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Abstract

Video compression is pervasive in digital society. With rising usage of deep convo-
lutional neural networks (CNNs) in the fields of computer vision, video analysis and
video tampering detection, it is important to investigate how patterns invisible to hu-
man eyes may be influencing modern computer vision techniques and how they can
be used advantageously.

This work thoroughly explores how video compression influences accuracy of CNNs,
and shows how optimal performance is achieved when compression levels in the train-
ing set closely match those of the test set. A novel method is then developed, using
CNNs, to derive compression features directly from the pixels of video frames. It is
then shown that these features can be readily used to detect inauthentic video content
with good accuracy across multiple different video tampering techniques. Moreover,
the explainability of these features allows predictions to be made about their effective-
ness against future tampering methods.

The problem is motivated with a novel investigation into recent video manipulation
methods, which shows that there is a consistent drive to produce convincing, photo-
realistic, manipulated or synthetic video. Humans, blind to the presence of video tam-
pering, are also blind to the type of tampering. New detection techniques are required,
and in order to compensate for human limitations, they should be broadly applicable
to multiple tampering types. This thesis details the steps necessary to develop and
evaluate such techniques.

Keywords: Computer vision; video compression; deep learning; tampering detection;
video tampering.
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Chapter 1

Introduction

In the world of video analysis, video compression is often over looked. So much of
the online content we view is compressed that compression itself is seen as inherent.
This is almost as true for machine eyes as it is for human eyes. Many deep learn-
ing techniques rely on vast quantities of data, harvested from publicly available online
sources and, as such, subject to compression. Some techniques, particularly in the
area of video forensics, list compression or reduced bit-rate video as one of the open
challenges. Video tampering detectors, in particular, often show reduced performance
when faced with video that has been compressed or recompressed post-tampering.
This work aims to look beyond the pixels and examine the features and effects pro-
duced by video compression, how they can be detected and whether they can be
usefully applied to help address some of the problems attributed to them. We aim to
ascertain whether compression features learned from authentic and controlled video
sources can ultimately aid the detection of inauthentic or manipulated video.

1.1 Compression, Analysis and Manipulation

Video is a medium which is particularly rich in data, with more hours of video publicly
available online than any single person could hope to watch in their lifetime. To over-
come the problem of storing and distributing so much content, online video is almost
always compressed using some standardised algorithm. Moreover, many videos are
compressed and recompressed as they are moved between platforms and locations
online. The end result is that viewers often see a simulacrum of the video that was
originally captured on the camera sensor. Modern video compression algorithms have
been designed and revised over decades so that they can efficiently compress large
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quantities of pixel data. To do this, they exploit weaknesses in the human visual sys-
tem. Video sequences are never left completely unchanged by lossy compression,
but changes may simply fall beneath the threshold of human perception. What is cur-
rently unclear, is how much compression, and thus the exploitation of human vision
weakness, affects the development of machine vision. Compression affects the vast
majority of videos available online, therefore any machine learning techniques which
utilise this enormous mine of data will find themselves also subject to the effects of
compression.

Video analysis is a broad field. It covers many subjects such as: video forensics
[1, 2], object detection [3], visual object tracking [4] and video classification [5]. More
recently, video manipulation [6, 7], frame interpolation and prediction [8, 9, 10] and
super resolution [11] have become popular. Just as in image analysis and processing,
recent trends in video have brought deep learning to the fore. In the past, features for
video and image analysis were hand-crafted and based on mathematical understand-
ing of what might prove useful or overcome current challenges. The Scale Invariant
Feature Transform or SIFT [12], for example, was designed to overcome the way that
images and the objects within them can be rescaled to different sizes. More recently,
deep learning has risen through the ranks in both image and video analysis. With the
seminal success of AlexNet [13] on the ImageNet dataset [14] in 2012 and the rise of
powerful parallel computing processors in the form of GPUs, the focus of video and
image analysis has moved to deep learning features that emerge from large quantities
of data. The challenge of variations in object sizes, for example, is now met simply by
including many examples of different objects at different scales in the training dataset.
While they have proven very effective, deep learning methods are data hungry. This
inhibits their application to fields where there are few or limited examples.

The large quantity of available video and video analysis techniques also evidences
the importance that society places on video content. This serves to demonstrate the
vast potential that the video medium has for societal influence. A single sequence
on YouTube can be viewed millions of times, and its authenticity may be taken for
granted. As video manipulation techniques advance, it is vital to develop machine
vision tools which can compensate for human blindness and are capable of gauging
the authenticity or forensically analysing a given sequence.

In the past, video tampering was limited to inter-frame forgery and intra-frame or object
forgery. Inter-frame forgery is where scenes of a video are carefully joined together
to create a false order of authentic frames. Intra-frame forgery usually involves splic-
ing content from two sequences together or inpainting to conceal a particular object.
Each individual frame in an intra-frame tampered sequence may contain authentic and
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Figure 1.1: Examples of tampered and authentic frames and their masks from datasets [15,
16, 17]. The top sequence from [15] consists of an added picture on the wall and is an example
of splicing. The middle sequence from [16] has had a tree added to it and is an example of
a spatio-temporal copy-move. The bottom sequence from [17] is an example of digital re-
enactment or digital puppetry, and subtle changes to the facial expression have been made,
which are most obvious around the shape of the mouth and eyes. The technique used in [17]
was found to be almost undetectable to humans.

tampered pixels. Video manipulation, however, is a rapidly expanding field, with many
new techniques capable of forging realistic video content (See Chapter 3). Figure 1.1
illustrates how visually convincing some of these methods are by showing some ex-
amples of tampered frames from available datasets. Digital re-enactment or digital
puppetry involves changing the facial expressions of a person in a pre-recorded video
to follow the actions of an actor in a different video. This allows content producers
to create forged videos from authentic content. Recent discoveries in video forgery
have show that some manipulation techniques leave humans completely unable to
differentiate between authentic content and digital re-enactment [17]. Deep neural
networks trained to differentiate between content processed in a particular way and
unprocessed content, however, are almost unreasonably accurate [17, 2, 18]. This
implies that these forms of processing leave some sort of “fingerprint” on the pixels
themselves, and that although this fingerprint is invisible to humans, DNNs have no
trouble uncovering it. The question is whether any facet of the processing fingerprints
can be generalised to apply to different datasets.
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1.2 Motivation

The main question that this thesis serves to answer is: can video compression features
be used as an ally rather than an enemy? Video compression is explicitly reported as
a challenge in many fields. The authors of [19] showed how JPEG compression has
a negative effect on classification accuracy for images classified by deep neural net-
works. This effect may even have been understated given that the neural network itself
was not trained with completely uncompressed data but, rather, with ImageNet, which
is data harvested from online public sources. Rössler et al [17] demonstrated how
compression could effectively “launder” digital re-enactment, making it less detectable
for machine learning techniques trained on high quality examples. The VISION dataset
[20] showed how sensor pattern noise, often used as a digital fingerprint to identify the
source of a video, was more challenging to detect once the video content had been
processed via uploading and downloading to common media sharing sites. With that
in mind, it is worthwhile to quantify how much video compression currently affects
performance in deep neural networks, and ascertain whether that knowledge can be
subsequently used to improve other techniques.

Recompression is also listed as an important aspect of video forensics [21]. Although
recompression does not explicitly imply the presence of video tampering, it can dimin-
ish the performance of many tampering detectors. Recompression also invalidates
data that can be gathered directly from compressed bitstream syntax elements. A low
quality video may be recompressed at a high bitrate but it will still retain all the visi-
ble pixel artifacts associated with the original low bitrate. Therefore, in order to utilise
any knowledge gained about how compression affects performance in deep learning
techniques, some method of quantifying the compression features is required.

Given the prevalence of compression features in the wild, an analysis of video com-
pression features within the context of deep learning is a valuable addition to many
research fields. If compression features can be used as an intermediate representa-
tion of video, then this may help to overcome the large data requirements of machine
learning techniques when used in fields such as video forgery detection. In the field of
video tampering, there are new and emerging techniques which are currently invisible
to humans [17, 22]. While deep learning methods may be appropriate for tackling this
challenge, they are data hungry. A large scale and varied dataset comprising numer-
ous different tampering techniques does not yet exist. Therefore, to keep pace with
tampering methods, it is more appropriate to rephrase tampering detection as authen-
ticity validation. Photo Response Non Uniformity (PRNU) is a form of sensor pattern
noise and can be used to detect some forms of tampering, particularly the splicing of
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content from two different camera sources [23]. Unfortunately many techniques based
on PRNU are subject to diminishing performance in the presence of video compres-
sion. If compression features can be derived directly from pixel data, it may be possible
to turn the challenge of compression into an opportunity. Compression features may
constitute a new form of digital forensic fingerprint, the details of which may differen-
tiate between content from different sources, whether those sources are cameras or
pixels generated by some tampering technique. If this is the case, then the first step
is to derive compression features directly from pixels themselves.

1.3 Research Objectives

This thesis has the following objectives:

• Review the current trends in video manipulation and identify how these have
changed in recent years with a view to evaluating the potential efficacy of fea-
tures based on compression. This includes identification of publicly available
datasets, how widely these are used and the challenges associated with them.
This is then used to establish a set of simple recommendations to encourage
future researchers in video manipulation to provide examples of their work to
contribute to the development of generic tampering detection methods.

• A thorough evaluation of how video compression affects learning in deep con-
volutional neural networks. This will help to gain an understanding of how the
challenges associated with compressed data arise.

• Create a novel method to derive compression features directly from pixel data.
Videos can be recompressed and re-recompressed thus invalidating any com-
pression features that can be extracted directly from the compressed bitstream.
One way to objectively analyse a video in terms of its compression is to derive
measures of compression directly from the pixels themselves. A novel method
to do this using convolutional neural networks is presented in this thesis and a
full evaluation of such is provided.

• To establish whether video compression features can be used to localise tamper-
ing within video content using existing, publicly available datasets. The hypothe-
sis here is that authentic and tampered content may exhibit different compression
feature distributions.
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1.4 Contributions

This thesis makes the following contributions:

• An extensive investigation to identify current state-of-the-art techniques in im-
age and video tampering and study the current provision of publicly available
datasets. Although the field of video tampering detection has garnered a collec-
tion of extensive reviews, the field of realistic video manipulation is still a relatively
new field which is worthy of study.

• An experimental framework designed to provide a full analysis of the spatial ef-
fects of video compression on classification accuracy in CNNs [24]. A number of
results throughout the literature suggest that an understanding of compression
may benefit CNNs for video analysis. By examining this in isolation, we pro-
vide objective conformation that knowledge of underlying compression may be
beneficial for classifiers.

• A novel deep learning method of deriving compression features directly from the
pixels of compressed bitstreams [25]. This involves the necessary framework
for synthesis of appropriate datasets. A full evaluation is also provided, demon-
strating which aspects of video compression itself inhibit the ability to accurately
derive compression parameters from pixel data alone.

• Creation and evaluation of new methods for video tampering localisation using
features of compression [26]. This includes identification of key frames in a se-
quence.

The resulting publications are listed in the preface section “Publications”.

1.5 Thesis Structure

Chapter 2 provides an introduction to the relevant research fields used in this thesis,
covering both deep learning and the basics of standard video compression. Chapter
3 provides the motivation for research into compression-based features by detailing
current trends in video tampering and revealing the need for technique agnostic video
tampering detection: a need that can be fulfilled through the use of compression fea-
tures.

Chapter 4 details how video compression affects classification in CNNs, and provides
evidence for the usefulness of compression features estimated directly from the pixels.
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Figure 1.2: Summary of how higher levels of compression in training sets affects accuracy of
trained CNNs

Figure 1.2 summarises the intuitive findings that, in general, CNNs trained on more
highly compressed data have poorer accuracy. However CNNs also perform optimally
when the training and test data share similar levels of compression. It is therefore
advantageous to somehow measure levels of compression.

Figure 1.3: CNNs can be used to learn quantisation parameters from pixels, thus translating
frame data to a compression fingerprint

Chapter 5 presents a novel method to extract compression features, such as quanti-
sation, directly from pixels using CNNs. Figure 1.3 summarises one of these methods.
Chapter 6 shows how this can be extended to other compression features and how
these can be used to identify key frames in a video sequence.

Chapter 7 examines how compression features predicted from the pixels can be
utilised to aid tampering localisation in publicly available tampered datasets. Figure
1.4 gives examples of this.
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Figure 1.4: Using features of compression to represent video frames can aid in tampering lo-
calisation. Frames are from [17]. The first column shows still images from related sequences.
The top example of each pair is tampered using digital puppetry on the face region only, the
bottom example of each pair is authentic. Tampered and authentic frames are almost indistin-
guishable to the naked eye. The middle column shows quantisation as estimated by a trained
CNN; darker areas are considered less compressed. The tampered content content registers
as uncompressed. The third column shows the results of a classifier trained to differentiate
between authentic and tampered content. Full details of this complete process are given in
subsequent chapters.

8



Chapter 2

Research Background

This chapter provides a necessary grounding in video compression and deep neural
networks. Video compression is a multi-variable process and this chapter illustrates
and explains some of the effects of the compression process that may go unnoticed to
the untrained eye. Video compression standards are prescriptive, but, as shown in this
chapter, there are sufficient degrees of freedom that may allow individual encoders
to leave their own fingerprint upon the pixels that pass through them. Deep neural
networks are a useful tool in the field of computer vision and particularly well suited to
analysing video frames. In order to make optimal use of them, it is important to have
a good understanding of the mechanisms that drive them.

2.1 Standard Video Compression

The majority of video available online is compressed. Compression allows more con-
tent to fit into the same space. There are many ways to compress a video file, but far
fewer industrial standards. The most commonly used video codecs form part of the
MPEG series of standards. In this section, we cover the basics of video compression
that apply to the industrial standards H.264/AVC [27] and H.262/MPEG-2 part 2 [28].

Table 2.1 gives the names of relevant industry standards. MPEG-4 is a series of stan-
dards which define how audio and video data should be compressed and transmitted.
It encompasses a number of distinct methods of video compression including: MPEG-
4 Part 2, which is related to H.263 [29]; and MPEG-4 Part 10 which is also known
as H.264 or Advanced Video Codec (AVC). MPEG-4 also governs how compressed
video should be packaged as a file and packetised for streaming purposes. MPEG-2
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Table 2.1: Industry standards related to video

Abbreviation Other names Definition
MPEG-2 part 2 H.262 [28] A standard governing video com-

pression
MPEG-4 - A series of documents governing

digital video and audio compres-
sion

MPEG-4 part 10 H.264/AVC [27] A standard governing video com-
pression

MPEG-4 part 2 related to H.263 [29] A standard governing the video
compression

part 2 is a precursor for H.264/AVC and they use many similar mechanisms.

Video compression relies on reducing the level of redundancy within a sequence of
pixels. In essence, it involves a pre-defined method of making predictions from avail-
able data and a series of syntax elements which correct these predictions. The first
frame of a sequence will always be encoded from without any reference data. This is
called an intra, key or I- frame (Table 2.2 defines some useful compression terms).
An intra frame relies only on data within itself to be completely decoded. Subsequent
frames can be predicted from the intra frame or from each other and these are called
inter, predicted or P- or B- frames. Inter frames rely on reference pictures. Optimally
predicting every new pixel from past pixels is the most efficient form of compression
and will yield the smallest number of bits, however it is also important to provide access
points into the bitstream. These can be provided by inserting key frames periodically
throughout the sequence. Access points can also be provided by distributing intra-only
regions over a number of frames and instructing the decoder to display only when the
entire frame is assembled (as available in [30]). Key frames define what is known as
a Group of Pictures (GOP). A GOP starts with a key frame and ends on the last pre-
dicted frame before the next access point. GOPs are self contained. In H.264/AVC, it is
possible to have intra frames that are not key frames because reference pictures may
be kept beyond these intra pictures, and the interested reader may refer to [31] for a
complete overview of the H.264/AVC standard. For simplicity, here we consider every
intra frame to be the start of a GOP. Figure 2.1 shows a GOP construction. The GOP
starts with an I-frame which can be decoded alone. The next frame to be encoded
is the nearest P-frame, which references the data in the I-frame. Once the I- and P-
frames are encoded, the data within them can be used to encode the B-frames. Note
that the encoding order is not necessarily the same as the display order. Of the three
different frame types, B-frames are the most efficiently compressed but they require
reordering of frames prior to encoding, and consequent reordering prior to display on
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Table 2.2: Video compression terms

Term Definition
GOP Group of Pictures. A whole number of frames starting with

an I-frame.
Intra frame A key frame which can be decoded by itself.
Inter frame A predicted frame which requires data from other frame(s)

before it in the bitstream.
Reference frame A decoded frame used as reference for a predicted frame
I- Intra.
P- Inter, single direction (only uses frames temporally before it).
B- Inter, bi-directional (uses frames temporally before and after)
Macroblock A group of pixels, 16x16 pixels in the Y channel plus corre-

sponding U and V channels
Slice A group of macroblocks
DCT Discrete Cosine Transform, for spatial to frequency domain

transform
residual The difference between a predicted and an actual value
Motion vectors An x- and y- vector which define a region in a reference

frame to use as a prediction
fps Frames Per Second
field half a frame, alternate lines horizontally, used in interlaced

sequences
progressive Consisting of compelete frames. The “p” in 720p, 1080p
interlaced Consisting of fields. The “i” in 1080i
CBR Constant bitrate, a common rate control method
VBR Variable bitrate, a rate control method which simplifies en-

coder operation

the decoder side.

Figure 2.1: An example Group of Pictures (GOP) structure

GOP structure is decided by individual encoders and can vary wildly depending on
requirements. In MPEG-2 and other standards prior to H.264, the standard itself de-
fined a maximum period between intra frames. This was due to non-integer based
arithmatic used within the frequency transforms. Rounding errors introduced by this
could cause drift between encoder and decoder. This drift was held in check by a de-
fined maximum number of frames between intra frames. In H.264/AVC, the frequency
transforms were integer based and, as such, completely reversible. This meant that
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Figure 2.2: Compression heirarchy: from sequence to pixels

in H.264/AVC, GOP structure essentially became a balance between compression ef-
ficiency and stream integrity. Encoding every frame as an intra frame, for example,
means that every frame in the sequence can be decoded individually and lost data
has minimal visible impact, but the bitrate will be necessarily high. Encoding an entire
sequence as a single GOP with only one intra frame at the beginning will improve the
compression efficiency and lower the bitrate substantially, but if any part of the se-
quence is lost or corrupted, then there is no way to recover from and all frames from
the lost data onwards must be discarded. GOP structure can also rely on content.
Intra frames, for example, are the best means of encoding the first frame after a cut
scene, but this relies on the encoder’s ability to buffer and analyse the content of a
sequence. In some encoder implementations, the GOP structure is fixed and does not
depend on sequence content at all.

Figure 2.2 shows the main objects used in compression codecs H.264/AVC and
MPEG-2. A sequence is formed from GOPs; GOPs are made up of individual frames;
and frames consist of macroblocks, which are 16x16 pixel squares. For stream pack-
etisation purposes, macroblocks can also be grouped into slices and in certain modes,
slices can be decoded completely independently of each other thus making the bit-
stream more robust against packet loss. Although macroblocks can be further divided
into sub-macroblocks in H.264/AVC, for simplicity we will consider the macroblock as
the base unit of compression. For more information on these modes, the interested
reader is referred to [31].

