44 research outputs found

    Cyclic Prefix-Free MC-CDMA Arrayed MIMO Communication Systems

    No full text
    The objective of this thesis is to investigate MC-CDMA MIMO systems where the antenna array geometry is taken into consideration. In most MC-CDMA systems, cyclic pre xes, which reduce the spectral eÂą ciency, are used. In order to improve the spectral efficiency, this research study is focused on cyclic pre x- free MC-CDMA MIMO architectures. Initially, space-time wireless channel models are developed by considering the spatio-temporal mechanisms of the radio channel, such as multipath propaga- tion. The spatio-temporal channel models are based on the concept of the array manifold vector, which enables the parametric modelling of the channel. The array manifold vector is extended to the multi-carrier space-time array (MC-STAR) manifold matrix which enables the use of spatio-temporal signal processing techniques. Based on the modelling, a new cyclic pre x-free MC- CDMA arrayed MIMO communication system is proposed and its performance is compared with a representative existing system. Furthermore, a MUSIC-type algorithm is then developed for the estimation of the channel parameters of the received signal. This proposed cyclic pre x-free MC-CDMA arrayed MIMO system is then extended to consider the effects of spatial diffusion in the wireless channel. Spatial diffusion is an important channel impairment which is often ignored and the failure to consider such effects leads to less than satisfactory performance. A subspace-based approach is proposed for the estimation of the channel parameters and spatial spread and reception of the desired signal. Finally, the problem of joint optimization of the transmit and receive beam- forming weights in the downlink of a cyclic pre x-free MC-CDMA arrayed MIMO communication system is investigated. A subcarrier-cooperative approach is used for the transmit beamforming so that there is greater flexibility in the allocation of channel symbols. The resulting optimization problem, with a per-antenna transmit power constraint, is solved by the Lagrange multiplier method and an iterative algorithm is proposed

    Noncircularity exploitation in signal processing overview and application to radar

    Get PDF
    International audienceWith new generation of Active Digital Radar Antenna, there is a renewal of waveform generation and processing approaches, and new strategies can be explored to optimize waveform design and waveform analysis and to benefit of all potential waveform diversity. Among these strategies, building and exploitation of the Noncircularity of waveforms is a promising issue. Up to the middle of the nineties, most of the signals encountered in practice are assumed to be second order (SO) circular (or proper), with a zero second correlation function. However, in numerous operational contexts such as in radio communications, the observed signals are either SO noncircular (or improper) or jointly SO noncircular with a particular signal to estimate, to detect or to demodulate, with some information contained in the second correlation function of the signals. Exploitation of this information in the processing of SO noncircular signals may generate dramatic gain in performance with respect to conventional processing and opens new perspective in signal processing. The purpose of this paper is to present a short overview of the interest of taking into account the potential SO noncircularity of the signals in signal processing and to describe the potential interest of SO noncircular waveforms for radar applications

    Noncircular Waveforms Exploitation for Radar Signal Processing : Survey and Study for Agile Radar Waveform

    Get PDF
    International audienceWith new generation of Active Digital Radar Antenna, there is a renewal of waveform generation and processing approaches, and new strategies can be explored to optimize waveform design and waveform analysis and to benefit of all potential waveform diversity. Among these strategies, building and exploitation of the Noncircularity of waveforms is a promising issue. Up to the middle of the nineties, most of the signals encountered in practice are assumed to be second order (SO) circular (or proper), with a zero second correlation function. However, in numerous operational contexts such as in radio communications, the observed signals are either SO noncircular (or improper) or jointly SO noncircular with a particular signal to estimate, to detect or to demodulate, with some information contained in the second correlation function of the signals. Exploitation of this information in the processing of SO noncircular signals may generate dramatic gain in performance with respect to conventional processing and opens new perspective in signal processing. The purpose of this paper is to present a short overview of the interest of taking into account the potential SO noncircularity of the signals in signal processing and to describe the potential interest of SO noncircular waveforms for radar applications

    Tensor-based signal processing with applications to MIMO-ODFM systems and intelligent reflecting surfaces

