jk(t), µ
r
jk(t)) (4.3.11)

J(t+ 1) = JBethe(t+ 1) (4.3.12)

if J(t+ 1) ≤ max{J(4t), ..., J(t)} or β(t) = βmin
then if ‖x̂(t)− x̂(t+ 1)‖ / ‖x̂(t+ 1)‖ < ε

then stop
else β(t+ 1) = min {βmax, Gpassβ(t)}

t = t+ 1
else β(t) = min {βmin, Gfailβ(t)}
end

end
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where h denotes the iteration index. It it worth to note that one has to

calculate the corresponding hyper-parameters of each xk, separately. Following

[72], it is easy to obtain the updates for each hyper-parameters, which are

shown in Algorithm 4.2. We therefore only show the differences, since we have

to update both q1 and q2 in this case.

In the Dual EM step, one has to consider the values of the hyper-parameters

qk for different k. In this Chapter, we proposed to update the qk according to

the structure of the sparse signal, as one can see from the Eq. 4.2.1. In our

approach, q1 , [ε1, θ1, φ1, ψ] is the hyper-parameters that associated with the

feature coefficient x0, which is linear combination coefficients of the training

images. For q2 , [ε2, θ2, φ2, ψ], it is determined by the down sampling methods

and the noise of the test images x1. It is natural to guess that q1 6= q2 since x0

and x1 associate with the sparse feature and sparse occlusion, respectively. In

order to compare the performances of the BG-AD-GMAP based algorithms,

we set the all the initial value of the sparse vectors to be the same. We present

the comparison in next Section.

4.4 Experiments

In this Section, we present two experiments to compare the performances of

our method with the benchmark algorithms in the comprehensive review paper

[81]2. The first experiment is designed to compare the recognition rate of all

tested algorithms. The second experiment corresponds to the comparison of

the computational costs in order to achieve the best recognition rates in the

first experiment.
2All the benchmark algorithms are available as Matlab toolbox:

http://www.eecs.berkely.edu/~yang/software/l1benchmark/.
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Algorithm 4.2 The outer (Dual EM) Algorithm. Following [72], we can
obtain the updates of the hyper-parameters q1 and q2.

εh+1
1 =

1

n

n∑
j=1

π(r̂j1, µ
r
j1; qh1 )

εh+1
2 =

1

m

n+m∑
j=n+1

π(r̂j2, µ
r
j2; qh2 )

θh+1
1 =

1

nεh+1
1

n∑
j=1

gin(r̂j1, µ
r
j1; qh1 )

θh+1
2 =

1

mεh+1
2

n+m∑
j=n+1

gin(r̂j2, µ
r
j2; qh2 )

φh+1
1 =

1

nεh+1
1

n∑
j=1

π(r̂j1, µ
r
j1; qh1 )

·(
∣∣θh1 − γ(r̂j1, µ

r
j1; qh1 )

∣∣2 + ν(r̂j1, µ
r
j1; qh1 ))

φh+1
2 =

1

mεh+1
2

n+m∑
j=n+1

π(r̂j2, µ
r
j2; qh2 )

·(
∣∣θh2 − γ(r̂j2, µ

r
j2; qh2 )

∣∣2 + ν(r̂j2, µ
r
j2; qh2 ))

ψh+1 =
1

m

m∑
i=1

(|yi − ẑi|2 + µzi )
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In the experiments, we explore the designed and benchmark algorithms

using the Extended Yale B Face Database [35]. We choose 722 (19 images for

each person) normal lighting conditioned images as the training data and an-

other 266 images as the test data, which has more extreme lighting conditions.

The images are re-sized from 192× 168 to 32× 28. A percentage of randomly

chosen pixels from each of the test images are corrupted/replaced with i.i.d

uniform distribution (e.g., uniform over [0,255] for the 8-bit images). We vary

the percentages of corrupted pixels c from 10 to 90 percent. In this experi-

ment, Φ ∈ R896×1618, which has a high sampling rate to keep the mean value

as small as possible. We test all the benchmark algorithms for all corruption

cases within a fixed time limit, which is 80 seconds in our experiment. We use

the SCI to calculate the recognition rate.

For the first experiment, we compared our approach with the Dual Aug-

mented Lagrangian Method (DALM) [81], Primal Augmented Lagrangian Method

(PALM) [81], Primal-dual Interior-point Algorithm (PDIPA) [49] and Trun-

cated Newton Interior-point Method (TNIPM, known as L1LS) [48] in the

review paper [81]. We also compared Dual BG-AD-GAMP (initialize ε1 =

ε2 = 0.08 with Dual EM update) approach with the BG-AD-GAMP (initial-

ize ε = 0.08 with EM update) algorithm. In other words, we update the

hyper-parameters of x1 and x2 separately. In the experiments, we set both

algorithms to have maximum 25 inner iterations and 200 outer iterations (EM

step). In all the other algorithms, we let the number of iterations to 5000.

The results of the recognition rates of the benchmark algorithms are shown

in Fig. 4.4.1. As one can see from the figure, our algorithm has the best

performance among all benchmarks in terms of recognition rate. For the BG-

AD-GAMP, it has similar recognition rate DALM. Interestingly, Compared
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Figure 4.4.1: Recognition rates for different algorithms under different fractions
of noise corruptions.

with our method, BG-AD-GAMP has lower recognition rate since it does not

update the hyper-parameters separately.