Figure 2.3 shows the basic processes in a standard encoder. The incoming frame
is first divided into macroblocks which are typically processed in raster scan order.
In intra frames, the first macroblock is stand alone as there is not yet any data to
use as a reference. In H.264/AVC, subsequent macroblocks in an intra frame can
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Figure 2.3: Encoder flowchart

then be encoded using data from immediately adjacent neighbours to the left and
from the row above if they are available. A prediction is made from the available
neighbours. Different macroblock types are used to define a specific combination
of neighbouring data to make a prediction. For example, a prediction might involve
using pixels from the left neighbour only, or it might use macroblocks from the row
above. The difference between this prediction and the actual macroblock is taken
as the residual. This is an efficient process because often macroblocks share their
appearance with their neighbours. The residual is then frequency transformed using
Discrete Cosine Transform (DCT), quantised and the resulting coefficients and syntax
elements entropy encoded ready for transmission. Meanwhile, the reverse path of
the encoder takes the quantised coefficients and dequantises them, transforms them
back into the spatial domain and reconstructs the macroblock pixels. Reconstructed
macroblocks form the reconstructed frame, which can then be used as a reference
frame. H.264/AVC maintains lists of reference frames, although the standard defines
how these changes are communicated to decoders via the bitstream, reference list
selection and management is left up to individual encoder implementations..

To encode an inter frame, the first step is to locate a good match from the data in
the available reference frames. It should be noted that the reference frames are the
reconstructed frames, not the original uncompressed frames. A good match is found
through motion estimation and various methods of block based motion estimation have
been suggested in the literature [32]. In MPEG-2, motion estimation was accurate
to half pixels with standard-defined means of interpolating between pixels [28]. In
H.264/AVC, it is accurate to quarter pixels [27], allowing more compression efficiency
at the expense of processing overheads. Motion estimation mechanisms themselves
are not part of the industrial standards, and it is up to individual encoders to implement
a method that finds an appropriate match. One method is to individually compare the
current macroblock to different regions in the reference frames and minimise the sum
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of absolute differences. Methods of reference region selection have been examined
in detail [32, 33, 34] because as compression standards advance, exhaustive search
becomes impossible. If an appropriate match is located, then the residual is calculated
and encoding proceeds as in the intra case. Alternatively, the macroblock can be
encoded as an intra block, in the same way as for the macroblocks in an intra frame.
In some cases, if there is no residual and the macroblock matches the prediction well
enough, the macroblock can be skipped, and this is the smallest type of macroblock.
A run of skipped macroblocks can be encoded as a single syntax elements, thereby
allowing individual skipped macroblock to occupy less than a single bit in the bitstream.

In inter frames, consideration must be given to minimise not only the number of bits
used to represent the residual, but also the number of bits given over to motion vec-
tors. Motion vectors themselves are predicted using the motion vectors of available
neighbouring macroblocks, and the difference between the predicted motion vectors
and the actual motion vectors added to the bitstream. Sometimes the most favourable
match is not the one that generates the smallest residual, but one where the combina-
tion of encoded motion vector differences and residual generates the fewest number of
bits. This is known as rate distortion optimisation [34]. With so many options available
it is unsurprising that individual encoder implementations produce slightly different bit-
streams.

2.1.1 Frequency Domain

Frequency domain transform is commonly used in video and image compression. The
human eye is more sensitive to noise and artifacts in areas of low frequency [35]. A
person might be able to spot a single black bird in a uniformly blue sky, but they are
unlikely to spot a small reduction in the number of hairs on the head of a dog. There-
fore, the lossy part of compression takes place in the frequency domain by quantising
frequency coefficients.

For non-predicted data, the pixel data itself is transformed into the frequency domain
using Discrete Cosine Transforms (DCT), quantised and variable length encoded for
transmission. For predicted blocks, a suitable patch of reference pixels is located,
then the difference between current and reference data is transformed, quantised and
encoded. H.264/AVC also employs intra-prediction, where intra macroblocks are pre-
dicted from the edge pixels of available neighbouring macroblocks.

In H.264/AVC, the integer-based DCT transform is an approximation of the DCT trans-
form. It is very simple and can be computed using only additions, subtractions and
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Figure 2.4: The coefficients of a 4x4 discrete cosine transform in the spatial domain

bit-shifts. It is integer-based to avoid rounding errors and consequent drift between
encoder and decoder. The algorithm for a 4x4 DCT transform is included in Appendix
A.

Figure 2.4 is a visualisation of the 4x4 DCT in the spatial domain. A 4x4 DCT contains
16 coefficients and this is a greyscale visualisation of setting each single coefficient
to its highest value and all the others to 0. This representation is somewhat different
to the idea of edges and colours that normally dominates when considering groups of
pixels. It is, however, a closer representation of how groups of pixels are processed by
compression codecs.

Quantisation is the coarsest method of rate control in video compression and takes
place in the frequency domain. Quantisation is performed as in Equation 2.1 where δ
is DCT coefficients of a macroblock or residual, C is the compressed coefficients and
Qs represents the quantisation step as indexed by the quantisation parameter (QP)
[31]:

C = round(
δ

Qs
) (2.1)

A high QP yields a smaller bitstream at the expense of more compression artifacts
and lower quality. Higher QP indexes larger Qs and means more frequency coeffi-
cients are rounded out entirely. In H.264/AVC, the range of QP is 0 (lossless) to 52.
Crucially, with a suitable rate control algorithm, QP varies both spatially and temporally
throughout a video sequence. Neighbouring macroblock syntax elements can include
a change in QP. Thus an object’s visual quality can also vary spatially and temporally.
Unlike natural changes in an object’s appearance, changes due to video compres-
sion quality may be measured objectively using data from the compressed bitstream,
however this only applies to the most recent compression. Should a bitstream be re-
compressed, then evidence of previous compression details must be derived from the
pixels themselves.
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2.1.2 Encoder Options

Although the industrial standards define many aspects of video compression, there are
a number of options which are left up to individual encoder implementations. Open
source encoders such as x264 [30] often come with a wealth of optional settings.
Each of these contributes to how an encoder compresses a specific sequence. These
include:

• Rate control

• GOP structure

• Motion search

• Macroblock type selection

• Optional encoder modes such as H.264/AVC’s deblocking filter

How an encoder selects these defines how well it operates. For example, a given rate
control mechanism may allocate proportionally more bits to frames that will be used
as reference frames. This leads to higher quality reference frames, yielding better
motion estimation matches, more skipped macroblocks and an overall more efficient
bitstream. A simple encoder implementation might omit specific macroblock or frame
types, so that these are never used, but still produce a compliant bitstream. Two
different encoders might produce two very different bitstreams which are both equally
valid, meet the required bitrate specification and produce video of equal quality.

The interplay of all these options means that different encoder implementations need
not process the same sequence identically. This may give rise to different encoders
exhibiting different “fingerprints”, in much the same way as different camera models
exhibit different photoresponse non-uniformities (PRNUs). The VISION dataset [20]
demonstrated how different online applications (YouTube and WhatsApp) compressed
video in different ways. This resulted in a reduction in performance of a proposed
camera identification algorithm. Compression clearly reduces the appearance of cam-
era identifying sensor noise, but it remains unclear if it replaces this with any features
that allow identification of the encoder. Intuitively, looking at individual encoder imple-
mentations, it seems obvious that all the different choices would leave an individual
encoder fingerprint, but in order to ascertain if this is feasible, it is necessary to derive
compression parameters directly from pixels themselves. It is possible that different
encoder options result in different bitstreams but near identical reconstructed frames.
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2.1.3 Rate Control

In video compression, there are two possible modes of rate control: constant quality
and constant bitrate. Constant bitrate (CBR) is most common in the wild, but constant
quality gives reasonable insight into the compression mechanisms and removes the
subjectivity of individual encoder rate control algorithms. Although the standards [27]
and [28] define the syntax elements of compression from the decoder side, they do
not define how these interact in an encoder to produce a bitstream of constant bitrate.

One of the main parameters involved in rate control is the quantisation parameter.
Many CBR algorithms simply define a process to appropriately select the QP for ev-
ery macroblock in a sequence such that the number of bits in the encoded sequence
conforms to bitrate requirements. With rate control enabled, it is possible to perceive
changes in a completely static scene. This is due to the balance of bitrate require-
ments and image quality optimisation. Later frames or macroblocks may “correct” or
improve upon the appearance of an object, thus increasing the object’s fidelity to the
original, uncompressed frame. For example, the bit rate requirements may be such
that the encoder has to encode naturally larger key frames at a reduced quality to avoid
peaks in the bitrate. This means that key frames will use a higher QP than predicted
frames, and the lower QP used in predicted frames will allow static regions in the
frame to improve in quality over time. The use of different QP for different macroblocks
also has knock on effects for prediction: different motion vectors may be selected on
the basis of quality variation within the reference frame. Using constant quality mode
removes a large proportion of this variation.

Constant quality is more commonly known as Variable Bitrate (VBR). VBR fixes QP
to a defined level for every macroblock in the stream. This can be used to evaluate
different encoder manipulations in isolation, or it can be used to gauge the complexity
of video content itself. For example, flat regions of unchanging colour will make for a
very simple video sequence which can be encoded using very few frequency coeffi-
cients and many skipped macroblocks. In VBR, this will result in a small number of
bits. A natural scene with lots of subtle motion, say like a rippling river in the sunshine,
or a tree with many leaves moving in the wind, will be very complex to encode and
require a lot of syntax elements. In VBR, this will result in a higher number of bits.
This method of operation is used for multi-pass encoding: the encoder itself is used
to quantify how inherently complex a sequence is, then this knowledge is used to in-
form the rate control mechanism. Further examples of complex video content include
camera zooms or through-frame motion where the scale of a given object is changing.
Motion vectors and difference encoding are not well suited to large changes in object
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Figure 2.5: YUV colour channels. Image is from (CASIA TIDE) V2.0. Left to right: Image, Y,
U, V, (best viewed in colour)

scale or in plane rotation. The result of this is a larger VBR bitstream.

2.1.4 Encoder Evaluation

Encoders are often evaluated using full reference quality metrics such as Peak Signal
to Noise Ratio (PSNR) and Structural SIMilarity (SSIM) [36]. Rate distortion curves
plot a full reference quality metric against bitrate so that different encoders can be
compared. A number of YUV video sequences are publicly available [37] and these
are used to assess different encoder options. In images or frames with a bit depth of
8, PSNR is calculated as:

PSNR = 20log10(
255√
MSE

) (2.2)

where MSE is the Mean Squared Error. PSNR does not account for the visual effect
of neighbouring pixels. It is simply a measure of the difference between co-located
pixels in the test and reference images. PSNR has many problems associated with it,
the main one being that it does not necessarily represent human perception. Certain
image processing techniques, such as Gaussian blur or speckle noise, have a dispro-
portionately detrimental effect on PSNR values when compared to human perception.
SSIM goes some way to addressing this, but the widely adopted gold standard in terms
of image and video quality is simply user evaluation.

2.1.5 Colour Spaces

RGB is the most common colour space considered for image processing. For every
pixel, a Red, Green and Blue value is defined. In the case of the commonly used
RGB24, each sample is a single byte, so each pixel is represented by 24 bits, 8 bits
red, 8 bits green and 8 bits blue.
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Video compression typically uses the YUV colour space as a starting point. In this
colour space, Y, the luminance channel, represents intensity. U and V are the chromi-
nance or colour channels. Supplying only the Y channel gives a greyscale image.
Human perception is much more sensitive to intensity than to colour or wavelengths
[38]. This is because of the two different types of sensor in the human eye, both rods
and cones detect intensity, but only cones detect colour. Compression methods take
advantage of this fact by using sub-sampled YUV channels as the first stage in com-
pression. YUV 4:2:0 is one of the most commonly used colour spaces [39]. In YUV
4:2:0, every square of four Y-channel pixels corresponds to a single U and a single
V value. This means that the two colour channels together occupy half the size of
the intensity channel. Thus the total pixel information is halved prior to the application
of standard compression techniques, and this loss is seldom perceived. This colour
space is often used as the starting point for standard encoder evaluation, and much
of the available unprocessed video content in [37] uses this colour space. Figure 2.5
shows how a colour image can be decomposed into the Y, U and V channels.

YUV 4:2:2 is a similar colour space, where every square of four pixels corresponds to
two U- and two V- values. YUV 4:4:4 is the full, uncompressed colour space. Sepa-
rating channels into luminance and chrominance channels also allows different com-
pression parameters to be selected for luma and chroma.

8 bits per sample is used throughout this thesis. Although H.264/AVC allows for more
bits per pixel, most digital video available online is only 8 bits per pixel. The YUV
colour space is used throughout.

2.1.6 Artifacts

There are a number of different artifacts and effects that can be observed in videos
that are distinct from image data. Some of these are the result of compression, either
resulting from bitrate constraints or a combination of encoder choices. Resizing or
otherwise transforming compressed data may still exhibit block artifacts but they, too,
will be resized. A number of these artifacts are listed here to illustrate how compressed
frames can differ from compressed images.

Interlacing

One of the most visible distinctions between video and image data is when video
capture uses fields rather than frames. This is a historical technique where all even
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numbered lines are captured at one time and all odd numbered lines are captured
at another time. Typically the field rate is double the frame rate. The fields are then
interlaced to convert to frames.

Figure 2.6: An example of field encoding. The fringe effects can be clearly perceived around
the edges of the person (sequence is “Handball2” from VOT 2016 [40])

Visually, field encoding manifests as “fringes” round the edges of objects (see Fig-
ure 2.6), and these can be reduced by a de-interlacing filter before the compression
process and encoded as frames, or they may be coded as individual fields within the
compression process itself. The standards [28] and [27] allow syntax specifically for
field encoding, although this is no longer provided in more recent standards [41]. Field
encoding is relatively common in the video domain, particularly in broadcast sports
footage, and is not typically seen in single images unless they have been extracted
from a video sequence. Interlacing produces visible comb effects but enables further
compression and general bitrate smoothing. Rather than encode a complete intra
frame, only an intra field needs to be encoded, thus reducing any intra-frame related
peaks in the the bitrate. It is possible to encode a sequence as fields even if the se-
quence is captured as frames. In such a case, the combing effects would be absent.
A de-interlacing filter allows combing artifacts to be interpreted by human viewers as
motion blur. One of the effects of offset fields is to create errors in localising object
edges.

Blockiness and Banding

The most commonly observed artifacts in compression are blockiness and banding.
Both of these can be observed easily at high QP. Blockiness can be attributed to the
fact that both H.264/AVC and MPEG-2 are block-based codecs which use macroblock
units with edges parallel to the edges of the frame. The step change between mac-
roblock content manifests as visible horizontal and vertical lines. In intra frames, these
are equally spaced throughout the frame, and can be particularly noticable in content
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with smooth transitions, as can be seen in Figure 2.7

(a) YUV (b) QP=14

(c) QP=28 (d) QP=42

Figure 2.7: Higher QP leads to increased blockiness. There are differences between un-
compressed YUV and QP=14 but they are nearly invisible to the naked eye. The blockiness
becomes apparent to the trained eye at QP=28 and is obvious by QP=42.

Banding is also due to the step change between macroblocks. Smooth colour transi-
tions often occur in otherwise flat, edgeless frame regions, like sky. Individual mac-
roblocks are quantised, filtering out some of the high frequency components of the
smooth colour transition. Neighbouring macroblocks show a different colour and there
is therefore an unsubtle edge between macroblocks. As predicted macroblocks utilise
reference regions that overlap more than one macroblock of the reference frame, block
edge artifacts become banding. Figure 2.8 shows an example of this. H.264/AVC’s de-
blocking filter is designed to counter this by filtering at block edges, however the filters
limitations mean that it can only be applied horizontally and vertically, not diagonally.
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(a) YUV (b) QP=42

Figure 2.8: An example of banding. High QP has lead to lower quality overall, but banding is
visible in the blue sky region at the top of the image.

Figure 2.9 shows the effect of QP on natural content. There are no visible differences
between lossless compression and QP=14. Fine details, such as the faint vertical lines
between dates on the calendar, are lost between QP=14 and QP=28. Above QP=28,
further details are lost and some DCT coefficient noise is visible when the image is
enlarged.

Compression artifacts can often be reduced by reducing QP. In VBR mode, QP reduc-
tion is a simple task, however in CBR mode it is a fine art. CBR relies on an encoder’s
internal rate control mechanism. Encoders may allocate fewer bits to “flat” regions in
order to preserve detail in other places, and this results in more banding. Noise filter-
ing original content will reduce the complexity of the sequence and, with a fixed bitrate
constraint, allow more bits to be allocated to encoding content rather than noise.

Temporal Upsampling

Although techniques exist for the production of temporally upsampled video (see Sec-
tion 3.2.2), videos still exist where temporal upsampling is achieved simply by repeat-
ing frames. This may happen automatically, for example, if a 25 fps video is re-encoded
as a 30 fps video. The effects on visual quality are negligible, and often go unnoticed
by viewers. Unfortunately, compression adds noise to upsampled frames. As can
be seen in Figure 2.3, an encoder compresses the difference between the reference
frame and the incoming frame. With two identical frames, this should, theoretically re-
sult in an entire frame consisting only of skipped macroblocks. Reconstructed frames
in lossy compression, however, are not bitwise identical to the original frame, so there
may be some differences to encode. Moreover, continuously updating rate control
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(a) YUV (b) QP=14

(c) QP=28 (d) QP=42

Figure 2.9: Higher QP leads to poorer quality on natural content. The differences between
uncompressed content and QP=14 are nearly invisible. At QP=28, the vertical lines on the cal-
endar start to be filtered out by the quantisation process. The content compressed at QP=42,
although still recognisable, suffers from visible low quality. GIFs of these sequences can be
viewed on the author’s GitHub.

options may result in the two frames being compressed with different quantisation pa-
rameters. Error concealment functionality within the encoder may cause some mac-
roblocks to be encoded as intra type. Therefore, a sequence of two identical frames
will not necessarily result in a bitstream consisting only of skipped macroblocks. The
net result of this is that an uncompressed sequence of identical frames may be com-
pressed into a sequence of non-identical frames.

Figure 2.10 shows an example of a repeated frame in a compressed sequence. The
visual difference between the two frames is minimal and the binarised difference image
shows a distinctive sparse pattern with many squares. These squares may indicate
macroblock or sub-macroblock differences, but the analysis of this particular image is
further complicated by the fact that the VOT2016 dataset [40] is distributed as folders
containing JPEG images of each frame in the sequence. These particular JPEGs are
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Figure 2.10: An example of a repeated frame due to temporal upsampling. The binarised
difference frame shows the two frames are not bitwise identical due to minor differences in the
pixels attributable to the video compression process, yet they are visually identical. (Sequence
and bounding box annotation from VOT 2016 [40], sequence is “Marching”, frames 2 and 3 )

compressed at 75%, and any differences between frames may be magnified by this.
This gives a good example of how compression can cause difficulties in video analysis,
and a similar application is given in Section 3.5.

2.2 Deep Neural Networks

The deep neural network is a machine learning technique with many applications
which has recently become one of the forerunners in computer vision research. Where
previous image classification techniques involved hand-crafting single features, and
then labouriously combining these to form a classifier, deep neural networks have
replaced this with methods to derive useful classification features directly from data
itself. Deep neural networks are a rapidly developing field of research, particularly
in the domain of supervised learning. Convolutional neural networks have recently
come to the fore in image and video analysis. Advances in computing power, and,
in particular, GPUs have helped to accelerate their development. Due to the data-
hungry nature of DNNs, some research efforts have been directed towards gathering
and processing/labelling large datasets such as ImageNet [14], Microsoft COCO [42],
YouTube-8M [43]. More recently, image datasets have been engineered for specific
purposes like rebroadcast detection [2], source identification [20] and tampered image
detection [44, 45].