    Get PDF
    Der Einsatz von Tensor-Algebra-Techniken in der Signalverarbeitung hat in den letzten zwei Jahrzehnten zugenommen. Anwendungen wie Bildverarbeitung, biomedizinische Signalverarbeitung, radar, maschinelles Lernen, deep Learning und Kommunikation im Allgemeinen verwenden weitgehend tensorbasierte Verarbeitungstechniken zur Wiederherstellung, SchĂ€tzung und Klassifizierung von Signalen. Einer der HauptgrĂŒnde fĂŒr den Einsatz der Tensorsignalverarbeitung ist die Ausnutzung der mehrdimensionalen Struktur von Signalen, wobei die Einzigartigkeitseigenschaften der Tensor-Zerlegung profitieren. Bei der drahtlosen Kommunikation beispielsweise können die Signale mehrere "Dimensionen" haben, wie Raum, Zeit, Frequenz, Polarisation, usw. Diese Arbeit ist in zwei Teile gegliedert. Im ersten Teil betrachten wir die Anwendung von Tensor-basierten Algorithmen fĂŒr multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) Systeme unter BerĂŒcksichtigung von Vorhandensein von Phasenrauschenstörungen. In diesem Teil schlagen wir einen zweistufigen tensorbasierten EmpfĂ€nger fĂŒr eine gemeinsame Kanal-, Phasenrausch- und DatenschĂ€tzung in MIMO-OFDM-Systemen vor. In der ersten Stufe zeigen wir, dass das empfangene Signal auf den PilotuntertrĂ€gern als PARAFAC-Tensor dritter Ordnung modelliert werden kann. Auf der Grundlage dieses Modells werden zwei Algorithmen fĂŒr die SchĂ€tzung der Phasen- und Kanalrauschen in den Pilotton vorgeschlagen. In der zweiten Stufe werden die ĂŒbertragenen Daten geschĂ€tzt. Zu diesem Zweck schlagen wir einen Zero Forcing (ZF)-EmpfĂ€nger vor, der sich die Tensorstruktur des empfangenen Signals auf den DatentrĂ€gern zunutze macht, indem er den vorgeschlagenen selektiven Kronecker-Produkt-Operators (SKP) kapitalisiert. Die Simulationsergebnisse zeigen, dass der vorgeschlagene EmpfĂ€nger sowohl bei der Symbolfehlerrate als auch beim normalisierten mittleren quadratischen Fehler des geschĂ€tzten Kanal- und Phasenrauschmatrizen eine bessere Leistung im Vergleich zum Stand der Technik erzielt. Der zweite Teil dieser Arbeit befasst sich mit der Anwendung der Tensormodellierung zur Reduzierung des Kontrollsignalisierungsoverhead in zukĂŒnftigen drahtlosen Systemen, die durch intelligent reconfigurable surfaces (IRSs) unterstĂŒtzt werden. Zu diesem Zweck schlagen wir eine AnnĂ€herung an die nahezu optimalen IRS-Phasenverschiebungen vor, die sonst einen prohibitiv hohen Kommunikationsoverhead auf den BS-IRS-Kontrollverbindungen verursachen wĂŒrde. Die Hauptidee besteht darin, den optimalen Phasenvektor des IRSs, der Hunderte oder Tausende von Elementen haben kann, durch ein Tensormodell mit niedrigem Rang darzustellen. Dies wird erreicht durch Faktorisierung einer tensorisierten Version des IRS-Phasenverschiebungsvektors, wobei jede Komponente als Kronecker-Produkt einer vordefinierten Anzahl von Faktoren mit kleinerer GrĂ¶ĂŸe modelliert wird, die durch Tensor Zerlegungsalgorithmen erhaltet werden können. Wir zeigen, dass die vorgeschlagenen Low-Rank-Modelle die RĂŒckkopplungsanforderungen fĂŒr die BS-IRS-Kontrollverbindungen drastisch reduzieren. Die Simulationsergebnisse zeigen, dass die vorgeschlagene Methode besonders in Szenarien mit einer starken Sichtverbindung attraktiv sind. In diesem Fall wird fast die gleiche spektrale Effizienz erreicht wie in den FĂ€llen mit nahezu optimalen Phasenverschiebungen, jedoch mit einem drastisch reduzierten Kommunikations-Overhead.The use of tensor algebra techniques in signal processing has been growing over the last two decades. Applications like image processing, biomedical signal processing, radar, machine/deep learning, and communications in general, largely employ tensor-based techniques for recovery, estimating, and classifying signals. One of the main reasons for using tensor signal processing is the exploitation of the multidimensional structure of signals, while benefiting from the uniqueness properties of tensor decomposition. For example, in wireless communications, the signals can have several “dimensions", e.g., space, time, frequency, polarization, beamspace, etc. This thesis is divided into two parts, first, in the application of a tensor-based algorithm in multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) systems with the presence of phase-noise impairments. In this first part, we propose a two-stage tensor-based receiver for a joint channel, phase-noise, and data estimation in MIMO-OFDM systems. In the first stage, we show that the received signal at the pilot subcarriers can be modeled as a third-order PARAFAC tensor. Based on this model, we propose two algorithms for channel and phase-noise estimation at the pilot subcarriers. The second stage consists of data estimation, for which we propose a ZF receiver that capitalizes on the tensor structure of the received signal at the data subcarriers using the proposed SKP operator. Numerical simulations show that the proposed receivers achieves an improved performance compared to the state-of-art receivers in terms of symbol error rate (SER) and normalized mean square error (NMSE) of the estimated channel and phase-noise matrices. The second part of this thesis focuses on the application of tensor modeling to reduce the control signaling overhead in future wireless systems aided by intelligent reconfigurable surfaces (IRS). To this end, we propose a low-rank approximation of the near-optimal IRS phase-shifts, which would incur prohibitively high communication overhead on the BS-IRS controller links. The key idea is to represent the potentially large IRS phase-shift vector using a low-rank tensor model. This is achieved by factorizing a tensorized version of the IRS phase-shift vector, where each component is modeled as the Kronecker product of a predefined number of factors of smaller sizes, which can be obtained via tensor decomposition algorithms. We show that the proposed low-rank models drastically reduce the required feedback requirements associated with the BS-IRS control links. Simulation results indicate that the proposed method is especially attractive in scenarios with a strong line of sight component, in which case nearly the same spectral efficiency is reached as in the cases with near-optimal phase-shifts, but with a drastically reduced communication overhead

