76 research outputs found

    Datasets, Clues and State-of-the-Arts for Multimedia Forensics: An Extensive Review

    Full text link
    With the large chunks of social media data being created daily and the parallel rise of realistic multimedia tampering methods, detecting and localising tampering in images and videos has become essential. This survey focusses on approaches for tampering detection in multimedia data using deep learning models. Specifically, it presents a detailed analysis of benchmark datasets for malicious manipulation detection that are publicly available. It also offers a comprehensive list of tampering clues and commonly used deep learning architectures. Next, it discusses the current state-of-the-art tampering detection methods, categorizing them into meaningful types such as deepfake detection methods, splice tampering detection methods, copy-move tampering detection methods, etc. and discussing their strengths and weaknesses. Top results achieved on benchmark datasets, comparison of deep learning approaches against traditional methods and critical insights from the recent tampering detection methods are also discussed. Lastly, the research gaps, future direction and conclusion are discussed to provide an in-depth understanding of the tampering detection research arena

    Media forensics on social media platforms: a survey

    Get PDF
    The dependability of visual information on the web and the authenticity of digital media appearing virally in social media platforms has been raising unprecedented concerns. As a result, in the last years the multimedia forensics research community pursued the ambition to scale the forensic analysis to real-world web-based open systems. This survey aims at describing the work done so far on the analysis of shared data, covering three main aspects: forensics techniques performing source identification and integrity verification on media uploaded on social networks, platform provenance analysis allowing to identify sharing platforms, and multimedia verification algorithms assessing the credibility of media objects in relation to its associated textual information. The achieved results are highlighted together with current open issues and research challenges to be addressed in order to advance the field in the next future

    H4VDM: H.264 Video Device Matching

    Full text link
    Methods that can determine if two given video sequences are captured by the same device (e.g., mobile telephone or digital camera) can be used in many forensics tasks. In this paper we refer to this as "video device matching". In open-set video forensics scenarios it is easier to determine if two video sequences were captured with the same device than identifying the specific device. In this paper, we propose a technique for open-set video device matching. Given two H.264 compressed video sequences, our method can determine if they are captured by the same device, even if our method has never encountered the device in training. We denote our proposed technique as H.264 Video Device Matching (H4VDM). H4VDM uses H.264 compression information extracted from video sequences to make decisions. It is more robust against artifacts that alter camera sensor fingerprints, and it can be used to analyze relatively small fragments of the H.264 sequence. We trained and tested our method on a publicly available video forensics dataset consisting of 35 devices, where our proposed method demonstrated good performance

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Beyond the pixels: learning and utilising video compression features for localisation of digital tampering.

    Get PDF
    Video compression is pervasive in digital society. With rising usage of deep convolutional neural networks (CNNs) in the fields of computer vision, video analysis and video tampering detection, it is important to investigate how patterns invisible to human eyes may be influencing modern computer vision techniques and how they can be used advantageously. This work thoroughly explores how video compression influences accuracy of CNNs and shows how optimal performance is achieved when compression levels in the training set closely match those of the test set. A novel method is then developed, using CNNs, to derive compression features directly from the pixels of video frames. It is then shown that these features can be readily used to detect inauthentic video content with good accuracy across multiple different video tampering techniques. Moreover, the ability to explain these features allows predictions to be made about their effectiveness against future tampering methods. The problem is motivated with a novel investigation into recent video manipulation methods, which shows that there is a consistent drive to produce convincing, photorealistic, manipulated or synthetic video. Humans, blind to the presence of video tampering, are also blind to the type of tampering. New detection techniques are required and, in order to compensate for human limitations, they should be broadly applicable to multiple tampering types. This thesis details the steps necessary to develop and evaluate such techniques

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area
    • …
    corecore