The idea of neural networks is not a new one. The original idea of using neurons to
build a network came about in 1940s. The main advances, however, did not come
about until sufficient computing power was available. These days, there are many dif-
ferent network architectures designed for supervised image classification alone. The
seminal LeNet-5 [46] learned to recognise the digits of MNIST [47] using only 7 layers:
3 convolutional layers, 2 trainable sub-sampling layers and 2 fully connected layers.
An error rate of less than 1% was reported. AlexNet [13] was a network trained on
1000 classes of ImageNet [14], reporting an error rate of 15.3%. The network used 5
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convolutional layers, 2 maxpooling layers and 2 fully connected layers. AlexNet also
used ReLU activations which helped to train the many layered network. Following on
from these network architectures, VGG-Net [48] used only 3x3 kernels in its convolu-
tional layers, but utilised many layers. The Inception module [49] introduced the ability
for network layers to contain multiple different-sized kernels, in order to allow the net-
work to learn which kernel size was most suited to the data through the use of a 1x1
kernel. Training deeper neural networks led to the vanishing gradient problem, and
Residual Networks or ResNets [50] were designed with skip layers to help mitigate
this effect. It has even been shown that computer image classification now surpasses
human abilities [51].

Networks are not just for classification, however. Generative Adversarial Networks
(GANs) were designed to create images. In GAN architecture, a generator network
learns to create an image from a noise vector. A discriminator network then learns
to discriminate between generator-created samples and real samples from a dataset.
The two networks train together, ultimately improving the generated images until they
are indistinguishable from the real dataset. GANs have seen a lot of development for
generating images, and form an important part of digital image manipulation, as can
be seen in Section 3.2.

The authors of [52] showed that CNNs with sufficiently large numbers of parameters
can fit to any training dataset, even randomised labels. These CNNs may not nec-
essarily generalise to different test sets, regardless of techniques designed to prevent
overfitting such as data augmentation and drop out.

Although DNNs are versatile, and achieve outstanding results in classification of vi-
sual data, they are difficult to explain. The generally proposed idea in CNNs for image
classification is pixels into edges, edges into shapes and shapes into objects. Recent
research, however, has shown that this is not necessarily the case, but that engineer-
ing a training set specifically to bias towards shape rather than texture can achieve
improvements in classification accuracy [53]. Fergus and Zeiler [54] also provided a
visualisation of features relevant to different CNN layers for image classification tasks.
There has yet to be significant work in understanding how the gaps in the human visual
system have indirectly influenced learning in neural networks through the mechanism
of digital image and video compression.

For completeness, the maths behind the training of a fully connected deep neural
network is discussed in Appendix B.
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2.2.1 Network Parameters and Hyperparameters

When constructing a DNN for a particular application, there are a number of choices
that have to be made. The network architecture, hyperparameters, data prepara-
tion/augmentation, training time all must be considered. It can be said that traditional
feature engineering has been replaced with dataset and hyperparameter engineering.
Although there are no hard and fast rules for these decisions, recommendations can
be taken from the literature and improvements made after trials.

Different types of network layer can be combined to form many different network ar-
chitectures and several different architectures are used in this work. Table 2.3 defines
how these layers are abbreviated when the networks are defined in the relevant sec-
tions.

Table 2.3: Network layer abbreviations

Abbreviation Meaning
fc-m Fully connected layer with m nodes
convn x n-m Convolutional layer with kernel size n x n and m nodes
maxpooln x n Pooling layer (maxpool) with n x n kernel (stride indicated

separately)
softmax softmax layer as described in Appendix B

Convolutional layer kernels are usually square in image applications and tend to cover
an odd number of pixels such that there is a central pixel and the resultant transform
does not skew the data. Kernels with even dimensions are rarer but do have their
place, particularly in applications which are looking for sub-visible patterns in pixels
which may not be related to the visible objects in the image [55, 56, 57]. In Chapter 5,
different kernel dimensions are examined.

Alongside the basic architecture of a neural network, there are hyperparameters that
also help to control training. These are summarised in the following paragraphs.

The size of the mini-batches is an important consideration when training a neural net-
work. Training with a very small batch size causes network weights to fluctuate a
lot, and training may result in oscillation which never converges. Training with a large
batch size can result in very long training times.

Learning rate controls the magnitude of the effect that the loss has on the weights of
the neural network. Learning rate lies between 0 and 1.0. A large learning rate means
that the model converges very quickly but the converged model may be sub-optimal.
With very low learning rates, each gradient descent step is very small, meaning that
the model trains slowly with many small steps, but is more likely to find an optimal
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solution. It is common for models to train using a learning schedule where the learning
rate starts off high to facilitate rapid learning but decreases after a given number of
mini-batches or epochs, to bias towards an optimal solution.

Drop out is where some neurons in each layer can be disregarded, or dropped out,
temporarily during training. Drop out helps to prevent over reliance on a single feature.
It also enhances model generalisation and helps to stop overfitting. Overfitting is where
the model simply memorises the training data, and the learning does not generalise to
any other data from the dataset. It has been shown that networks with sufficiently large
numbers of parameters can overfit on any dataset, and even achieve high accuracy
on a dataset where the labels are completely randomised [52]. Drop out was trialled
in some of the DNNs used in this thesis.

2.2.2 Data

The ideal labelled dataset for supervised learning should be truly representative of
the real problem and the individual feature vectors of the dataset should be uncorre-
lated. Torralba and Effros [58] showed that large image datasets, such as [14, 59],
are seldom completely uncorrelated, but the size of the dataset goes some way to
compensating for this.

A dataset is often partitioned into training data, test data and validation data, and
the three sets should be completely disjoint to avoid data leakage. Training data is
supplied as inputs to the network in order to adjust the network parameters to minimise
the loss. The validation set provides a means to objectively measure the accuracy of
the network on data not in the training set while tuning the hyperparameters. The test
set is for testing how well the network generalises to new data. The biggest threat to
model accuracy is overfitting and care must be taken during training to avoid overfitting,
by using dropout or early termination. A key indication of overfitting is where training
loss is still decreasing, but accuracy on the test or validation set is also decreasing.
It is possible to overtune hyperparameters on the validation set and create a network
with high accuracy on the training and validation sets which does not generalise to the
test set. Validation sets are sometimes omitted if hyperparameters are not subject to
overtuning. Some datasets are already partitioned into test/train/validation sets, but
others can be manually partitioned or analysed using cross-fold validation.

Although large datasets exist, they can be enlarged even further using data augmen-
tation. In the case of image classification, this can involve slightly different crops of
an image, left-to-right flipping amongst other options. In this work, we do not use data
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augmentation when training networks to identify compression parameters, as it has a
high probability of effecting evidence of compression in the pixels themselves. Some
data augmentation is used in Chapter 4 to train an image classifier.

In CNN image processing, images are cropped or scaled to a fixed dimension and
whitened before being used as input to a network. In this work, because compres-
sion features are of fixed size, scaling the images is avoided, however cropping and
whitening are used. Details on whitening are in Appendix B.1.

Many of the datasets in this thesis are synthesised from uncompressed content (Chap-
ters 4, 5, 6). Some publicly available datasets are used (Chapter 7). The datasets used
in each of the individual sections of this thesis are detailed locally.

2.2.3 Evaluation Metrics

For fully supervised classification problems, networks can be evaluated using metrics
that compare the number of correct predictions with the number of incorrect predic-
tions. This turns the evaluation of fully supervised networks into a binary problem: the
predictions are either correct or incorrect. In image classification tasks with many dif-
ferent classes, top-N accuracy is also used, where a prediction is considered correct
if the correct label appears in the top N predictions by the network.

One of the simplest evaluation metrics is accuracy, defined as in Equation 2.3.

accuracy =
number of correct predictions

total number of predictions
(2.3)

With a perfectly balanced dataset, where there is the same number of samples in every
class, accuracy is a reasonable metric. Problems with accuracy come with imbalanced
datasets. Given a binary dataset with 99 examples of the positive class, a classifier
can achieve 99% accuracy by simply labelling everything as the positive class. Since
many of the datasets used in this thesis are synthesised and created with balanced
classes, accuracy is often the metric of choice.

In some binary datasets, classes are imbalanced. This is a particular problem in the
field of video tampering localisation where tampered content may make up only a small
portion of the complete sequence. Authentic pixels usually outnumber manipulated
pixels. For imbalanced binary datasets such as these, F1 score (Equation 2.4) and
Matthews Correlation Coefficient (MCC in Equation 2.5) can be used. In Equations 2.4
and 2.5, TP means “True Positives”, TN means “True Negatives”, FP means “False
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Positives” and FN means “False Negatives”. A “True Positive/Negative” is where the
predicted label matches the actual class.

F1 =
2TP

2TP + FN + FP
(2.4)

F1 score takes both precision ( TP
TP+FP ) and recall ( TP

TP+FN ) into account. It ranges
from 0 to 1, where 1 represents a perfect result.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.5)

MCC provides a score between -1 and 1 where 0 represents uncorrelated data, 1
is completely correlated data and -1 is completely inversely correlated data. This is
particularly useful for when classes can be completely flipped, in the case where there
are two classes to differentiate between but the actual label is less relevant than the
distinction between the two classes. Both F1 and MCC are still subject to negative
effects from class imbalance and this is accounted for in Chapter 7.

2.3 Conclusion

Video compression is almost unavoidable in digital society. The many different com-
pression codecs are designed with the human visual system in mind, and utilise many
different modes and techniques to meet bitrate and filesize requirements, while main-
taining visual quality as far as possible. On top of the numerous different industrial
standards for compression, there are many different implementations, and within each
implementation, many different ways to compress a single sequence. Video compres-
sion encoders can utilise many different options, and therefore detecting compression
parameters is a multi-variable problem. Individual encoders may leave a digital finger-
print on the pixels themselves, but detection of this fingerprint is not necessarily trivial.
Although the effects of compression remain largely beneath the threshold of human
perception, they are not beyond detection by deep neural networks.

Deep neural networks themselves also comprise many parameters, and the selection
of these parameters influences how well they work. From network architecture, to
hyper parameter selection, to data processing, DNNs are a multi-variable solution
themselves and best practices are often gleaned from related work.
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Chapter 3

Video Tampering Techniques

The majority of online video is compressed by well-defined industrial standards. Some
online video is tampered or manipulated in some way. In this chapter we present
a novel investigation current video tampering techniques. We examine a variety of
available video tampering techniques and note how this has increased substantially in
recent years. Video manipulation is currently a very active area of research and as
methods which produce realistic video improve, it becomes vital to develop detection
techniques which are tampering-technique agnostic. When human eyes fail to detect
tampering, machine eyes must be well equipped to take over.

We also examine how new methods of video manipulation are evaluated, and show
how human evaluation remains fundamental to this. We collate the current provision of
available tampered video and highlight some of the challenges associated with existing
datasets and how these might be avoided in future.

The main findings of this chapter were published in “Digital Investigation” in March
2019, [60].

3.1 Overview

The synthesis of convincing fake video content has increased recently due to the de-
velopment of intelligent models [61, 62, 63]. Selective modification of image content
has been possible for some years, but the application of similar techniques to video
has been too labour intensive to see mass use. If each frame in a video is treated
as an independent image, there are simply too many images to process efficiently.
This has changed with increased computing power and the advent of deep neural
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networks. Deep learning techniques have seen great success in many applications
recently. Generative Adversarial Networks (GANs) in particular have been used to al-
ter source video: to re-enact human facial expressions [64], change the weather [65]
and to apply face-swapping [66]. Human facial re-enactment is a relatively new but
common area of research where a simple, talking head is visually altered to mimic
the facial expressions of a second actor [64, 6, 17] or to match a different audio track
[67, 68]. This may have innocent applications, such as re-dubbing a film in a different
language or creating new movie scenes using old footage of an iconic actor, but it
can also be used to produce convincing fake content. In some circumstances, fake
content is convincing enough to reliably fool human eyes. The authors of [17] even
found that human viewers performed little better than random guessing when trying to
ascertain whether facial re-enactment footage was authentic or synthesised. A deep
neural network, however, could distinguish between the authentic and forged footage
with ease.

Research into data-driven machine learning has also prompted the gathering of large
image and video datasets such as ImageNet [59], Youtube-8m [43] and CelebA [69].
These datasets are a valuable resource for further research into convincing image
and video forgery and in some cases, [17], a library of resources available for use
in tampered datasets. The influence of these datasets has led to an increase in the
application of deep neural networks to tampering. Spatially localised changes in video
footage, such as face swapping, can change the entire context of a news story or film
and can have repercussions for the people portrayed. Already, videos which have
been cleverly edited to change the context of what was said by influential people have
gone viral 1 . If that can be done with unsophisticated editing techniques, it is worth
considering what more could be achieved with modern techniques.

There are already a number of recent surveys which review tampering detection meth-
ods [21, 70, 71, 72, 73]. Tampering detection methods are broadly categorised as ac-
tive or passive, with more focus on passive tampering detection methods. This is prac-
tical, given that active tampering detection relies on advanced preparation of video. A
review of passive tampering detection in video is provided in [71, 73] and, more re-
cently, [21]. Inter-frame tampering detection is specifically covered in [70]. Pandey et
al [72] cover tampering detection through noise in images as well as video. There are,
however, far fewer reviews on tampering itself. As the number of tampering techniques
increases, it becomes vital that these are reviewed independently in order to explic-
itly collate those tampering techniques that have no corresponding effective detection

1“Video of Barack Obama speech circulating on the Internet was edited to change his mean-
ing”: https://www.politifact.com/truth-o-meter/statements/2014/jun/23/chain-email/video-barack-obama-
speech-circulating-internet-was/ Accessed 2019-1-24
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methods. The work in [74] provides an overview of personation, specifically how a
person’s likeness in appearance and voice can be forged in videos either physically or
digitally. However it is important to objectively catalogue current known techniques that
can be used for video tampering in order that they can be identified and, ultimately,
detected or countered. Many detection techniques are explicitly tailored to specific
tampering methods. For example, the authors of [17] trained a deep neural network to
detect their own video content changes in order to assess the quality of their content-
altering techniques; [75, 76] focused on inter-frame tampering; [77] created tampered
sequences using established in-painting techniques [78, 79] to assess their detector.
All of these techniques worked well, but all of them required prior knowledge of the type
of tampering, and further work showed that the techniques could not be guaranteed to
generalise [80]. As tampering methods multiply, it becomes important to fully assess
new detection methods, and to appreciate which types of tampering techniques they
can feasibly detect and which they are blind to.

Wang and Farid [81] noted that, at the time of their 2007 publication, there were
very few video tampering detection techniques. This is no longer the case, how-
ever, many published techniques, specific to particular types of tampering or source
authentication, were assessed on proprietary datasets which remain unreleased
[76, 82, 83, 84, 85]. In some cases, [86], datasets are detailed sufficiently in the liter-
ature so that they can be exactly replicated, provided the sequences used for dataset
synthesis are available. This serves to evidence the fragmentation of the tampering
detection field. In reality, a tampered video may be subject to a variety techniques,
including combinations. For tampering detection to be effective, individual detectors
must be analysed and matched with an appropriate type of tampering. In order for that
to happen, we must review and differentiate types of tampering.

In this chapter, we catalogue and analyse the current trends in digital video manipu-
lation techniques from simple edits to fully synthetic video. This provides motivation
for work towards methods of universal video tampering detection. To prepare for this
work, we list currently available tampered datasets and identify challenges associated
with them. We thoroughly examine problems in dataset gathering and dissemination,
specifically including challenges created by compression.
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3.2 A Spectrum of Manipulation

The most convincing lie has its roots in truth and, arguably, the most convincing falsi-
fied video content is an altered original rather than entirely generated content. How-
ever, video manipulation is not a single process and instead can be arranged into a
spectrum of techniques from least to most complex and invasive.

In [21] video tampering was defined as “a process of malicious alteration of video con-
tent, so as to conceal an object, an event or change the meaning conveyed by the
imagery in the video”. Similarly, [87] described image forgery as “the digital manipu-
lation of pictures with the aim of distorting some information in these images”. Here,
video tampering is regarded as any technique which is intended to produce manip-
ulated, photo-realistic content using authentic sources. There is no defined limit as
to when authentic video becomes tampered video, only a forensic history of video
processing. Similarly, malicious intent is difficult to quantify, and so tampering detec-
tion and video authentication techniques must focus on forensic analysis, providing
objective localisation of inconsistencies within digital footage that may imply content
alteration.

It is important to note that here, we only examine digital video tampering: video content
can also be “staged” whereby the video file is an authentic record of events, but the
events themselves were contrived or unnatural during filming. Detection of staged
video involving natural ballistic trajectories is examined in [88], and [74] details how
plausible audiovisual personation is achieved in front of the camera during filming.
Digital video forgery can take a number of forms [21] and Figure 3.1 gives an overview
of the classical interpretation.

Video Forgery

Inter Frame Intra Frame

Frame Insertion Frame Deletion Copymove SplicingFrame Shuffling Retouching

Figure 3.1: Traditional video forgery categories
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In the past, video tampering methods have been simply classified as inter- or intra-
frame [21, 70] (Figure 3.1). The terms inter- and intra- frame primarily distinguish
temporal tampering from spatial tampering. Inter-frame tampering is performed on a
sequence-level: the pixels of individual frames are unaltered, but the sequence as a
whole is changed. Intra-frame tampering is performed on a pixel-level: some spatial
regions are altered, but alterations temporally correlated to form a convincing forged
region. The term “inter-video tampering” can also be used to describe the merging of
content from two different videos [89]. Traditionally, this has been a form of splicing,
where chroma-keyed objects taken from one sequence are inserted into another, as in
[16]. Recent developments, however, mean that convincing synthetic regions [64, 66,
7] or even whole videos [62] can be synthesised automatically from authentic content.
This development means that we must now consider different levels and categories of
video tampering. It is important to be aware of the different categories because video
tampering is designed to be invisible to human eyes, and detection techniques often
address only one type of tampering.

Figure 3.2: Video tampering spectrum

The current field of video tampering may be viewed as a spectrum, as in Figure 3.2,
where different types of video tampering are ordered according to potential to deviate
from authentic source. Whereas the traditional view in Figure 3.1 provides only two
categories of video tampering, the spectrum in Figure 3.2 demonstrates that there are
now multiple ways to produce convincing, falsified content. This distinction is impor-
tant because detection methods often address one particular type of video tampering
such as object forgery or inter-frame tampering. In [21] tampering detection methods
are categorised as recompression, inter-frame forgery or region tampering detection.
With current tampering techniques, the distinction is less clear cut. Moreover, multiple
tampering techniques can be applied to the same sequence.

Figure 3.2 summarises the current categories of video tampering. Video editing com-
piles single camera shots into full films complete with scene cuts. Although clever
editing may change the context of a video, scene cuts are not usually deliberately con-
cealed. Video clips of maliciously edited content exist in mainstream media and are
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surprisingly effective at disseminating misinformation through social media. Traditional
inter-frame tampering, where edits are concealed, may reorder events or even remove
or insert events into the timeline, but its content-altering effects are self-limiting. Re-
touching temporally or spatially upscaled content, or applying global filters to improve
perceptual quality may affect every pixel in a video sequence and can cosmetically
alter content. Retouching can also be applied to specific regions. Intra-frame tam-
pering and other object forgeries such as inpainting can alter content and context, as
can motion transfer. Finally, fully synthetic video or synthetic regions can be produced.
Unlike historical animations, the synthetic content of today looks convincingly realistic.
The following subsections 3.2.1 to 3.2.5 detail examples from each of these types of
video manipulation.

Table 3.1 shows how motion transfer and video synthesis techniques have become
common in recent years and demonstrates how methods of evaluation remain rela-
tively underdeveloped. Evaluation techniques are difficult to define since there is no
pre-defined ground truth for tampered video data. Every new method can be assessed
qualitatively. Methods which seek to imitate authentic video, such as frame interpola-
tion, can use full reference quality metrics such as SSIM and PSNR. As can be seen
in Table 3.1, video manipulation methods use user studies to evaluate their output or
simply publish examples of their methods for future evaluation. However, even user
studies can vary. Some ask users to classify frames as tampered or authentic. Some
request a user preference between the published method and other, similar methods.
In a related field, image inpainting evaluation techniques are reviewed in [90] and these
can all be used to assess the spatial features of inpainted video or indeed, any form
of tampering which affects individual frames. No-reference video quality assessment
is a large and open field and although we do not cover this here, we point to this field
to at least partially inform on tampered video evaluation.