    Filter Bank precoding for FIR equalization in high-rate MIMO communications

    Full text link

    Collaborative modulation multiple access for single hop and multihop networks

    Get PDF
    While the bandwidth available for wireless networks is limited, the world has seen an unprecedented growth in the number of mobile subscribers and an ever increasing demand for high data rates. Therefore efficient utilisation of bandwidth to maximise link spectral efficiency and number of users that can be served simultaneously are primary goals in the design of wireless systems. To achieve these goals, in this thesis, a new non-orthogonal uplink multiple access scheme which combines the functionalities of adaptive modulation and multiple access called collaborative modulation multiple access (CMMA) is proposed. CMMA enables multiple users to access the network simultaneously and share the same bandwidth even when only a single receive antenna is available and in the presence of high channel correlation. Instead of competing for resources, users in CMMA share resources collaboratively by employing unique modulation sets (UMS) that differ in phase, power, and/or mapping structure. These UMS are designed to insure that the received signal formed from the superposition of all users’ signals belongs to a composite QAM constellation (CC) with a rate equal to the sum rate of all users. The CC and its constituent UMSs are designed centrally at the BS to remove ambiguity, maximize the minimum Euclidian distance (dmin) of the CC and insure a minimum BER performance is maintained. Users collaboratively precode their transmitted signal by performing truncated channel inversion and phase rotation using channel state information (CSI ) obtained from a periodic common pilot to insure that their combined signal at the BS belongs to the CC known at the BS which in turn performs a simple joint maximum likelihood detection without the need for CSI. The coherent addition of users’ power enables CMMA to achieve high link spectral efficiency at any time without extra power or bandwidth but on the expense of graceful degradation in BER performance. To improve the BER performance of CMMA while preserving its precoding and detection structure and without the need for pilot-aided channel estimation, a new selective diversity combining scheme called SC-CMMA is proposed. SC-CMMA optimises the overall group performance providing fairness and diversity gain for various users with different transmit powers and channel conditions by selecting a single antenna out of a group of L available antennas that minimises the total transmit power required for precoding at any one time. A detailed study of capacity and BER performance of CMMA and SC-CMMA is carried out under different level of channel correlations which shows that both offer high capacity gain and resilience to channel correlation. SC-CMMA capacity even increase with high channel correlation between users’ channels. CMMA provides a practical solution for implementing the multiple access adder channel (MAAC) in fading environments hence a hybrid approach combining both collaborative coding and modulation referred to as H-CMMA is investigated. H-CMMA divides users into a number of subgroups where users within a subgroup are assigned the same modulation set and different multiple access codes. H-CMMA adjusts the dmin of the received CC by varying the number of subgroups which in turn varies the number of unique constellation points for the same number of users and average total power. Therefore H-CMMA can accommodate many users with different rates while flexibly managing the complexity, rate and BER performance depending on the SNR. Next a new scheme combining CMMA with opportunistic scheduling using only partial CSI at the receiver called CMMA-OS is proposed to combine both the power gain of CMMA and the multiuser diversity gain that arises from users’ channel independence. To avoid the complexity and excessive feedback associated with the dynamic update of the CC, the BS takes into account the independence of users’ channels in the design of the CC and its constituent UMSs but both remain unchanged thereafter. However UMS are no longer associated with users, instead channel gain’s probability density function is divided into regions with identical probability and each UMS is associated with a specific region. This will simplify scheduling as users can initially chose their UMS based on their CSI and the BS will only need to resolve any collision when the channels of two or more users are located at the same region. Finally a high rate cooperative communication scheme, called cooperative modulation (CM) is proposed for cooperative multiuser systems. CM combines the reliability of the cooperative diversity with the high spectral efficiency and multiple access capabilities of CMMA. CM maintains low feedback and high spectral efficiency by restricting relaying to a single route with the best overall channel. Two possible variations of CM are proposed depending on whether CSI available only at the users or just at the BS and the selected relay. The first is referred to Precode, Amplify, and Forward (PAF) while the second one is called Decode, Remap, and Forward (DMF). A new route selection algorithm for DMF based on maximising dmin of random CC is also proposed using a novel fast low-complexity multi-stage sphere based algorithm to calculate the dmin at the relay of random CC that is used for both relay selection and detection