In the second experiment, we test the convergence rate in terms of recog-

nition rate. Here, we show the comparison of our method and DALM (best

algorithm in the review paper [81]) under different fractions of corruptions c

= 60%, 70%, 80% in Fig. 4.4.2. Our method achieves the best recognition

rate as shown in Fig. 4.4.1 in 50 iterations. However, the DALM algorithm

requires more iterations to reach its best.
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Figure 4.4.2: Comparison of our algorithm with DALM under different frac-
tions of corrupted entries c = 60%, 70%, 80%. Our method: red lines. DALM
algorithm: blue lines.

4.5 Conclusions

In summary, we adapt the combined AD-GAMP [74] and BG-GAMP [72]

method to solve the robust face recognition problem. However, it achieved

similar recognition rate with the best algorithm DALM. In order to improve

the recognition performance, I introduced a dual updating approach for the

unknown parameters. The designed algorithm has better performance in terms

of recognition rate and has low computational cost.





Chapter 5

Conclusion and Future Work

Sparse representation is an interesting approach that extracts the hidden pat-

tern from large data and reveals the anomalies. In this thesis, we studied

several sparse representation methods and its applications.

For the first one, as discussed in Chapter 2, we focused on the low rank

matrix completion problem, which refers to the spectral sparse. It can be

applied to different real-time applications, ranging from the user recommen-

dation system to the pedestrian detection. In this problem, we studied the

so-called singularity issue in the `0-search problem. We study different meth-

ods to solve the singularity issue in `0-search. A rigorous analysis shows how

the regularization technique may fail. The regularization term solves the dis-

continuous problem of the objective function. However, it will generate a local

minimum at the neighbor of the singular points as a side effect and force the

searching process away from the singular points. In order to address the singu-

larity issue, we propose a continuous objective function to replace the original

objective function. It opens a tunnel to letting the optimization process pass

through the singular point. Furthermore, we use a quasi-Newton method to

137



138 CHAPTER 5. CONCLUSION AND FUTURE WORK

implement the new approach since it exhibits low computational complexity

and super linear convergence. The proposed method has the best performance

among all tested algorithms even when the number of observations is close to

the oracle rate. For future work, one may use the modified logistic function

sρ(λ) since it has similar ’s’ shaped curve instead of the modulation function

gρ(λ). Also, the logistic function has a nice property that its derivative can be

expressed by s′ρ(λ) = sρ(λ)(1− sρ(λ)).

In the third Chapter, we apply dictionary learning algorithm to solve the

BSS problem. Different from other dictionary based BSS algorithms, we use

only one dictionary to sparsely represent different sources. We formulate the

overall separation problem into two sub-problems and adapt the recently pro-

posed SimCO optimization method [23] to solve both. The advantage of uni-

fying the two stages is that, in practice, the same algorithm framework and

codes can be used for both stages, thus significantly reducing the implemen-

tation effort. It was observed [23] that the singular point tend to be the ma-

jor obstacle preventing the optimization process from converging to a global

minimum. By adopting regularized SimCO, we are able to force the search

path away from singular points and improve the performance. Also, we in-

vestigated the smoothed technique in Chapter 2 to solve the singular issue in

SimCO, termed smoothed SimCO . Similarly, a continuous objective function

is proposed to replace the original one. It has better performance than the

regularized SimCO in the noiseless case and similar performance in the noise

case. In dictionary learning, it remains open how to find an optimum choice

of the redundancy factor τ = d/n of the over-complete dictionary. A higher

redundancy factor leads to either more sparse representation or more precise

reconstruction. Moreover, one has to consider the computational capabilities
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when implementing the algorithms. From this point of view, it is better to

keep the redundancy factor low. In the simulation, we have used 64 by 256

dictionary, which gives the redundancy factor τ = 256/64 = 4. This choice is

empirical: the sparse representation results are good and the computational

cost is limited. A rigorous analysis on the selection of τ is still missing. The

relation between the parameters λ, ε and noise standard deviation σ is also

worth investigating. As presented in the first experiment on blind audio sep-

aration, the relation between λ and σ is discussed when the error bound ε is

fixed in the sparse coding stage. One can roughly estimate the value of the

parameter λ assuming the noise level is known a priori. Similar investigation

is undertaken in [3], where the authors claim that when λ ≈ σ/30, the algo-

rithm achieved similar reconstruction performance under various σ’s. From

another perspective, the error bound ε is proportional to the noise standard

deviation. It turns out that once a well approximated relation between ε and σ

is obtained, one may get more precise estimation of parameter λ, rather than

keeping ε fixed. This analysis, therefore, is counted as another open question.

For the BSS problem in this thesis, we only considered the over-determined or

even-determined mixing case, where the number of sources is larger than or

equal to the number of mixtures. Moreover, the proposed framework can be

extended potentially to a convolutive or underdetermined model, e.g., apply

clustering method to solve the ill-posed inverse problem in underdetermined

model; however, discussion on such an extension is beyond the scope of this

thesis.

In the fourth Chapter, we studied the robust face recognition problem based

on the variants of the AMP algorithm. We consider the sparse signal in two

segments: sparse features and the anomalies. Different segments are assumed
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to have different hyper-parameters. The EM algorithm is used to update

the unknown parameters. The dual update algorithm has better performance

in terms of recognition rate under certain noise levels and also exhibits low

computational cost. For the robust face recognition problem, we proposed

our approach for the SRC framework and used AMP based method to solve

this problem. However, under this framework, we assume the additive noise

(error) is dense while apply the AMP based method. For the original robust

face recognition problem, it will be a very interesting research direction that

considers a sparse additive noise in the GAMP.
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