3.2.1 Editing and Inter-frame Tampering

Editing and inter-frame tampering both change the order of the frames in the video
without changing the contents of each frame. In the case of editing, the goal is to turn
a series of single camera shots into a coherent story. Clever edits can be used to turn
innocent footage into propaganda,2 but scene cuts are not hidden and such videos are
not above suspicion. In inter-frame tampering, the goal is to invisibly remove, re-order
or alter events.

2“Israeli army edits video of Palestinian medic its troops shot dead to misleadingly show she was ‘hu-
man shield’ for Hamas”, The Independent, https://www.independent.co.uk/news/world/middle-east/gaza-
protests-latest-idf-condemned-edited-video-angel-of-mercy-medic-razan-al-najjar-a8389611.html
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Table 3.1: Video tampering and evaluation methods: Qual= qualitative analysis; PSNR=Peak
Signal to Noise Ratio; SSIM=Structural SIMilarity; UP=User preference to previous methods;
UR=User comparison with real video; Rel=Released Sequences

Reference Year Type of Tam-
pering

Qual PSNR/
SSIM

UP UR Rel Other

ETS [79] 2004 inpainting X
Ha et al [91] 2004 frame interp. X PSNR
Patwardhan et al
[78]

2007 inpainting
via temporal
copy-move

X

Wexler et al [92] 2007 inpainting,
frame interp.

X X

Shih et al [93] 2011 object forgery X X
SULFA forged [1] 2012 object forgery X X detection
SULFA supplemen-
tal [94]

2013 object forgery X X detection

Newson et al [95] 2014 inpainting X X
Ardizzone and Maz-
zola [89]

2015 copy-move X X

Ebdelli et al [96] 2015 inpainting X PSNR X
Lotter et al [97] 2015 frame pred. X error
Dar and Bruckstein
[98]

2015 frame interp. X PSNR

Face2Face [6] 2016 motion trans. X X
Le et al [61] 2017 inpainting X X
Suwajanakorn et al
[64]

2017 motion trans. X

Liu et al [65] 2017 style trans. X X
Niklaus et al [99] 2017 frame interp. X PSNR
MoCoGAN [100] 2017 motion trans. X X ACD
Walker et al [101] 2017 frame pred. X Inception
FaceForensics [17] 2018 motion trans. X X X detection
Recycle-GAN [63] 2018 video synth. X X X
Wang et al [62] 2018 video synth.

(sketch)
X X

Chan et al [7] 2018 motion trans. X SSIM LPIPS
Jiang et al [10] 2018 video synth.

(blurred im-
age)

X PSNR

Wang et al [102] 2018 video synth.
(smile)

X X

Xiong et al [103] 2018 video synth.
(time-lapse)

X X X

Babaeizadeh et al
[104]

2018 frame pred. X X

Zhao et al [105] 2018 frame pred. X PSNR X ACD
SCGAN [106] 2018 video synth.

(human pose)
X X pose

eval.
SDC-Net [107] 2018 frame pred. X X
Cai et al [108] 2018 frame

pred./interp.
X X Inception

36



Edits in inter-frame tampering are deliberately concealed so as to be invisible to the
human eye. The invisible scene cut is also a technique used for artistic effect to
give the impression of a single shot. It can be seen, or, rather not seen in some
music videos such as “Wannabe” by the Spice Girls. Detection of visible scene cuts
in video has been studied extensively so that key frames can be identified for efficient
compression and or used to condense/index the sequence [109]. Invisible scene cuts
are studied in the context of inter-frame tampering detection [110, 111, 112].

Such is the theoretical simplicity of generating an inter-frame tampered sequence, that
many tampering detection methods, such as [75, 76, 113, 114] generate their own
datasets from single-camera video sequences such as SULFA [1] or Derf’s media col-
lection [37] or even film their own sequences as in [85]. SULFA [1] replicates single
camera sequences as obtained from CCTV footage, and, therefore may be represen-
tative of the most likely application of inter-frame tampering: altering CCTV evidence.
Derf’s media collection [37], on the other hand, provides publically available uncom-
pressed sequences and allows researchers complete control over the forensic history
of synthesised tampered sequences [114].

It remains unclear how widespread inter-frame tampering is in the wild because, if
it is done correctly, it will be undetectable by human eyes and remain above sus-
picion. Meanwhile, it is important that synthesised datasets are as high quality as
possible. In creation of inter-frame tampered datasets, [85, 86, 115] simply removed
pre-determined frame numbers from each sequence, and it is unclear if this caused
visible effects, thereby reducing the problem to simple cut-scene detection. In [114]
frame addition and removal was limited to the beginning of each sequence, but again it
is unclear if the additions were visible. Simply reversing the sequence from the point of
tampering may effectively locally conceal the edit but would make the detection of the
edit much more challenging. Recent developments in video quality assessment mean
that temporal glitches in video can be objectively quantified [116] and also smoothed
[117] to achieve temporal consistency. Future datasets for inter-frame tampering can
use this to improve such that inter-frame tampering techniques can be deployed in the
wild.

As noted in the review in [21], many inter-frame tampering detection methods suffer
from limitations which are often related to consistencies within the dataset that may not
translate to other video data. These consistencies are often related to video compres-
sion. The authors of [118] note that some tampering detection techniques are tied into
the fixed Group of Pictures (GOP) size, commonly used in MPEG2 [28] to minimise
error accumulation due to non-integer frequency domain transforms. Later video com-
pression standards, such as H.264/AVC [27], use integer-based transforms so error
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accumulation drift between encoder and decoder is no longer an issue, and therefore
key frames are used only as access points into the stream or efficient compression of
visible cut scenes. Moreover, sequences compressed using [27] may no longer exhibit
visible evidence of key frames. Since intra-frames generate more bits, however, it is
common to compress them using a marginally higher quantisation parameter than the
surrounding predicted frames in order to smooth the bitrate.

Although inter-frame tampering and frame deletion detection is widely studied in the
literature [21, 76, 119], effects similar to inter-frame tampering can be achieved using a
spatio-temporal copy-move. Rather than replacing complete frames in the sequence,
only partial frames containing motion or objects to be concealed are replaced. With
a static camera and consistent lighting, this is visually effective, and video edits prove
near invisible to the naked eye. Indeed, some sequences which initially look like inter-
frame tampering [94] are actually spatio-temporal copy-moves, as can be revealed by
examining pixel-by-pixel difference between the authentic and tampered sequences
(see Figure 3.3d).

3.2.2 Retouching and Resampling

Retouching involves adjusting pixels within an image using transforms or filters applied
to the pixels themselves which may only have a low-level interpretation of video con-
tent. As the name suggests, retouching is less invasive to content than other types of
forgery but may still change the context of a video. Moreover, retouching can be used
on tampered video specifically as an anti-forensic device.

A retouching function R can affect specific pixels according to a binary mask, M:

Vretouched = R(M � Voriginal) + ((I −M)� Voriginal) (3.1)

Here, I represents a matrix of ones and all matrices have equal size. Retouching can
also be applied globally as in:

Vretouched = R(Voriginal) (3.2)

Colour correction methods such as those available in Adobe After Effects may nor-
malise lighting in a sequence of shots taken on different days under different weather
conditions to create a convincing narrative. Similarly, colour grading can also be used
to add effects or make video filmed during daylight hours appear to have been filmed
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during twilight. A typical colour correction model works by adjusting the histogram of
colour over a specified region, however the authors of [120] found that gamma correc-
tion (a form of colour correction) was particularly difficult to detect using a deep neural
network. Where median filtering and Gaussian blurring could be detected reliably with
over 91% accuracy, detection of gamma correction was only 57.6% .

Compression is often a necessary part of video processing but it can also be used as
an anti-forensic method. Video compression standards such as [28, 27] reduce video
file size but individual encoder implementations do not necessarily have an explicit un-
derstanding of video content. Compression has been found to reduce the efficacy of
tampering detectors [17, 94, 115, 121] and has also been shown to reduce the clas-
sification accuracy of convolutional neural network (CNN) based classifiers [24]. The
authors of [17] found that video compression [27] reduced the accuracy of deep neu-
ral networks trained to detect human facial re-enactment performed by [6]. Of seven
different forgery detectors tested, the Xception network [122] was the most robust
against compression, achieving 87.81% accuracy, compared with 99.93% accuracy
on uncompressed sequences. Other methods [18] performed less well for forgery de-
tectors on the compressed dataset with performance for some [123] dropping as low
as 55.77%. This may be attributed to the depth of the Xception network. The authors
of [121] also account for compression in their SYSU-OBJFORG dataset. In bench-
marking it using seven common steganographic features, they, too, found a drop in
accuracy on the reduced bitrate video. While their ensemble-based detector achieved
precisions in the range 78.9-93.15%, this reduced to 61.85-79.34% when bitrate of the
video data was halved. Halving height and width of the video sequences also reduced
precision to the range 73.02-90.28%, which was not as significant as bitrate reduction.
In detection of frame deletion, it was found in [115] that an SVM conditioned on un-
compressed data to detect dropped frames did not perform well on compressed data
taken from YouTube, with accuracy dropping below 37%. It is clear from this that stan-
dard video compression can reduce some of the machine learned features associated
with tampering. This is further examined in Chapter 7

Compression artifact removal is another example of retouching and methods such as
[124, 125, 126] have been applied to JPEG images. The authors of [127] used a deep
residual network to reduce artifacts in a BPG (Better Portable Graphics) [41] com-
pressed frame. More recently compression artifacts have been removed in the video
domain [128], where videos compressed using HEVC and H.264/AVC were retouched
to increase Peak Signal to Noise Ratio (PSNR). PSNR is defined as in section 2.1.4.

Although [128] achieved overall improvement in PSNR, it was unclear if this resulted in
a gain in perceptual quality at specific bit rates. Given that some tampering detection
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methods, such as [129], actively utilise compression structures, methods which alter
the underlying patterns of compression in video frames could be used as anti-forensics
in the future.

Artificially upscaling video frame size [11], frame rate [8, 130, 131] or bitrate can be a
form of video tampering. High quality video content is more desirable to consumers,
and larger file sizes for the same film/footage are often indicative of higher quality, with
bitrate often taking the place of quality in common parlance. Compression encoders
utilise a specified bitrate, even if this means compressing existing compression arti-
facts. Bitrate upscaling can be done innocently as researchers seek to provide high
quality, “uncompressed” datasets and either overlook or deliberately replicate com-
pression artifacts in the pixels of mined data.

Artificially increasing the spatial dimensions of video has been commonly done histori-
cally as Standard Definition (SD) content is displayed on High Definition (HD) screens.
More recently, super-resolution has evolved from an image enhancement technique
to use within videos [11, 132, 9], and the metrics commonly used for evaluation are,
again, PSNR and SSIM: full reference quality metrics. It is important for spatially
upscaled video to demonstrate temporal coherence. The authors of [11, 132], also
assessed the temporal coherence of their super-resolution sequences using a tech-
nique called “temporal profile”. This is where single rows of pixels are viewed along
with their temporal neighbours from different frames, and temporal inconsistencies or
video “flicker” shows up as hard edges in the resultant image. The work in [116] is also
a method of assessing temporal consistency.

Video deblurring [133] is another example of retouching and a dataset exists to facil-
itate the development of this [134]. The dataset was filmed using a GoPro camera
at 240fps and then downsampled and blurred so that a non-blurred ground truth can
be supplied for each blurred frame, thus enabling deblurrers to be assessed using full
reference quality measures such as PSNR. Super slow motion has recently become
a strong field of research with many new techniques for temporally upsampling video
[99, 8, 135] to create a slow motion effect in the absence of a high speed camera.
Previously, upsampled video would simply involve frame repetition or averaging. The
field of motion compensated interpolation improved upon this [91, 98, 99] so that in-
terpolated frames were less obvious. The work in [91] is an early example of motion
compensated interpolation, and the authors used block-based motion estimation sim-
ilar to that used in video compression [28] to inform interpolation and create sophis-
ticated intermediate frames. The frame rate upconversion algorithm was objectively
assessed by downscaling some publicly available uncompressed sequences and then
comparing the original sequence with the computed upscaled version using PSNR. In
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[98], the authors showed how their work in frame rate upscaling could be used to im-
prove low bitrate video compression. In [99], a CNN was used to interpolate between
frames. The authors obtained their training data from high quality YouTube channels
and downsampled from 1080p to 720p in order to reduce the effects of compression.
A user study confirmed that their interpolated frames were better than previous state-
of-the-art. Objective assessment of results used sampled alternate frames from a
popular YouTube video and used PSNR to compare interpolated frames with actual
frames. In [8], multiple frames were synthesised between two authentic frames us-
ing a CNN trained on high frame-rate (720p, 240fps) video from YouTube and a high
frame-rate dataset [136]. The synthesised frames were assessed using high frame-
rate video and it was found that PSNR between interpolated frames and ground truth
was higher than the previous state-of-the-art. As noted in [137], inpainting or video
completion (Section 3.2.3) can also be used to resample a video, and entire frames
inpainted.

Retouching might be one step of many in tampering, and although it does not neces-
sarily alter context, it can be used to make tampering detection much more difficult.
Countermeasures for anti-forensics are well studied in the literature [120, 18, 138],
and datasets can be generated easily. In [18], a CNN was used to classify an im-
age in terms of its anti-forensic processing. The labels used were: original (no pro-
cessing), Gaussian blurring, additive white noise, median filtering and resampling.
The CNN accurately detected the presence of each process over with over 98% ac-
curacy using only the green colour channel. A new type of convolutional layer was
designed to prevent the network from learning typical image features. The authors of
[138] showed how their median filter detector could be used to localise median filtering
within a spliced image and hence localise image tampering. Although retouching does
not always correlate with tampering, localised retouching can be a strong indicator of
splicing or other object forgery.

3.2.3 Intra-frame Tampering

Intra-frame tampering is where spatial content of individual frames is changed, that
is, individual objects are added or concealed/removed. Intra-frame tampering is also
known as “region tampering” [73] and applies equally to video and still images, al-
though the video application is more complex. Care must be taken to ensure that
spatial tampering across individual frames is coherent and does not cause visual jar-
ring in the video. Intra-frame tampering methods in images were classified as spatio-
temporal copy-move, splicing and retouching in [139], but here we discuss retouching
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(a) Auth. 34 (b) Auth. 236 (c) Tamp. 236 (d) Difference

Figure 3.3: An intra-frame tampering example from [94]. 3.3a and 3.3b show authentic content.
3.3c shows the spatio-temporal copy-move and 3.3d shows the difference between 3.3b and
3.3c

separately (Section 3.2.2).

A spatio-temporal copy move can be defined by:

V Lj
t = ((I −M)� V Lj

o ) + (M � V Lk
o ) (3.3)

where I is the matrix of ones, M is a binary mask to localise tampering, V Lj
o is an

authentic sequence of L frames starting on frame j, V Lk
o is the same sequence but

starting on frame k where j 6= k. The frames/mask can be re-aligned or cropped so
that any object or region of pixels from any spatial or temporal location can be copied
to any location. V Lj

t is a tampered video sequence:

V Lj
t = [vj , ..., vj+L−1] (3.4)

In spatio-temporal copy-move attacks, all the data used in the video forgery Vt comes
from within the same video sequence Vo. For example, complete objects from frame
k in the sequence are inserted into frame j using mask M . Figure 3.3 shows an
example. This is similar to image-based copy-move where the pixels involved in the
tampered region come from within the image itself. Although this reduces the range of
potential content, it helps to minimise differences between legitimate and tampered re-
gions. There is less need to alter the colour histogram or adjust the frame rate to make
tampered content consistent with authentic content if both share the same source.
Using a copy-move attack, objects can be added to a sequence by adding foreground
objects, or concealed/removed from a sequence by duplicating background regions
from within the same frame or from within a different frame in the same sequence.

Some versions of copy-move attacks simply duplicate a still background region, [1],
and these can be detected with relative ease by high coherence or abnormally low
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Figure 3.4: Forging a video (best viewed in colour), Red borders/dots indicate key frames in
the sequence. Blue borders (no dots) indicate predicted frames. The hybrid frame is shaded
red where the pixels have come from a key frame, and unshaded where the donor frame was
a predicted frame

motion within the tampered region, [94]. Other methods [94] duplicate an entire spatio-
temporal region, and this is more difficult to detect. Although duplicates can be de-
tected by matching copied region to original data, this becomes more difficult in the
presence of compression [94]. A copy-move attack can be detected in images by iden-
tifying and locating duplicated regions, and this has been done using search based on
brute-force pixel matching, region matching or key point matching [139, 140]. While
this type of copy-move detection is feasible in images, video adds another dimension
and searches become an order of magnitude more complex. Previous video inpainting
attempts such as Temporal Copy-Paste (TCP), where identical pixels are used frame
after frame to conceal an object within a video [1], or Exemplar-based Texture Sythesis
(ETS) [79] were detected by [77] where detection was based on correlation between
adjacent frames which was either too strong or not strong enough to be authentic
video.

Splicing is an extension of spatio-temporal copy-move. In a splicing attack, two sets
of pixels from different sources are combined as in Figure 3.4. The sources can be
videos or even still images (as shown in Figure 3.5 where the spliced object is a still
picture on the wall). Equation 3.5 defines splicing:

V Lj
t = ((I −M)� V Lj

s1 ) + P (M � V Lk
s2 ) (3.5)

Where video sequences are defined as in Equations 3.3 and 3.4, s1 means sequence
1, s2 means sequence 2 and P is an optional processing step which can be applied to
aid blending between different source videos. The frames/masks of the two sources
can be re-aligned or cropped so that any object or region of pixels from any location
from source 2 can be pasted into any location in source 1.

Splicing has large potential for context-changing edits because two entirely different
subjects can be spliced together. Any source sequences involved can be retouched
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(a) authentic (b) tampered

(c) authentic (d) tampered (e) mask

Figure 3.5: An example of spliced content. 3.5a and 3.5b are from VTD [15] and the spliced
content (a picture on the wall) comes from a static image. 3.5c, 3.5d and 3.5e come from
D’Avino et al [16] where the spliced content comes from a chroma-keyed video

(see Section 3.2.2) using colour correction or temporal synchronisation before or after
a video splice in order to visually camouflage spliced content, or even to launder the
splicing operation to make it undetectable to existing forensic tools.

Copy-move and splicing are also known as “object forgery” [121] because they often
involve removing or adding complete objects to videos. Introduction of an object to
a video can be done using chroma-keying techniques, as in the field of video spe-
cial effects [141]. Chroma-keying requires filming against a single colour background
under specific lighting conditions to facilitate segmentation of foreground objects. An
example of object forgery using chroma-keyed sources is shown in Figure 3.5d. Other
segmentation methods such as [142, 143] may be used in place of chroma-keying
so that foreground objects can come from any sequence without the need for spe-
cial green-screen filming. The authors of [142] applied segmentation to the optical
flow of videos in order to distinguish foreground and background objects in sequences
with moving cameras. In [143], segmentation was achieved using supervoxels, us-
ing spatiotemporal uniformity in pixels to group them into voxels and supervoxels to
represent different objects in the sequence. Masks produced by [142, 143] could be
used in place of specially filmed green-screen sequences, thus rendering any video
susceptible to use in object forgery.