    On the Impact of Phase Noise in Communication Systems –- Performance Analysis and Algorithms

    Get PDF
    The mobile industry is preparing to scale up the network capacity by a factor of 1000x in order to cope with the staggering growth in mobile traffic. As a consequence, there is a tremendous pressure on the network infrastructure, where more cost-effective, flexible, high speed connectivity solutions are being sought for. In this regard, massive multiple-input multiple-output (MIMO) systems, and millimeter-wave communication systems are new physical layer technologies, which promise to facilitate the 1000 fold increase in network capacity. However, these technologies are extremely prone to hardware impairments like phase noise caused by noisy oscillators. Furthermore, wireless backhaul networks are an effective solution to transport data by using high-order signal constellations, which are also susceptible to phase noise impairments. Analyzing the performance of wireless communication systems impaired by oscillator phase noise, and designing systems to operate efficiently in strong phase noise conditions are critical problems in communication theory. The criticality of these problems is accentuated with the growing interest in new physical layer technologies, and the deployment of wireless backhaul networks. This forms the main motivation for this thesis where we analyze the impact of phase noise on the system performance, and we also design algorithms in order to mitigate phase noise and its effects. First, we address the problem of maximum a posteriori (MAP) detection of data in the presence of strong phase noise in single-antenna systems. This is achieved by designing a low-complexity joint phase-estimator data-detector. We show that the proposed method outperforms existing detectors, especially when high order signal constellations are used. Then, in order to further improve system performance, we consider the problem of optimizing signal constellations for transmission over channels impaired by phase noise. Specifically, we design signal constellations such that the error rate performance of the system is minimized, and the information rate of the system is maximized. We observe that these optimized constellations significantly improve the system performance, when compared to conventional constellations, and those proposed in the literature. Next, we derive the MAP symbol detector for a MIMO system where each antenna at the transceiver has its own oscillator. We propose three suboptimal, low-complexity algorithms for approximately implementing the MAP symbol detector, which involve joint phase noise estimation and data detection. We observe that the proposed techniques significantly outperform the other algorithms in prior works. Finally, we study the impact of phase noise on the performance of a massive MIMO system, where we analyze both uplink and downlink performances. Based on rigorous analyses of the achievable rates, we provide interesting insights for the following question: how should oscillators be connected to the antennas at a base station, which employs a large number of antennas

    SYNCHRONIZATION AND RESOURCE ALLOCATION IN DOWNLINK OFDM SYSTEMS

    Get PDF
    The next generation (4G) wireless systems are expected to provide universal personal and multimedia communications with seamless connection and very high rate transmissions and without regard to the users’ mobility and location. OFDM technique is recognized as one of the leading candidates to provide the wireless signalling for 4G systems. The major challenges in downlink multiuser OFDM based 4G systems include the wireless channel, the synchronization and radio resource management. Thus algorithms are required to achieve accurate timing and frequency offset estimation and the efficient utilization of radio resources such as subcarrier, bit and power allocation. The objectives of the thesis are of two fields. Firstly, we presented the frequency offset estimation algorithms for OFDM systems. Building our work upon the classic single user OFDM architecture, we proposed two FFT-based frequency offset estimation algorithms with low computational complexity. The computer simulation results and comparisons show that the proposed algorithms provide smaller error variance than previous well-known algorithm. Secondly, we presented the resource allocation algorithms for OFDM systems. Building our work upon the downlink multiuser OFDM architecture, we aimed to minimize the total transmit power by exploiting the system diversity through the management of subcarrier allocation, adaptive modulation and power allocation. Particularly, we focused on the dynamic resource allocation algorithms for multiuser OFDM system and multiuser MIMO-OFDM system. For the multiuser OFDM system, we proposed a lowiv complexity channel gain difference based subcarrier allocation algorithm. For the multiuser MIMO-OFDM system, we proposed a unit-power based subcarrier allocation algorithm. These proposed algorithms are all combined with the optimal bit allocation algorithm to achieve the minimal total transmit power. The numerical results and comparisons with various conventional nonadaptive and adaptive algorithmic approaches are provided to show that the proposed resource allocation algorithms improve the system efficiencies and performance given that the Quality of Service (QoS) for each user is guaranteed. The simulation work of this project is based on hand written codes in the platform of the MATLAB R2007b

    Air Interface for Next Generation Mobile Communication Networks: Physical Layer Design:A LTE-A Uplink Case Study

    Get PDF
    corecore