Inpainting or video completion [78, 92, 95, 96, 137] allows removal of objects from an
image by interpolating remaining pixels to conceal a “hole” left by a removed object or
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corrupt section of video. It is useful for error concealment when streaming video over
an unreliable channel and can be used to restore old film, but it can also be used to
deliberately remove objects or even frames from a sequence. Video in-painting tech-
niques were surveyed recently in [137], where it was noted that many methods of video
in-painting rely on patch completion where the missing spatio-temporal volume is filled
using small patches from within the same video sequence, thus reducing inpainting
to a particularly complex spatio-temporal copy-move. This is evident in early video
in-painting methods such as [78, 92]. In [78], static background and dynamic fore-
ground were assumed, thus highlighting one of the challenges associated with video
completion: motion. This was handled by first registering or aligning the frames of the
sequence. Background mosaics of the video sequence were then constructed by re-
moving all non-static objects, and foreground mosaics contained all the objects moving
relative to the camera. Missing data was then inpainted by finding close matches in
the mosaics and interpolation with texture synthesis between the matched segments.
The authors of [92] used space-time volumes of 5x5x5 pixels taken from other areas
of video sequences to fill in the space left behind be a removed object. Motion was
accounted for by representing each pixel not only in terms of its RGB components
but also two components based on the derivation along the x-, y- and t- dimensions.
This method also allowed temporal and spatial upsizing as spatio-temporal holes had
varying dimensions in the spatial and temporal axes. More recently, the work in [95]
realigned source patches to create closer matches and less warping of synthesised
video content. Initial values for missing pixel data were also explicitly defined in [95].

The assessment of inpainting quality in the image domain was critically reviewed in
[90], and user survey to assess the visibility of inpainted regions remains the gold
standard. The authors also noted that Video Inpainting Quality Assessment remains
an important, open area of research. Indeed, in the absence of an accepted video
completion quality assessment, authors [61, 95, 96] simply publish videos of their
inpainting techniques applied to standard sequences online and [137] notes this as a
trend. The authors of [96] also provided their original sequences along with defined
masks so that future inpainting techniques can be applied to precisely the same data
for comparison. The existence of these inpainted sequences provides a good source
of data for video tampering detection research.

In recent times, advanced image processing inpainting techniques [144, 145] have
evolved. Image interpolation methods vary but can leave behind distinctive artifacts
such as fish scale and checkerboard artifacts. However, in [145], these patterns had
been significantly reduced. A reduction in spurious artifacts mean that these image
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inpainting methods may be more suitable for transferral to video completion. Alter-
natively, it may be that applying these techniques to video allows for the reduction of
these artifacts through use of temporal data for filtering.

Inpainting can be used in conjuction with spatio-temporal copy move to create complex
forgeries. An early example of this can be found in [93] where the authors changed the
winner of a 100m race. The authors considered the video as a series of layers. They
applied in-painting using unoccluded areas of background and interpolated/sampled
the motion of forged runners to make them move slower/faster relative to other objects
in the video. While individual frames taken from the forged sequences looked visually
convincing, full video sequences are not currently available for full analysis. Indeed,
assessment of tampered video remains an open problem, one which the authors of
[93] suggest is best tackled by forgery detection methods. Although the subject matter
of this video was somewhat ambitious for its time, and the authors explicitly target the
field of video special effects, it gives a good idea of how tampering can be used to
court controversy.

3.2.4 Style and Motion Transfer

Style transfer is a new method of image and video manipulation which has been fa-
cilitated by the advent of Generative Adversarial Nets (GANs), which were first estab-
lished in [146] and extended to conditional GANs in [147]. Style transfer can com-
pletely change the context of an image or the subject of a video. It is strongly related
to motion transfer because the resultant video is a combination of motion from one
source video and content or subjects from another. Combining the two can be viewed
as a style transfer when the style of the content source is mapped to the motion source
or it can be considered motion transfer when motion is mapped to the content source.

Examples of style transfer in the image domain include [148] where features from one
object are mapped to a similar object: a scene can be changed from a summer scene
to a winter scene; a horse can be exchanged for a zebra [149]; Google Street View
House Numbers can be translated into MNIST-style digits [65] and evaluated using
accuracy on a CNN trained to classify MNIST. Examples in the video domain include
motion transfer [64] as well as style transfer.

An example of a conditional GAN used to perform style transfer can be found in the
seminal Pix2Pix [148], which performs image to image translation. A GAN consists of
a generator network and a discriminator network. In Pix2Pix, the generator network
maps an observed image and a random noise vector to a generated image. The
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discriminator network then uses both the mapped image and the observed image to
classify the mapped image as an example from the authentic dataset or one from
the generator. Authentic examples given to the discriminator dictate the “style”. This
architecture is distinct from a non-conditional GAN where the discriminator network
sees only the mapped image. The authors of Pix2Pix noted that they could achieve
very good results based on small datasets of only 400 authentic images and so the
GAN can be trained for a multitude of applications. For example, the input image
can be a sketch or a semantic segmentation mask and the mapped image can be
photorealistic, or vice versa; daytime scenes can be mapped to night; the mapping
process can even perform inpainting or background removal. The versatility of [148]
has also spawned further applications in the video domain including [63, 100].

Motion transfer is similar to style transfer where the motion of one object is passed
on to another object. Early applications were mostly specific to human facial re-
enactment such as lip synchronisations and expression translation between talking
heads [64, 6]. Thies et al [6] presented the first real-time facial re-enactment sys-
tem that used only RGB as input. The method used authentic frames from a target
video and transformed them to match the facial expressions and mouth motions from
a source video. Face2Face did not use a GAN, but instead used facial tracking to
estimate the position of the source and destination faces and interpolate the expres-
sions between them. The manipulated faces were therefore the equivalent of “new”,
unprocessed content. In [64], the authors added video re-timing for realistic head mo-
tion to fit the context of the spoken word and used a recurrent neural network (RNN)
trained on hours of footage of the particular subject to transform an audio track into
mouth shapes. While [64] was not real time, and required many hours of video footage
to train the RNN, it was capable of producing a representative video from audio and
stock footage, whereas [6] required video for both source and target. More recently,
motion transfer has been achieved using models based on style transfer.

MoCoGAN [100], used GANs in a similar way to Pix2Pix [148]. Content and motion
were treated independently in MoCoGAN and video sequences expressed as:

Zi = Zc × Zm (3.6)

Every frame in Zi has a content vector, Zc, and a motion vector, Zm, associated with it.
In order to perform motion transfer, the content of one sequence was substituted with
the content of another. The architecture consisted of two distinct discriminator net-
works: one to classify real and generated images (or frames), and one to distinguish
real and generated video. The video discriminator was responsible for smooth video
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generation. Similarly, there were two connected generator networks: one to generate
motion, the output of which was used to condition the content generator which pro-
duced video frames. The motion generator network was a recurrent neural network
(RNN) which modelled motion through time. Motion content could also be extracted
from a different sequence and hence motion can be transferred between two similar
videos. The authors of [63] also applied motion transfer to videos, successfully repli-
cating lip motions. Because [63, 100] are both based on style transfer, they can also
be used to create photo-realistic synthetic video from semantic segmentation masks
(Section 3.2.5).

The assessment of GAN-produced images and videos remains an open problem. In
[65, 148], translated images were objectively assessed using the accuracy of CNNs
pre-trained on authentic images in the output-style classifying the translated images.
It was found that the CNNs classified the translated image of [65] with more than 90%
accuracy. Image translation methods from [65] were also applied to some street driv-
ing video sequences, and qualitative analysis of the results showed a convincing, low
frame rate video where the weather had been translated from sunny to snowy or the
lighting mapped from day to night. The authors of [150] applied neural style transfer
to photographed objects spliced into images of paintings, thus reducing the visibility of
the tampered object. A user study found that their edited image set achieved similar
user scores to an unedited image set meaning people could not reliably localise such
processed image edits. Although [65, 148, 149, 150] show a method to alter image
content, they do not assess whether there is a counter method which can detect these
alterations. Since all of these methods employ the use of GANs, it is implicit that there
already exists a network which has been trained to discriminate between authentic
examples of the style and synthesised content, but due to GAN convergence, this net-
work may not be optimal for detection. In the video domain, the authors of [64, 6] have
released examples of their work to the public. In [67], the authors used a user study to
compare their audio-to-video speech synthesiser to both a previous model and a mo-
tion capture solution. The study showed that their work advanced the state-of-the-art
as their examples were preferrable to human eyes when compared to previous speech
synthesis, but not when compared to motion capture generated video. The authors of
[17] performed a user study on their tampered dataset and found that, when asked to
differentiate between tampered and authentic videos, humans achieved no better than
random guessing. Generic motion re-enactment and video generation has also been
studied in [100] however state-of-the-art is not yet of a standard where such tampered
videos are high quality content.

Image to image style translation can be applied to video frames to universally change
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the overall context of the video. Complimentary work can be found in [117] where
the authors examined the removal of flicker from a sequence of frames. They specif-
ically aimed to allow the use of image style transfer on individual frames to produce
a temporally coherent video sequence, independent of the style transfer method. In
[7] the authors used style translation on videos to synthesise video content of people
performing dance moves they had never done. Pose estimation was used as an inter-
mediate step. A conditional GAN was trained to map a stick-man pose estimation to a
photo-realistic video frame using the previous frame to condition the GAN. They then
applied a spatio-temporal smoothing to generate convincing videos that showed a tar-
get actor dancing in a manner defined by a source actor from a different video. The
video sequences were assessed by extracting a pose from the mapped sequence and
comparing it to the pose used to generate the sequence, and manual qualitative anal-
ysis of temporal qualities including some publicly released sequences. The authors
conceded that there were still a number of challenges to overcome in this field, such
as loose clothing and cluttered background, but it is easy to see that motion transfer
can already be convincingly applied to human faces and bodies.

3.2.5 Photo-realistic Synthetic Video

Although purely synthetic video in the form of animation has been around for a long
time, more recently synthetic video has been generated which is so photo-realistic
that it could be mistaken for authentic, filmed content. In this section, we examine the
most recent techniques in photo-realistic video synthesis and discuss their evaluation.
Although video synthesis is not explicitly tampering an existing video, full convincing,
photo-realistic video synthesis has the potential to be just as damaging as motion
transfer or inpainting. It is important to examine it with a view to detecting it as a future
research direction. Current trends in top international conferences on computer vision
show that video frame prediction is a strong trend.

A short video sequence was extrapolated from the motion blur of a single image in
[10]. The authors noted that the main challenge of this is temporal ordering. While
the central frame of the synthesised sequence corresponds to the de-blurred image,
the motion of individual objects in frames before and after is ambiguous. The authors
proposed a pair-wise ordering invariant loss to aid convergence of their CNN, which
was based on pairs of frames at an equal temporal distance from the middle frame. Al-
though the de-blurring aspect of the technique improved on the previous method [134]
for moderate blur, evaluation of the short synthetic sequences proved difficult. The
ambiguity in temporal ordering could be resolved when the process is constrained to

49



temporal super-resolution. Video generation from a single image was also covered in
[102] where Wang et al detailed a method to produce a short photo-realistic video of
a smile from a single aligned face image. The method used a series of conditional
Long Short Term Memories (LSTMs) to produce a sequence of facial landmarks mov-
ing from a neutral expression to a smile. A network similar to [148] was then used to
translate the facial landmarks into a realistic video. A comparative user study found
that the resulting sequences looked more realistic than a previous method, but the
authors noted that it was difficult to evaluate such a method as there were no directly
comparable existing methods. Both [10] and [102] extrapolated short synthetic video
sequences based on a single image, and both noted challenges in evaluation. Xiong
et al [103] produced short, realistic time-lapse videos of skyscapes, up to 32 frames
from a single image using a two-stage GAN architecture. The first stage produced a
sequence of frames and the second stage refined it to produce a coherent video. They
also gathered a large dataset of real time-lapse videos from YouTube for the purposes
of training. Again, there was no previous work available for direct comparison, but the
authors were able to repurpose other network architectures to synthesise time-lapse
videos. Evaluation was by user study where users were asked to identify the more
realistic of two sequences. Although the proposed method outperformed all other syn-
thetic videos, when comparing synthetic video with real video, only 16% of synthetic
video tests were preferred to real video.

In [97], a CNN, LSTM and deconvolutional neural net were used together to predict
the next frame in a video sequence. The authors noted that natural images were
much more challenging than simple moving circle animations, and that, in predicting
the next frame in a face rotation sequence, the network altered sufficient features so
as to change the perceived identity of the face.CAPG-GAN [151] has recently been
used to synthesise photo-realistic out of plane face rotations. The identity of the faces
were well preserved. The work in [104] used a variational autoencoder to predict the
next 10 frames from a 10 frame sequence. The authors tested their sequences on the
dataset [152], among others, where they compared their predicted frames with ground
truth frames using PSNR and SSIM. They conceded that assessing the quality of the
predicted frames was difficult, and that the prediction yielding the worst PSNR was
sometimes qualitatively the best result. They also publicly released many examples of
predicted sequences. In [153], the authors used a two stream structure and RNN to
perform frame prediction. The authors of [108] viewed frame prediction as analogous
to frame interpolation and fully synthetic video generation. They successfully produced
short video sequences which interpolated between two frames as well as predicting
short sequences given only the first frame of each sequence. Evaluation used PSNR
and SSIM for interpolated sequences and Inception scores for generated sequences
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with no ground truth. Frame prediction was also covered in [105, 107, 154], and eval-
uation also involved full reference quality metrics. Although methods were evaluated
using full reference quality metrics, there is no guarantee that frame prediction as op-
posed to interpolation will predict a frame that matches the original sequence, but it
may yet produce a valid, realistic frame.

Some methods create synthetic video data specifically for machine learning datasets.
In [155], a dataset of synthetic videos was created from motion capture data. The
motion capture data was used to generate 3D models of human bodies which were
combined with a texture map to add clothes and skin, and a static background image.
The synthetic videos, rendered using Blender, were found to improve body part and
foreground background segmentation. The Human3.6M dataset [152], includes some
mixed reality videos which consist of a moving synthetic human model combined with
a real video sequence. The real backgrounds included annotated occluding items
so that synthetic human models could realistically interact with authentically filmed
objects. Neither [155] nor [152] are specifically designed to fool human eyes, but in-
stead intended to aid development of human pose estimation and body segmentation.
Rather than annotate thousands of frames of authentic video, the synthetic human
model is already annotated. This is an example of a non-malicious application of syn-
thetic video, although the detection of the synthetic parts is often trivial to human eyes.

Wang et al [62] have already synthesised coherent, photo-realistic video sequences
of up to 30 seconds from semantic segmentation mask or pose model sequences. A
GAN was used, and a discriminator part of the GAN used to classify the content as an
authentic video or not, similar to MoCoGAN [100]. Using a discriminator in this way
ensured temporally coherent video. The authors conceded that significant changes
in an object’s appearance is still a substantial challenge and that their model was
also prone to colour drift over time, however a user study showed that [62] produced
video that was preferable to human eyes than that produced by MoCoGAN [100].
SCGAN [106] also performed a user study which put their synthetic video content at a
higher level of realism than MoCoGAN. Recycle-GAN [63] was also used to generate
photo-realistic video from semantic segmentation mask sequences and assessed their
method’s accuracy by asking users to classify videos as synthetic or real as well as
comparison with existing state-of-the-art. Users were fooled into thinking synthetic
video was real 28.3% of the time. Quantitative results were also obtained using the
Viper dataset [156] which supplies pixel-level segmentation masks for computer game
scenes with a high level of realism.

Methods of evaluation for synthetic video remains an open field. It can be seen in
Table 3.1 that the main methods include full reference quality metrics PSNR and SSIM
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as well as a variety of others such as Average Content Distance (ACD) [100, 105],
Learned Perceptual Image Patch Similarity (LPIPS) [7] and tampering detection meth-
ods. Many of the techniques for synthetic video generation also utilise user surveys
to assess the quality of synthetic video, and in many cases, evaluation is relative to
previous related work (Table 3.1). It can be inferred from this that although current
methods do not yet reliably generate video that is photo-realisitic enough to fool hu-
man eyes in all cases, improvements are continuous and incremental. It is simply a
matter of time before photo-realistic synthetic video becomes mainstream. As [17]
showed, some techniques are already indistinguishable from authentic video for hu-
man viewers. Similarly, the work in [157] also showed that human viewers are not
particularly good at detecting tampering in images, achieving 46% accuracy on clas-
sifying a tampered image as tampered or authentic. Tampering techniques were one
of: splicing, copy-move or object erasure. Participants had to classify the image as
tampered or authentic and indicate the manipulated region of any image identified
as tampered. Answers were considered correct only if the correct classification was
given and, in the instance of tampered images, the correct region was identified. Hu-
man participants sometimes resorted to using context, such as identifying a particular
person in the images, to infer tampering or not. The authors of DeepFakeVidTIMIT
[158] even showed that deep neural network face recognition methods are also sus-
ceptible to video tampering. They created a dataset of swapped face videos using a
GAN-based technique and tested to see if the swapped faces were accepted by two
face recognition algorithms. The false acceptance rate was high with over 85% of low
quality faces and over 94% of high quality faces accepted.

This raises the problem that, in future, not only will humans be unable to detect tam-
pered or even photo-realistic synthetic video, they will also be blind to whatever tam-
pering technique has been applied. Moreover, some machine vision methods will also
be susceptible to tampered video, accepting it as authentic. When this is the case,
universal tampering detection systems will be required to fill the gap, and these must
be developed urgently if detection systems are to keep pace with tampering methods.
For this, datasets are required.

3.3 Image Tampering Detection

To advance the field of universal video tampering detection, it is vital to gather datasets
of independent examples of video tampering techniques. In this section, we look at the
lessons relating to tampered image datasets that can be learned from the application
of deep neural networks to the problem of tampering detection.
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As machine learning techniques come to the fore in tampering detection, the collation
of large datasets to train and test networks becomes desirable. However it is important
to realise that any consistencies within labelled classes may be exploited as features
by deep learning techniques, including any features arising during dataset generation
that are unrelated to actual tampering. In 2011, Torralba and Efros [58] discussed
how bias is ubiquitous within computer vision datasets. Images from the same dataset
exhibit characteristics specific to that dataset, so much so that a basic support vector
machine (SVM) classifier trained to label a given image with its associated dataset
achieved reasonable accuracy of 39% over 12 datasets. Each dataset has its own
inherent distribution which may be irrelevant to the real world situation, and may be
overlooked by human eyes. This problem is subtly highlighted by the advance of deep
learning, particularly in the field of image forensics.

A good example of unintentional features comes in the CASIA2 TIDE dataset [44].
This large dataset consists of 7491 authentic and 5123 tampered images which use
splicing or copy-move techniques. The size of this dataset makes it an attractive option
for deep learning and over 97% classification accuracy has been achieved by [159].
However, as noted in [160], compression applied to tampered images of the dataset
differs from that applied to authentic images. Put simply, during dataset generation,
tampered images were compressed twice, authentic images were compressed only
once. There were also patterns in the colour space resolutions with tampered images
more likely to have lower colour channel resolution. This means that classifying a
CASIA2 image as tampered or authentic can be accurately achieved using features
of compression, recompression and colour resolution. The recompression step may
have arisen from the tools used to tamper the images, but it is independent of the
tampering task itself. There is no reason that an authentic image cannot be innocently
recompressed.

In [161], dataset weaknesses such as those in CASIA-2 were used as an explanation
for the sharp drop off in CNN classification accuracy whenever the test images were
compressed. Classification accuracy dropped from 97.44% on unprocessed CASIA-
2 image patches to 68.11% when the images were compressed with JPEG quality
factor 90, a fairly light compression. The authors proposed a means to circumvent this
dataset flaw by extracting authentic patches from tampered images, however they did
not report whether this reduced the drop-off in accuracy when the source dataset was
compressed, nor did they report on a CNN trained using compressed image patches.
Tampered and authentic patches may be extracted from only the tampered data but
only if reliable localisation masks exist to differentiate tampered and authentic pixels.
Although this indicates that the features learned in a deep neural network trained on
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CASIA-2 will not transfer to other data, it may be possible that other datasets, and also
tampered images in the wild, suffer from the same weaknesses. The fact remains,
however, that maliciously tampered images are not necessarily recompressed, and
authentic images are not necessarily compressed only once.

High levels of classification accuracy were also achieved by a deep neural network on
the large rebroadcast dataset presented in [2]. This dataset comprises over 29000
images, half authentic and half rebroadcast in some way. Rebroadcast techniques
included printing out and rescanning/photographing the images, screen grabs and
screen photography. While some traditional techniques [162] demonstrated poor ac-
curacy on this new dataset, a CNN trained on 60% of the images and tested on the
remainder achieved over 97% accuracy. In this case, recompression is very likely a
necessary feature of retransmission, so features that emerged during CNN training are
a true reflection of the real process of retransmission. One way to objectively assess
this is to check the performance on a rebroadcast test set gathered independently.
If a deep neural network exploits unintentional weaknesses inherent in a particular
dataset, then the learning will not transfer well to other, similar datasets unless they
exhibit the same features.

Table 3.2: CNNs for image anti-forensics detection

Reference Detection of: Dataset Accuracy
Bayar and Stamm
[18]

Gaussian blurring, additive white
noise, median filter, resampling

proprietary99%

Choi et al [120] all combinations of Gaussian blur-
ring, Median filtering

[163],
[164]

>91%

Choi et al [120] Gamma correction [163],
[164]

57.6%

Amerini et al [165] double compression level [166] 83.5% -
99.9%

Boroumand and
Fridrich [167]

low-pass-, high-pass-, denoising-
filters and tonal sharpening

[163] >95%

Agarwal et al [2] rebroadcast public
[2]

>97%

Table 3.2 shows how CNNs excel in detection of image anti-forensics. A detection
or classification accuracy of over 95% is a common occurrance. Anti-forensics are
methods designed to “launder” tampering and thus fool tampering detectors. Laun-
dering techniques include general filtering methods such as compression, median
filter and Gaussian blur. This field is emerging rapidly because large datasets can
be synthesised with relative ease, and this makes it particularly appropriate for ma-
chine learning. Datasets such as BOSSBase [163], UCID [166] and Dresden image
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database [164] provide a large variety of unprocessed images to which known anti-
forensic techniques can be universally applied and subsequently detected.

In [167], a CNN was trained to identify laundering techniques applied to an image. The
laundering techniques, applied singly, were: low-pass-, high-pass- and denoising- fil-
ters and tonal sharpening. The authors first compressed the images of the dataset,
then applied a single laundering technique and then rescaled, cropped and recom-
pressed the resulting images. Compression was JPEG with a Quality Factor (QF)
ranging from 75-95. They achieved over 95% accuracy in identification of the laun-
dering technique used regardless of the image compression level, provided the CNN
was trained on images with a QF similar to that of the test dataset. The idea that a
training dataset must be well matched to the test data in terms of compression is also
supported in [24] and is covered in more detail in Chapter 4.

The authors of [165] achieved 83.5% - 99.9% accuracy in predicting the most recent
level of JPEG compression of a 64x64 image patch using a CNN. They found that
the best results were achieved when the network was trained using both RGB inputs
and also DCT coefficients. This method has the potential to be used as a means of
detecting image splicing if two different images with substantially different compres-
sion parameters have been spliced together. It also has the advantage that training
is performed on authentic or synthesised data only. Huh et al [168] also used only
authentic data to train a tampered image detector. A deep neural network was trained
on 128x128 pixel patches to identify 83 different attributes including: 80 EXIF image
tags, plus Gaussian blurring, recompression with JPEG and rescaling. The resulting
features were then used to train a Siamese Neural Network whereby patches coming
from the same image were classed as a “match” and patches from different images
were classed as a “no match”. This was then used to identify tampered images and
localise where splicing had occurred. The method achieved very good rates of detec-
tion on tampered datasets which contained spliced images, but less well on datasets
with other types of tampering, including copy-move.

All of these high accuracies show that machines are adept at detecting patterns in
visual data which are invisible to humans. This makes designing a dataset which is
representative of the problem of video tampering but immune to unintentional side
effects especially challenging.
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3.4 Tampered Video Datasets

With so many different methods of tampering already available, and the field progress-
ing at an unprecedented rate, it is important for tampering detection techniques to keep
pace. Unfortunately this is challenging because there are few large, diverse tampered
video datasets. Pandey et al [72] noted that, at the time of their 2016 review, tampered
video datasets lagged far behind tampered image datasets in terms of maturity. In
this section, we examine existing video datasets and give recommendations for the
design of new datasets. Table 3.3 provides a list of video tampering datasets, speci-
fying the type of tampering applied and the size of the datasets. It can be seen that
tampered video datasets are increasing in number and in size. Historically, tampered
video datasets are created in the lab, but more recently videos have been collected “in
the wild” with accurate labelling reliant on the publisher’s honesty.

Table 3.3: Tampered video datasets

Name, Date, Ref. Type of Tampering Size Details
SULFA forged 2012 [1] spatio-temporal copy-move 5 tampered Static camera, background duplicated to conceal ob-

jects. Part of a larger database including untampered
video for camera identification

SULFA supplemental
2013 [94]

spatio-temporal copy-move 10 tampered Duplicate spatio-temporal regions to conceal/introduce
objects

Lin et al 2014 [77] inpainting (TCP and ETS) 18 tampered x2 Only 4 sequences available for direct download
Newson et al 2014 [95] inpainting 3 tampered Masks supplied for two sequences, demonstration

of inpainting rather than explicit tampering detection
dataset

Ardizzone and Mazzola
2015 [89]

copy-move 160 sequences Sequences synthesised from [1] and CANTATA
datasets

VTD 2016 [15] splicing; copy-move; frame-
shuffling

26 tampered + related
authentic

Distribution on YouTube means all videos affected by
varying compression

SYSU-OBJFORG
2016 [121]

object forgery 100 authentic, 100 tam-
pered

No source for public download

VISION 2017 [20] source/social media platform
identification

1914 sequences 648 straight-from-device videos, 622 YouTube and 644
WhatsApp. Future dataset extension planned via
“MOSES” application [169]

D’Avino et al 2017 [16] splicing 10 tampered Binary masks provided, tampering is easily seen.
Le et al 2017 [61] inpainting 53 sequences Both object removal and object reconstruction, demon-

stration of inpainting rather than explicit tampering de-
tection dataset

FaceForensics 2018
[17]

motion transfer ([6]) 1004 tampered x2 Taken from Youtube-8m [43], one set self-re-
enactment, one set source-target translation

DeepFakeVidTIMIT
[158]

deepfakes face swapping 640 sequences Sequences from vidTIMIT [170], 16 pairs of similar
people face swapped

Fake Faces in the Wild
[80]

tampered video on YouTube 150 YouTube identifiers Start and End times supplied for a temporal crop

Media Forensics Chal-
lenge [171]

tampered video more than 4000 manip-
ulated videos

Available on request, some parts reserved for the NIM-
BLE media forensics challenge

FaceForensics++ [22] tampered video 1004 tampered x4 Extension of [17] with addition of FaceSwap and Deep-
Fakes

Fake Video Corpus
2018 [172]

forged video in the wild 380 videos Combines tampering techniques with misrepresented
clips.

A number of tampered video datasets already exist, but these vary both in terms of
processing and parameters. In [16] the authors supply tampered video along with
an explicit pixel level binary mask detailing the chroma-keyed addition. Some video
tampering datasets come complete with original and tampered videos, thus providing
a means to calcualte all masks and labels associated with tampering [94, 15]. This
allows for tampering detection and localisation in spatial and temporal domains. It also
allows for any differences in distribution between tampered and authentic sequences
to be overcome by extracting authentic patches from tampered sequences. However,
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an accurate mask can only be extracted where videos can be synchronised and are
identically processed post-tampering. Any recompression during distribution allows
compression errors to creep in and increases the difficulty of extracting a bit-accurate
tamper mask (as in Figure 3.6). Moreover, some pixels may be part of the tampered
region but remain unchanged in value, and this makes for noisy masks in need of post
processing.

Using differences between original and tampered videos may be inappropriate for tem-
porally tampered videos [15], where a frame-by-frame label might provide more infor-
mation. This can be achieved when unprocessed original and tampered sequences
are provided. Indeed, public inter-frame tampered video datasets are in short sup-
ply, with many inter-frame tampering detectors simply building their own datasets from
available sequences (see Section 3.2.1).

As can be seen in Table 3.3, many tampered video datasets focus on a single tam-
pering method, such as splicing or object forgery or inpainting. Only the more recently
compiled datasets such as VTD [15], FaceForensics++ [22] and Fake Video Corpus
2018 [172] demonstrate a variety of types. Fake Video Corpus 2018 [172] even goes
further and includes video sequences which contain only authentic pixels but are mis-
leadingly presented with captions that do not accurately describe the contents of the
video. Variety is vital to accurately assess performance of video tampering detectors
and support work towards universal video tampering detection. As discussed in [58],
an approach using a combination of datasets will ensure more generalisable results
with little need for specific domain adaptation. It is also important that tampered se-
quences are independent of tampering detection, so techniques such as [61, 89, 95]
which publicly release their results are important to move forward both tampering AND
tampering detection.

A number of datasets have produced and benchmarked with an existing detection
technique [17, 77, 20, 22] and many achieve high levels of precision on their selected
dataset, often over 90% accuracy. This tends to portray tampering detection as a
solved problem on that particular dataset, which discourages researchers from pub-
lishing lower results. A tampering detection method based on motion residue was
presented in [173], and the experimental dataset was gathered from several previous
object forgery works [78, 93, 174]. Accuracy was lower than 90%. This contrasts with
over 90% in [174] and over 99% benchmarked in uncompressed FaceForensics [17].
However, the authors of [80] showed that an Inception network trained on [17] achieved
over 99% accuracy on the FaceForensics test set, but achieved less 9% accuracy on
their “Fake Faces in the Wild” dataset gathered from YouTube. This clearly suggests
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(a) Vo (b) M (c) Vs (d) Diff (3.6a,
3.6c)
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3.6g)

Figure 3.6: The problems with recompression in the distribution of tampered datasets: Left
column shows uncompressed data, right column has been lightly compressed. Figs 3.6e, 3.6f,
3.6g are the compressed versions of 3.6a, 3.6b, 3.6c respectively. Figs 3.6d and 3.6h are both
uncompressed and show binarised differences.

that FaceForensics exhibits some commonality in the tampered images which is spe-
cific to the dataset or tampering method.

In a real world situation, the method(s) of tampering will be unknown, and quite possi-
bly invisible to human eyes. Moreover, some detection methods can be very specific
to particular methods of tampering and fail all but completely on other types. There-
fore, it is worth collating results on several different datasets such that work towards a
universal tampering detector can be realised.

3.5 Dataset Dissemination

Methods of dataset dissemination are an important consideration as this can cause
unintentional post-processing of video data. Although video sharing websites such as
YouTube may seem like an attractive distribution option, [15, 80], any processing ap-
plied during publishing must be taken into account. It is possible to apply social media
platform processing by uploading/downloading a video to/from a social media website,
however the effects on the video are then irreversible. While researchers may add pro-
cessing to an unprocessed video, they cannot remove it. Indeed, the effects of video
processing by social media platforms on video are represented in isolation in a dataset
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provided by [20] who found that sensor noise pattern used for camera source identi-
fication was adversely affected by processing on FaceBook, YouTube and WhatsApp,
even when using high quality settings. These results are important in themselves as
they show how tampering detection methods which rely on sensor noise, such as [82],
can be defeated by virtue of the distribution platform alone. They also emphasise how
post-processing can be easily overlooked. Similar problems may have contributed to
the poor generalisation of deep neural networks reported in [80]. The training set,
FaceForensics, is supplied directly as video files, unprocessed by YouTube and (op-
tionally) uncompressed, while “Fake Faces in the Wild” consists solely of sequences
from YouTube, all of which will be subject to compression, or recompression. With two
such different forensic histories, it is unsurprising that a deep neural network method
failed to transfer between the two datasets.

Figure 3.6 illustrates some of the complications associated with recompression. Start-
ing with uncompressed data, a binary mask was created based on segmentation of
static and non-static content, and two uncompressed sequences very simply spliced
together. Figure 3.6d shows which pixels differ between Figures 3.6a and 3.6c and
it can be seen that it is almost the perfect inverse of the mask (Fig 3.6b), with a few
pixels that are identical between the original and spliced content. Figs 3.6e, 3.6f, 3.6g
show the visual effects of compression on Figs 3.6a, 3.6b, 3.6c respectively. Figure
3.6h shows how compression has introduced tiny inaccuracies between the pixels of
the original and spliced sequences so that the difference between them no longer
provides a mostly accurate inverse of the mask. With some thresholding and mor-
phological processing, the difference sequence could still be used to infer a mask, but
the degree of accuracy suffers even under slight compression. A compressed mask,
as shown in Fig 3.6f provides a more accurate ground truth than deriving the mask
from the compressed tampered/untampered pair. Moreover, official mask provision
rather than frame difference inference removes the philosophical debate over whether
a pixel, fully within the tampered region but by chance unchanged by the tampering
process, is labelled tampered or not.

3.6 The Future of Tampered Video Datasets and Detection

Many modern techniques of video tampering simply do not fit neatly into the traditional
categories of inter- and intra- frame tampering. In particular, there is significant overlap
between the recent categories of motion/style transfer and synthetic video generation.
Changing the style of a video sequence from semantic segmentation masks to photo-
realistic generates a purely synthetic video, but the same techniques can be used

59



to perform digital puppetry. This means that detection of synthetic video should be
viewed as an extension of tampering detection. Given the current trend of using full
reference quality measures in the evaluation of retouching, frame interpolation and in
video frame prediction, it is clear that one of the current goals is to replicate authentic
video. What remains unclear, however, is whether these methods will deviate from au-
thentic content as evaluation methods emerge or even help to launder video tampering
evidence in the same way as video compression.

One important new research direction in digital video manipulation is an accepted
method of evaluation. Many existing methods rely on only qualitative evaluation and
while this is an important first step, adoption of existing video quality techniques,
including no reference quality metrics will speed up development. Until then, user
studies and public release of manipulated video clips remains the gold standard. In
the absence of elegant quality measures, altered video and the associated methods
are often publicly released for analysis, and video tampering detectors should look to
utilise this provision where possible to create realistic detection methods. To facili-
tate this, video tamperers should release either sufficient data to simplify the creation
of accurate tampering masks or release the masks themselves. Furthermore, video
data should be distributed in such a way as to minimise further processing. Video
processing, such as compression and retouching can effectively conceal tampering.
While detection of such anti-forensics is an important research direction, processing
can be applied to video independently after dataset publication, but only if the origi-
nal dataset is published in such a way as to avoid unnecessary processing. With the
increasing application of deep learning methods to tampering detection, any future
dataset gatherers must take care to avoid potential pitfalls which cause datasets to re-
flect their own specific features relating to publishing platform or tool use, rather than
those legitimately tied to the tampering technique.

As the variety of video manipulation techniques expands and advances, tampered
and synthetic video will become indistinguishable from authentic video to human eyes.
Even machine vision techniques are unprepared for the current photo-realistic tamper-
ing techniques. To maintain confidence in the authenticity of video content, it is crucial
to develop ways to identify and localise video processing and manipulation. Universal
video manipulation detection and localisation, irrespective of tampering technique, is
essential if tampering detection is to keep pace with tampering methods.
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Chapter 4

The Effects of Compression

It is commonly noted that compression is a challenge in video analysis. Techniques
which work well on high quality data can suffer from reduced performance or fail com-
pletely in the presence of compression. In this chapter we isolate the spatial effects
of video compression and provide an experimental framework to examine how these
affect performance of CNN classifiers. We confirm that CNN performance is optimised
when training data is most similar to the test data, and this is also true in the case of
compression. A CNN for classification of heavily compressed video frames will achieve
the best performance when it is trained on heavily compressed video data. This work
demonstrates that conditioning a CNN with compression properties could potentially
lead to higher classification accuracy.

The main findings of this chapter were presented at the 2018 International Joint Con-
ference on Neural Networks (IJCNN) as part of the paper “Spatial Effects of Video
Compression on Classification in Convolutional Neural Networks” [24].

4.1 Images For Video Analysis

The field of image classification has seen great advances in the state-of-the-art us-
ing CNNs. The availability of large datasets such as ImageNet [14] and CIFAR-10
[175] have enhanced the body of research and machines can now surpass humans
on some image classification tasks [51]. The natural progression of this research is
towards video analysis, and large video datasets already include YouTube-8M [43],
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Sport1M [5] and ImageNet’s expanding video dataset [59]. There is a repeated ten-
dency, however, to simply transfer all learning from still images straight to video appli-
cations without modification. This method of representation may lead to fundamental
inaccuracies, which go undetected as large datasets make exhuastive manual check-
ing unfeasible. In the visual object tracking domain, datasets such as [176, 4] are
provided only as a sequence of still images. ImageNet [59] provides both video files
and extracted JPEG files of the individual, annotated frames. This simplifies algorithm
development by precluding pixel extraction from the video file, however any informa-
tion from the compressed video bitstream is lost, including basic metrics such as frame
rate and information about transforms already applied to the pixel data. Moreover, vi-
sual comparison of video frames and JPEG files reveals some differences between
the two, implying that lossy JPEG compression has been used.

Some prominent fields of video analysis involve feature extraction using CNNs pre-
trained on the still images of ImageNet such as the VGG networks of [48] or AlexNet
[13]. This includes work in the field of visual object tracking [177, 178, 179, 180, 181],
work in the area of video content understanding [182, 183] and in the area of video
classification [5, 184]. With such widespread use of compressed video analysis using
networks trained on still images, it is worth investigating how video compression affects
the features learned in CNNs. Moreover, video tampering detection specifically lists
compression and recompression as one of the main challenges in the field [21, 17]. An
understanding of how compression affects learning in deep neural networks could help
to overcome this. Results from this experimental framework shows that performance
in CNNs is improved by using the quality of the test data to inform the quality of the
training data, rather than the established method of using only the highest quality data
for training. This holds true especially in the case of highly compressed video content.

4.2 Compression in Image and Video Analysis

To the best of our knowledge, despite the pervasion of video compression, there has
been little investigation into how video compression affects learning in CNNs. The
authors of [19] showed how noise resulting from JPEG compression affects image
classification in a deep neural network trained on high quality images. Their results
suggested that the pre-trained networks were more resilient to compression-related
deformations than to Gaussian blur, however, the authors did not consider that the
data used to train their network was gathered “in the wild”, and most likely already
subject to compression. Therefore the results may have been understated. In [185],
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Figure 4.1: The effects of quantisation on images from CIFAR-10. The images in CIFAR-10
are low resolution (32x32 pixels). There is no visual difference between YUV 4:4:4 and YUV
4:2:0 but the number of bytes used to represent the image has been reduced by half

the differences between video and image datasets were also examined in the applica-
tion of object detection. The authors used a quality metric defined in [186] and rated
the quality of their video datasets [186, 59] as lower than that of the image datasets
[187, 59]. They attributed this to motion and compression artifacts, but did not investi-
gate compression explicitly. The availability of uncompressed data is a limitation in this
field, with uncompressed images limited to very specific datasets such as UCID [166]
or Dresden [164] and uncompressed video limited even further to [37] or [1]. Video
compression is listed as a challenge in forensic analysis [17], but the mechanism of its
effect is seldom examined in isolation.

Figure 4.2: The range of QP found in ILSVRC2017 video subset of ImageNet
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An overview of the mechanics of compression is given in Section 2.1 and for futher
details of H.264/AVC, the reader is referred to [27, 31, 39]. Figure 4.1 gives a visual
representation of how H.264/AVC affects the tiny images of CIFAR-10 and Figure 4.3
shows how some images from STL-10 [188] are affected by compression.

All compression can be lossy or lossless. In most cases, video compression is lossy
as the first stage in the process usually converts RGB data to YUV 4:2:0, as detailed
in Section 2.1.5. This quarters the colour resolution but halves the total number of
bytes needed for storage and goes unnoticed by human eyes. This can be observed
in Figure 4.1 where the difference between the YUV 4:2:0 and YUV 4:4:4 columns
are hardly noticable. JPEG compression can also optionally apply this lossy step,
and JPEG subsampling details are included in the JPEG bitstream. In general, CNNs
trained on natural images learn distinctive edge-type Gabor filters and colour blobs
in the first layer [189]. The use of YUV 4:2:0 or some other chroma sub-sampling
method in JPEG training images can explain this: colour blobs are lower resolution
than intensity edges, just as the compressed colour component is of lower resolution
than the intensity component.

Section 2.1.1 explains how video compression applies quantisation in the frequency
domain and Section 2.1.3 details the differences between constant bitrate (CBR) and
variable bitrate (VBR) modes of operation. The experiments in this chapter examine
both constant quality for reproducibility and constant bitrate for a real-world perspec-
tive. For comparison, Figure 4.2 shows a normalised histogram of the spread of QP
found in ILSVRC2017 bitstreams for complete frames and the areas within the de-
fined bounding box of the first object in the sequence. There is little difference in QP
between the subject of each video and the background, indicating that the encoder
used to compress the sequences does not differentiate between the two. The average
QP of all frames is 25.52 and the average QP of the first object’s bounding boxes is
25.74. The very slightly lower average QP of the background of the videos may be
attributed to a larger proportion of skipped macroblocks. Any static background will
simply maintain the QP from the last time it was encoded, and higher quality data from
intra frames is more likely to persist. More interestingly, the I frames have average
QP = 21.93, much lower than the sequence average. The same object will be com-
pressed at different levels of quality in different frames. If a classifier is used to track
objects over a sequence of frames, some objects may be missed due to changing
compression levels in different frames. The data in Figure 4.2, however, may reflect
the ILSVRC2017 dataset itself and the particular encoder used, rather than the real
world. Moreover, some of the sequences of ILSVRC2017 exhibit artifacts that are
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inconsistent with the QP parameter encoded in the bitstream, suggesting recompres-
sion. It is entirely possible to recompress compressed data and thus obliterate any
information about the original compression. Furthermore, this may be done multiple
times and is largely invisible to the naked eye. If this dataset has been recompressed,
then the effects of compression may be understated.

4.3 Examining Video Compression in Isolation

The main motivation of this experiment is to explore how the quality of CNN training
data determines performance on test data of the same or different quality. Specifically,
we wish to ascertain whether a knowledge of compression parameters could give rise
to an improvement in classification accuracy. Because we examine the spatial effects
of video compression in isolation and not the temporal effects, it is acceptable to use
an image classifier. This also correlates with how CNN object classifiers are com-
monly used on individual frames of video and it allows for the use of simpler datasets
and network architectures. We selected three labelled image datasets (MNIST [190],
CIFAR-10 [175], labelled images of STL-10 [188]), from which to synthesise video-
frame datasets. This avoids any pre-existing video compression artifacts that may be
found in video datasets. Each of the synthesised datasets was then used individu-
ally to train a CNN. One CNN was trained using all the synthesised datasets together.
Each trained CNN was then tested with all related test sets individually, to see whether
features learned using one dataset were immediately transferable to another, closely
related dataset.

For the purposes of this experiment, the images in CIFAR-10 were considered uncom-
pressed. CIFAR-10 is based on a subset of Tiny Images [191] where original images
were resized to 32x32 pixels. When the image resolution is reduced, so, too, are any
spatial compression artifacts. JPEG compression commonly uses an 8x8 block size,
so any CIFAR-10 image with original dimensions over 256x256 pixels has blocking
artifacts effectively removed. Banding artifacts are also comparatively reduced. To
generate a series of uncompressed larger images, the CIFAR-10 dataset was resized
to 64x64 (double height and width, Lanczos interpolation [192] for smoothing).

The basic set of experiments was also performed using MNIST. The single binary
channel of MNIST was used as the Y-channel in YUV data, with constant values of
128 for the U and V channels to give a greyscale image.

Finally, the labelled images only of STL-10 were used. The images are 96x96x3 and
there are 13000 labelled images in the dataset. Prior to dataset synthesis, these were
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split into 80% train and 20% test, ensuring an even split of class labels. Like CIFAR-10,
this dataset is supplied as RGB pixel values, so there is no way to objectively quantify
any previous compression, however compression artifacts can be seen when view-
ing some of the individual images (Figure 4.3) so these images were not considered
uncompressed.

(a) YUV (b) QP=10 (c) QP=25 (d) QP=37 (e) QP=50

Figure 4.3: An example image from STL-10 when compressed at different compressions. STL-
10 images are larger than CIFAR-10 (96x96 pixels). Small compression block artifacts visible
around the rigging of the ship diminish as the image is compressed but after QP=25, detail is
lost.

4.3.1 Dataset Synthesis

Figure 4.4: Generation of constant quality datasets
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Table 4.1: A summary of synthesised datasets

Dataset
Name

Description

The following were applied to CIFAR-10, MNIST and STL-10
YUV
4:4:4

Lossless translation of RGB to YUV colour space

YUV
4:2:0

Lossless intensity (Y); lossy colour (UV) spatially averaged at one
quarter resolution

Level
UV

Lossless intensity (Y); lossy colour (UV) quantised to 8 uniform lev-
els

Interlaced Offset alternate horizontal lines by 2 pixels
q(QP) f(F) Compressed frame number (F) = [0,2,3,6] with Quantisation Pa-

rameter (QP) = [10, 25, 37, 41, 46, 50];
The following were applied to CIFAR-10 only

q(QP) f(F) Compressed frame number (F) = [0,2,3,6] with bitrate (QP) > 52

Every training set and every test set (Table 4.1) was synthesised using the same split
of original images. That is, for each of the original datasets (CIFAR-10, CIFAR-10-
doubled, STL-10, MNIST), the train/test split was decided prior to any synthesis. The
official splits were used for MNIST and CIFAR-10. This resulted in images across re-
lated datasets that were visually similar (Figure 4.1) but with no data leakage between
test and train sets.

Figure 4.4 gives an overview of how different video-frame datasets were synthesised
from CIFAR-10, STL-10 and MNIST. First, RGB images were transformed into YUV
4:4:4 (in the case of MNIST, the intensity values simply formed the Y channel with
the U and V channels set to grey/128). Then the UV chroma component was spatially
averaged to translate to YUV 4:2:0. The YUV 4:2:0 frames were then used to generate
the compressed frames . As a side experiment, we also quantised the UV component
to 8 fixed colour levels. This has little visual effect but helped to gauge the impact of
colour data on CNNs.

Interlaced frames were produced by offsetting every alternate row of YUV 4:4:4 by 2
pixels. Interlacing (Section 2.1.6) is a historical technique in broadcast video where
the top field (odd rows) and the bottom field (even rows) are captured individually. Our
simulation of interlacing mimics the comb effects of a slow camera pan over a static
scene. In the real world, the extent of these effects depend on object motion relative
to the camera, and different objects in the same frame exhibit different degrees of
combing.

The YUV 4:2:0 dataset was used to synthesise compressed video frame datasets
(Figure 4.4). Still images were used to make a simple 7-frame video (Figure 4.5).
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Figure 4.5: The 7 frames of a short, synthesised video. The invariant image is overlaid onto
a moving background of upwards scrolling horizontal lines. The background border adds 8
pixels on each side so that of the 9 macroblocks comprising the image, 8 contain moving data.
This forces the compression codec to use predicted blocks with motion compensation, rather
than skipped blocks as it would with a repeated image.

Figure 4.6: The effects of quantisation on image quality metrics

This sequence was compressed using constant QP or bitrate, a Group Of Pictures
(GOP) structure of IBBPBBP and one-pass encoding. Bitrates and quantisation pa-
rameters were manually selected to allow a range of quality in the video sequences.
The extracted frames were of the frame types: Intra frame (0); Bi-directional frame (2);
Predicted frame (3,6).

The original images of CIFAR-10 are 32x32 pixels and the moving border adds 8 pixels
on to top, bottom, left and right. The resulting uncompressed video is 48x48 pixels,
or 3x3 macroblocks in video compression terms. It is important to note that any static
parts of a video frame will be largely encoded as skipped macroblocks unless there is
a change in quantisation due to rate control. The moving border is half a macroblock
wide so out of 9 macroblocks making up each frame, only the centre macroblock will
remain unchanged.

Constant Quality

In the first experiment, all rate control parameters and psychovisual enhancements
were disabled and constant QP across all frames was used. The QP values used were
10, 25, 37, 41, 46, 50. These values were selected to give a broad range of quality
based on PSNR and SSIM. Figure 4.1 shows the visual effect of this on some images
from CIFAR-10. Figure 4.6 shows how constant QP maps to both PSNR and SSIM
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Figure 4.7: The effects of bitrate on image quality metrics

with regards to the compressed video frame datasets. PSNR is inversely proportional
to QP as designed, whereas SSIM has a much sharper drop off after QP 37 which
tallies more closely with the visual representation. The graphs in Figure 4.6 also show
that with a constant QP across all frame types, there is very little difference in the
quality of the different frame types of each sequence. The constant quality experiment
was performed using CIFAR-10, MNIST and STL-10 datasets.

Constant Bitrate

In the second experiment, the rate control parameters and psycho-visual quality set-
tings of x264 were enabled on only CIFAR-10. To keep dataset synthesis computa-
tional requirements low, one-pass encoding was used and only the 7 frames of the
synthesised video sequence were encoded. Bitrates were manually selected to allow
a good range of quality in the video sequences. Rate control algorithms typically take
some time to initialise fully, so with a very short 7-frame sequence, the requested bi-
trate may not be indicative of the actual achieved bitrate. The graphs in Figure 4.7
show how bitrate affects the quality metrics. It is common for encoders operating at
low bitrates to encode the key frames of a sequence with a slightly higher quality, par-
ticularly in the case of the first frame in the sequence and particularly when bitrate
constraints are tight. This increases the similarity between the current frame and the
reference frame used for prediction and therefore allows more efficient compression.
This explains why the key frame 0 quality curves are slightly higher than those of the
predicted frames. It is worth noting that the shape of the PSNR graph in Figure 4.7
does not relate directly to that in Figure 4.6: Figure 4.7 is more curved, Figure 4.6 is
more linear. This demonstrates that the image quality is reliant not just on QP but also
the quality of the data available for prediction.

The constant bitrate experiment was performed using only CIFAR-10.
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4.3.2 Double Image Dimensions

It can be said that using tiny images and compression a frame of 48x48 pixels over-
states the effect of compression because any compression artifacts are comparatively
large compared to the data. To investigate this, the CIFAR-10 dataset was resized to
64x64 (doubling height and width, using Lanczos interpolation from Python’s PIL li-
brary) and the experiments repeated, using appropriate bitrates for compression and,
again, adding an 8-pixel moving border to simulate motion. The network architecture
was the same as used in the previous experiment. The network was trained using
random 48x48 crops (as in the original bitrate experiment, the network was trained
using random 24x24 crops).

4.3.3 Network Architecture

The network used in the experiments is conv5x5-64, pool3x3, conv5x5-64, pool3x3,
fc-384, fc-192, softmax. ReLU was used. The learning rate was fixed at 0.1. This net-
work, similar to those in [46], is known to achieve a precision of around 84% on RGB
CIFAR-10 after 30k iterations and approximately 86% after 60k iterations. The pur-
pose of these experiments is not to directly enhance state-of-the-art but to investigate
the effects of video compression on learning in a controlled way.

Frames derived from CIFAR-10 were normalised by subtracting the average pixel value
from all pixels. For data augmentation, the images were randomly cropped from 32x32
to 28x28 and randomly horizontally flipped during training. The test set was centrally
cropped and normalised. MNIST frames were normalised but had no further augmen-
tation applied. STL-10 derived frames were normalised and flipped only.

An alternative, deeper network was also used for STL-10. The modified network archi-
tecture added an additional conv5-64 layer giving an overall architecture of: conv5x5-
64, pool3x3, conv5x5-64, pool3x3, conv5x5-64, pool3x3, fc-384, fc-192, softmax.

It was found that switching from RGB24 colour space to YUV 4:4:4 had no overall
impact on precision, as intuitively expected.

4.3.4 Training and Testing

A model was trained on every dataset in the series and each model was tested with
every related dataset (Table 4.2) and the mean Average Precision (mAP) recorded.

70



Table 4.2: Related datasets

Source dataset Synthesised (related) datasets
CIFAR-10 YUV 4:4:4, YUV 4:2:0, Level UV, Interlaced, q(QP) f(F); (QP) = [10, 25, 37, 41, 46, 50]; (F) = [0,2,3,6]
CIFAR-10 YUV 4:4:4, YUV 4:2:0, Level UV, Interlaced, q(QP) f(F); QP > 52; (F) = [0,2,3,6]
CIFAR-10-double YUV 4:4:4, YUV 4:2:0, Level UV, Interlaced, q(QP) f(F); (QP) = [10, 25, 37, 41, 46, 50]; (F) = [0,2,3,6]
MNIST YUV 4:4:4, YUV 4:2:0, Level UV, Interlaced, q(QP) f(F); (QP) = [10, 25, 37, 41, 46, 50]; (F) = [0,2,3,6]
STL-10 YUV 4:4:4, YUV 4:2:0, Level UV, Interlaced, q(QP) f(F); (QP) = [10, 25, 37, 41, 46, 50]; (F) = [0,2,3,6]

Table 4.3: Mean Average Precision for networks cross evaluation on CIFAR-10 intra frame.
Best trained network for this test underlined; Best test result for this trained network in bold.

Trained On (QP)
Tested
With (QP)

All YUV 10 25 37 41 46 50

YUV 73.6 84.0 83.4 82.6 78.8 75.0 67.7 60.9
10 73.7 83.6 83.5 82.6 79.3 75.1 68.1 61.0
25 73.5 82.1 82.5 82.2 79.0 75.4 68.0 61.0
37 70.6 73.1 73.5 74.6 76.9 74.4 68.8 61.0
41 67.6 63.6 63.5 65.7 71.4 72.3 67.9 61.6
46 60.1 48.4 48.0 49.7 58.2 62.3 64.2 59.9
50 53.3 36.1 36.7 37.7 44.4 50.3 57.0 57.9

To examine the effect of pre-training, a CNN was initialised with all the weights and
biases learned on one synthesised dataset and allowed to further train on another.
Specifically:

• pre-trained on YUV 4:4:4, further trained on uncompressed YUV 4:4:4

• pre-trained on YUV 4:4:4, further trained on highly compressed QP 50

• pre-trained on highly compressed QP 50, further trained on YUV 4:4:4

• pre-trained on highly compressed QP 50, further trained on QP 50

The weights learnt in the first layer were then examined to find out if all weights re-
sponded equally to further training.

4.4 The Influence of Compression

One of the main findings is that CNNs respond to compressed video in an intuitive
way. In general, more compressed video leads to lower classification precision (Figure
4.9, Table 4.3). The effects of heavy compression distort objects enough to render
them unrecognisable by human eyes (Figure 4.1), and the results (Figure 4.9) show
that this is broadly matched in machine vision. The maximum precision for a given test
set is generally achieved by a network trained with data most similar to that of the test
set. A network trained with a variety of different compression levels becomes a “jack
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(a) YUV (b) QP=10 (c) QP=37 (d) QP=50 (e) Double (f) interlaced

Figure 4.8: The first layer filters, constant QP training on CIFAR-10 (re-ordered according to
variance in each filter)

of all trades, master of none” (Table 4.3).

Features learned on one compression level transfer well to less compressed video: a
network trained on video frames compressed with a particular QP achieves at least the
same precision on frames compressed with a lower QP. Similarly, a network trained
on video frames compressed at a given bitrate performs equally well or better when
tested with frames compressed at a higher bitrate. Conversely, although a network
trained on high quality frames achieves better precision when tested with frames of
high quality, it experiences greater drop off in precision when faced with lower quality
data.

4.4.1 Colour Spaces

In datasets with no video compression (YUV 4:4:4, YUV 4:2:0, level UV and inter-
laced), features trained on interlaced frames do not transfer well to non-interlaced
frames (Table 4.4). Moreover, networks trained on non-interlaced data did not achieve
good precision on interlaced test data. Features learned on interlaced data were more
transferable to non-interlaced data than vice versa. Visualisation of the filters learned
in the first layer of the CNN (Figure 4.8) shows some combing effects. It can be the-
orised that features from CNNs trained only on still image data or photographs which
do not contain interlaced data will perform less well on interlaced videos. This effect
diminished with a larger frame size (Table 4.4), so smaller features may be more af-
fected by interlacing, but further research is needed to confirm this. It is common to
resize video and images for neural networks [13, 3], and this reduces combing effects.
A de-interlacing filter may be applied but this will cause some blurring. Although this
is not examined here, we hypothesise that de-interlacing artifacts will reduce CNN
performance.

Decreased colour information, either by quantisation to fixed levels or by reduction
of colour resolution, does not have a large impact on maximum achievable precision
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Table 4.4: Mean Average Precision for networks trained/tested on different uncompressed
colour spaces generated from CIFAR-10 [single image dim; double image dim]

Trained On
Tested With YUV 4:4:4 Level UV YUV 4:2:0 Interlaced
YUV 4:4:4 84.0; 82.0 83.4; 81.1 83.4; 81.8 59.3; 53.8
Level UV 83.3; 80.1 83.6; 81.2 82.8; 80.2 57.9; 53.3
YUV 4:2:0 83.7; 81.8 83.2; 80.7 83.4; 81.5 58.2; 53.0
Interlaced 37.3; 78.2 39.8; 76.5 33.0; 78.2 82.0; 81.6

(Table 4.4). A drop in colour data in the training set or the test set leads to a drop
in mean average precision, however reducing colour resolution to one quarter of its
original value (as in YUV 4:4:4 to YUV 4:2:0 conversion) does not significantly impact
classification (mAP difference of 0.6%). This may be partly attributed to the shape
of the learned filters: it is possible that the most discriminative filters, like the human
visual system, weight luma (intensity) more strongly than chroma (colour).

4.4.2 Constant Quality

The graph in Figure 4.9 shows the how same network architecture trained on differ-
ently quantised datasets performs when given test data with different QP. Table 4.3
gives more detailed results for CIFAR-10. The maximum achievable mAP generally
reduces as quantisation of the training data increases. Interestingly, the maximum
mAP for each network does not necessarily coincide with testing on its related dataset
(Table 4.3). The network trained on data with QP=50, for example, gives its lowest
mAP when tested with QP=50 data. In general, slightly higher precision is achieved
when a network is tested with data of a lower QP than than of its training set. Con-
versely, test data with a specific QP achieves the best precision when passed through
a network trained on a similar QP.

The plots of the networks trained on STL-10 are very close together for uncompressed,
QP=10 and QP=25 (Figure 4.9). Using the deeper network architecture for STL-10,
it was possible to improve accuracy slightly. Interestingly, deeper networks trained on
QP=10 and QP=25 outperformed those trained on uncompressed data. The results
are shown in Figure 4.10. This can be partly explained by visible compression artifacts
in the original image (Figure 4.3). Some original STL-10 images show blocking arti-
facts that are visibly reduced by compressing with QP=10, and further reduced with
QP=25. This is a serendipitous effect of recompression. In compressed image data,
compression artifacts might occupy specific frequencies that have otherwise been lost
due to quantisation. Recompressing the compressed image at a similar level might
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(a) CIFAR-10 (b) STL-10

Figure 4.9: Precision for each QP trained/tested. Features learned on a given QP transfer well
to test data encoded with the same QP or lower, best viewed in colour

disproportionately reduce the compression artifacts while having little effect on the im-
age data itself. At QP=37 and above, introduced compression artifacts come into play
and the maximum mAP is consequently reduced.

Figure 4.10: Results for a deeper network on STL-10 which achieves the best result when
trained on QP=25.

The first layer filters of a neural network are known to give an indication of the low level
features learned in the network. An examination of these for the network trained on
CIFAR-10 data (Figure 4.8) shows that networks trained on higher QP data rely more
heavily on colour-based filters rather than intensity filters. Intensity filters learned on
high QP data are far less distinct than their low QP counterparts. This corresponds
with the idea that the effects of quantisation in the frequency domain manifest visu-
ally as blurring. The colour filters themselves represent colour transitions rather than
discrete colour blobs, although this may be explained by the size of the convolution
kernel: in a 5x5 kernel, there is more room for complex patters to emerge.
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It was found that MNIST data was very robust against video compression. Video
compression applied to MNIST gave a range of SSIM from 0.74 and PSNR from 21.0
dB. Application of constant quality compression to CIFAR-10, yielded minimum SSIM
= 0.36 and PSNR = 16.9 dB. For STL-10: minimum SSIM = 0.42 and PSNR = 19.41
dB. While PSNR gives an indication of how the compressed signal differs from the
original, SSIM gives a better indication of visual difference. The networks trained on
datasets synthesised from MNIST showed little change in performance when tested
with data of a different compression level. The pattern of increasing QP leading to
decreasing mAP was still present, however the mAP ranged from 97.0% to 99.2% for
non-interlaced data. and 95.0% to 99.3% for interlaced data.

The range of SSIM shows how compression affects the data. The smaller range of
quality metrics for compressed datasets synthesised from STL-10 shows that CIFAR-
10 is more adversely affected by compression and this relates to the range of mAP
(Figure 4.9). Datasets derived from STL-10 have a lower range of SSIM and mAP
than those derived from CIFAR-10. This can be attributed to the way that the images
were turned into videos. In the larger STL-10 frames, the moving border occupies
a proportionately smaller area than for the CIFAR-10 images. The central portion of
the frame unaffected by the border is proportionately larger in the STL-10 images.
Given that the border pixels are arbitrary rather than related to the image content, the
encoder will be able to make better predictions using data from the image itself, and
when the residuals themselves are heavily quantised by a high QP, good predictions
help improve quality a lot. In Figure 4.1, the effects of the horizontally striped bor-
ders can be seen in high QP images. In Figure 4.3, these effects are proportionately
smaller, although they can still be seen on the left and right borders of Figure 4.3e.

4.4.3 Frame Type

When using constant QP, frame-type (I, B, P) has little effect on CNN classification,
with average variation of 0.6% mAP, and slightly better performance for networks
trained on frame 0. This ties in with the quality metrics shown in Figure 4.6 where
it can be seen that, with constant QP, there is very little difference between the frame
types. For constant bitrate, this effect was more marked, with an average range of 1%
mAP and networks trained on frame 0 exhibiting higher performance. Similarly, test-
ing with I-frames also achieves higher performance than P- or B-frame test batches.
This can be attributed to rate control mechanisms in x264 which allocated more bits to
I-frames in our sequences, and thus a lower average QP as illustrated in Figure 4.7.
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4.4.4 Constant Bitrate

The graph of networks trained on datasets of different target bitrates (Figure 4.11)
shows similar results to those for constant QP: highly compressed data yields lower
achievable mAP, but networks trained solely on uncompressed or high bitrate data
perform poorly when classifying low bitrate frames.

Figure 4.11: Precision for each bitrate trained/tested. Features learned on a given bitrate
transfer well to test data encoded with the same bitrate or higher

The Figure 4.12 shows a plot of SSIM vs precision. For each network trained on
data compressed at a specified bitrate, test data at a different compression rate is
compared with the test data of the network’s own compression rate to get the SSIM
measure which is plotted against the mAP for that test data. The datapoints with
SSIM=1 are the networks trained and tested on the same level of compression. It could
be theorised that a network trained on a given level of compression would achieve its
best precision when faced with test data most similar to its training data. This graph
shows that this is not the case. Networks trained on highly compressed, low bitrate
data still perform better on data with a higher bitrate. The worst performance by the
network trained on the lowest quality data is achieved when testing with the lowest
quality data. At the other end of the scale, however, networks trained on the highest
quality data suffer the most degradation in performance when faced with lower quality
data and the worst mAP overall is achieved by testing the most compressed data on
the network trained on uncompressed data.
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Figure 4.12: Precision for each SSIM trained/tested.

4.4.5 Double Image Dimensions

For double image dimensions, results were broadly similar to those found above: net-
works trained on uncompressed data achieve the highest mAP of 82% but this drops
off most quickly when tested with lower quality data. Networks trained on lower quality
data achieved lower maximum mAP and produced equal or better mAP when tested
with higher quality data. Most interestingly, Table 4.4 shows that the drop in perfor-
mance for interlaced data was much lower in this experiment. This can be attributed
to the network learning spatially larger discriminative features (Figure 4.8) and also
because the interlaced offset was maintained as 2 pixels so the combing effect was
proportionately smaller on larger images. A further experiment was performed using
the deeper network architecture with an extra conv5-64 layer. Results showed im-
proved performance ( 7% absolute mAP) of the interlaced-data-trained network when
tested with non-interlaced data. This suggests that deeper layers may effect some
form of deinterlacing but further research is needed.

Another intuitive result is in the visualisation of the first layer filters (Figure 4.8): dou-
bling the image dimensions of the dataset without changing the kernel size of the
first layer simply doubles the learnt feature size. This is significant because it helps
explain the common appearance of first layer filters trained on natural images. If train-
ing images utilise YUV 4:2:0 colour space, then chroma resolution is one quarter of
luma resolution. Therefore, colour features learned in CNNs are also lower resolution
than their intensity (edge-type) counterparts. This implies that the use of YUV 4:2:0
is widespread in JPEG data used to train many modern networks. Hypothetically, the
first layer features of a network trained exclusively on YUV 4:4:4 data would exhibit
colour-edge features rather than colour blobs.
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4.4.6 Pretraining

The results for pre-training (Figure 4.13) show a network can be fine tuned towards dif-
ferent levels of compression but this reduces precision for the original data. In the case
of a network pre-trained on uncompressed data (Figure 4.13, top row), the differences
in the first layer filters are very slight but the differences in mAP are marked. This sug-
gests that much of the fine tuning is achieved in higher layers of the network. For the
network pre-trained on uncompressed data and further trained on highly compressed
data (Figure 4.13, top right), the edge-type filters in the first layer do not visually blur.
It can be hypothesised that the increase in mAP from 36.1% to 58.3% comes from
the equivalent of feature blurring in deeper layers. Sharp features in the first layer are
required for mAP on uncompressed data.

Figure 4.13: The filters learned in the first layer with pre-training: the central column shows the
original trained network with no further training, the left column has been further trained with
uncompressed data, the right column has been further trained with the most compressed data
[mAP on uncompressed / QP 50 data]

Pre-training a network with QP = 50 and further training with uncompressed data (Fig-
ure 4.13, bottom left), allows sharp edge-type filters to emerge in the first layer and
the mAP for uncompressed data improves, at the expense of highly compressed data.
Further training with compressed data might allow deeper layers of the network to
generalise around these sharp features and improve compressed test precision. The
mAP improves on both compressed and uncompressed test sets when the network is
further trained on highly compressed data (Figure 4.13, bottom right). This improve-
ment is small but follows the trend shown in Figure 4.9 where features learned on
compressed data transfer successfully to less compressed datasets.
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4.4.7 Limitations

This work is limited by the availability of uncompressed data. The data used in the
experiments in this chapter comes from rescaled images, the original compression
of which cannot be truly verified. The ideal dataset would be uncompressed, clean,
short, independent, labelled video sequences, but such data is in short supply. It
is reasonably assumed that the dimensions of the images of CIFAR-10 have been
reduced sufficiently so as to be considered uncompressed.

We synthesised our own video datasets from still images for these experiments. In-
tra frame compression can be validly performed on single frames but in compress-
ing artificially constructed video sequences, video encoders may make unnaturally
constrained compression decisions, particularly when compressing predicted frames.
Thus the effects of frame type may be understated in these experiments.

4.5 Conclusions

With high prevalence of compressed video and increasing use of CNNs for video anal-
ysis, we have provided a timely evaluation of the effects of video compression on
classification by CNNs. We found that the highest precision on a given test set oc-
curs when the network is trained on a similarly compressed dataset. Features learned
in networks trained on highly compressed frames are equally valid when testing less
compressed data, but the precision of the network is generally lower than that of one
trained on uncompressed frames. A network trained on images of a specific quality
disproportionately misclassifies objects of a worse quality but mostly maintains per-
formance when classifying data of a similar or better quality. Networks trained on
highly quantised video frames learn more colour features in their first layer than net-
works trained on high quality frames which learn more edge-type features. First layer
colour features perform better than edge features for classifying low quality frames,
but it is possible for higher layers to compensate for this when a network has been
pretrained on uncompressed data. A network trained on a variety of levels of com-
pression achieves lower precision than specialised networks, so using very different
levels of compression as a form of data augmentation will not improve performance on
all data.

We have also explained how the use of compressed YUV 4:2:0 shapes the first layer
filters of CNNs trained on natural images. Lower colour resolution in training data
means the filters diverge into higher resolution edge-type filters and lower resolution
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colour blobs. Higher resolution colour features may emerge from CNNs trained on
uncompressed images which use YUV 4:4:4 colour space. The first layer filters also
show that the effects of compression are present in the pixel level of video and CNNs
cannot necessarily compensate in deeper layers. If compression artifacts which are in-
visible to the naked eye influence object classification accuracy, then they will certainly
disrupt tampering detectors which are trained on high quality tampered data.

The work in this chapter suggests that information about a compressed video bit-
stream, such as quantisation, can inform models for video analysis and improve per-
formance. Unfortunately, videos can be recompressed, obliterating information about
past compressions from the bitstream. The following chapters show how compres-
sion parameters can be deduced directly from pixels, thus by-passing any challenges
associated with the recompressed bitstream.
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Chapter 5

Learning Directly from Pixels

In Chapter 4, the findings show that knowledge of compression parameters may im-
prove accuracy in CNNs for video analysis. In Chapter 3, we discuss how compression
and recompression makes tampering detection more challenging. Recompression can
be ascertained whenever there is a mismatch between compression parameters en-
coded in the syntax elements of the compressed bitstream and those derived from
the pixels themselves. However, deriving compression parameters directly and solely
from the pixels is not trivial. In this chapter, we propose a new method to estimate the
H.264/AVC quantisation parameter (QP) in frame patches from raw pixels using Con-
volutional Neural Networks (CNN) and class composition. We show that, subject to
some limitations, the level of quantisation can be estimated directly from pixels them-
selves using CNNs trained on synthesised datasets. Development of these features
opens new, interesting research directions in the domain of video tampering/forgery
detection.

The main findings of this chapter were presented at the 19th International Conference
on Engineering Applications of Neural Networks (EANN) [25].

5.1 Why Are Compression Features Useful?

Today is the age of fake news and falsified video, and the detection of forged video
has become an important area of research. Machine learning techniques can be used
to alter video content by, for example, changing faces [64] or weather conditions [65],
yet detection of such tampering remains an open field. Detection methods can be
active or passive [21, 87], but, since many existing videos are unprepared for active
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tampering detection, passive detection methods are more versatile. Passive tamper-
ing detection have traditionally been categorised as recompression, region tampering
and inter-frame forgery [21], and the latest digital video manipulation methods [60]
may cause a demand for a new category of synthetic video detection. Regardless of
the editing method, however, any tampering at the pixel level of a compressed video
requires recompression of the video bitstream [70, 193], and may leave distinct traces
on the pixels. In order to find those traces, we must look at estimating compression
parameters directly from pixels themselves.

Video compression is prevalent in digital society. The vast majority of online video has
been compressed using lossy formats such as H.264/AVC [27] or MPEG-2 [28]. These
formats have been designed with the human visual system in mind and the effects
of compression remain largely unnoticed by human eyes. It has been shown that
compression does impact classification performance of convolutional neural network
(CNN) classifiers [19, 24] and pre-existing compression in original source images may
even have caused these effects to be understated.

An intuitive indication of recompression is where the Quantisation Parameter (QP) en-
coded within the bitstream fails to match the value estimated from the pixels. This is
most obvious to human eyes when bitrate and syntax elements of the bitstream imply
high quality video data but pixel content exhibits visible compression artifacts such as
blockiness. Accurate QP estimation from pixels would allow recompression detection
and may aid tampering detection and localisation. The human visual system cannot
distinguish between close QP levels, however, and objective methods of measuring
QP from pixels are required. In addition, an ideal QP estimator would operate accu-
rately over small patches to enable localisation of tampered regions because the most
convincing lie is based on truth, and authentic pixels form the majority in many tam-
pered videos. Tampering localisation is an advancing area of research [77, 87]. For
singly compressed frames, estimated QP can be verified by encoded bitstream syn-
tax elements. In video which has been compressed more than once, recompression
can be established when there are mismatches between estimated QP and syntax
elements. Moreover, a QP estimater can be used to detect any differences in QP
patterns between tampered and authenthic regions.

5.2 A Multivariable Problem

The human visual system is adequate to detect some compression effects and can
quantify “no reference” image and video quality [194, 195]. The source of video
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compression visual effects can be found by examining transformations and mecha-
nisms used in compression standards. As discussed in Section 2.1, a video sequence
comprises key frames, which provide access points into the sequence, and predicted
frames which rely on data from previously encoded frames. Macroblocks of pixels
or pixel residuals are transformed using Discrete Cosine Transform (DCT), quantised
with varying Quantisation Parameters (QP) and then variable length encoded into a
bitstream. The choice of QP varies according to the rate control algorithm of the indi-
vidual encoder and the bitrate requirements. A lower bitrate requirement will result in
increased QP. An increase in QP often manifests visually as an increased “blockiness”;
that is, discrete regions of macroblocks consisting single or few frequency coefficients
which makes the borders of macroblocks more noticable. Most often, low frequencies
have higher signal amplitudes, so sharp edges persist while textures are reduced. In
key frames, macroblock edges align uniformly within the frame, and this can further
increase blockiness as the aligned macroblocks form a perceptible grid. Compression
artifacts are not restricted to artificial block edges, however, and can also manifest as
a lack of specific frequency detail or as banding in areas of smooth colour/intensity
transition. See Section 2.1.6 for more details on compression artifacts.

The problem is that compression artifacts and the visible effects of compression de-
pend on many variables. Video content, encoder choices, bitrate requirements can all
contribute to how a video is compressed and also how compression artifacts present
themselves. Identifying the level of compression directly from the pixels themselves is
a complex task and one best handled by deep neural networks.

5.3 Existing Features of Compression and Recompression

Traditional methods of recompression detection rely on the identification of patterns
in frequency domain bitstream syntax elements. The authors of [196] rely on Ben-
ford’s distribution of DCT coefficients and support vector machines to detect double
compression of intra frames. In [197] multiple compression is detected in H.264/AVC
encoded videos but the compression modes are heavily restricted and the methods do
not differentiate between QP that are less than two steps apart. The authors of [198]
examine motion features in the bitstream, identifying low and high motion regions and
examining differences in the encoded residual in these areas.

As noted in [21], many inter-frame tampering detection methods struggle to detect
tampering that aligns with key frames. Methods fail when a complete Group of Pictures
(GOP) from one key frame to the next is deleted, added or temporally moved. It can
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be deduced from this that these techniques ultimately rely on a detected mismatch
between key frames identified using features from the pixels and those derived from
the bitstream syntax elements. It is clear from this that there are some differences
between intra and predicted frames in video compression.

As part of an investigation into using deep neural networks to determine image quality,
Bosse et al [194] developed a method to estimate QP of HEVC frames directly from
pixels. Accurate results were achieved for average QP estimation over a complete
frame using a patch-wise technique and dataset synthesised from UCID [166]. The
method was applied to intra (key) frames only. QP estimation was framed as a regres-
sion problem and the dataset used to train the network contained labelled patches
compressed with all possible QPs. Although the averaged QP prediction for a com-
plete frame was accurate, a heatmap showing individual patch contributions displayed
great variation between patches. If QP estimation is to be successful as a region-
tampering detector, it should be as accurate as possible over small regions. Moreover,
a QP estimator for video should also handle predicted frames, if possible.

This work examines QP estimation in the context of patches taken from H.264/AVC
video sequences. H.264/AVC is currently one of the most popular video compression
standards and is used on YouTube, broadcast video and public datasets. A CNN
is trained to classify frame patches from a video sequence using their quantisation
parameters as labels. Unlike [194], we also investigate predicted frames in a video
sequence.

5.4 Estimating Quantisation Parameters from Pixel Patches

5.4.1 Synthesising Datasets

When examining the effects of compression, is vital to start with unprocessed data.
Standard YUV 4:2:0 sequences from xiph.org are commonly used for video compres-
sion quality analysis [37]. Strictly speaking, YUV 4:2:0 is a compressed format due to
reduced resolution of the colour channels but it is widely used in video compression.
The sequences from xiph.org come in various dimensions and cover a wide variety
of subjects from studio-shot sequences to outdoor scenes. All sequences are single
camera, continuous scenes. Camera motion varies between sequences but frames
from a single sequence will be correlated.

A large amount of data is required to train a neural network and uncorrelated data

84



will produce a more generalised network. It is possible to use still image data as sin-
gle frame sequences when focussing on spatial compression artifacts and excluding
temporal compression. For this purpose, the images of UCID [166] were used. UCID
consists of uncompressed images which are either 512x384 pixels or 384x512 pixels
and cover a wide variety of subject matter. All are natural scenes and taken with the
same camera. Of the original reported 1338 images in the dataset, only 882 were
available for download1. Using a dataset of single images is not ideal since predicted
frames cannot be examined. However it allows for a greater variety of pixel combina-
tions in a smaller dataset because individual images are uncorrelated. Each image
from UCID was regarded as a single frame video sequence and encoded accordingly
as an intra frame.

Table 5.1: A summary of original datasets, taken from publicly available sources

Name Source Length Dimensions Key
frames

CIFvid xiph.org 18 videos 352x288 1/250
CIFintra xiph.org 18 videos 352x288 all
AllVid xiph.org 44 videos 176x144 to 1920x1080 1/250
AllIntra xiph.org 44 videos 176x144 to 1920x1080 all
UCID UCID [166] 882 single frames 512x384 or 384x512 pixels all

Table 5.1 gives a summary of the original datasets. Each video sequence was com-
pressed using the open source H.264/AVC encoder x264 and one of a range of con-
stant QP levels using variable bitrate mode. H.264/AVC was chosen because it is
currently the most widely used video compression standard. Constant quantisation
parameters were selected with an even distribution: QP=[0, 7, 14, 21, 28, 35, 42, 49].
Constant bitrate rate control, psychovisual options and deblocking filter were turned
off. For datasets containing predicted frames, the key frame interval was 250. Patches
were then extracted from the decoded YUV 4:2:0 sequences. Patches were converted
from YUV 4:2:0 to YUV 4:4:4 by upsampling the data in the colour channels. Table 5.2
summarises synthesised datasets. A large temporal stride was used to limit correlation
between patches. Consecutive frames are similar to each other and training a neural
network with a correlated dataset will cause overfitting. Each patch was labelled with
its quantisation parameter. All datasets were prepared in advance of network training
and the original video sequences were split into train and test sets prior to compres-
sion and patch sampling to prevent data leakage2.

Two different patch sizes were selected to investigate which aspects of compression
1UCID images from http://jasoncantarella.com/downloads/ucid.v2.tar.gz
2Training sequences: akiyo, bridge-close, bridge-far, carphone, claire, coastguard, foreman, hall, high-

way, mobile, mother-daughter, paris, silent, stefan, waterfall, old town cross, crowd run, ducks take off,
in to tree, mobcal, old town cross, parkrun, shields. Test sequences: bus, flower, news, tempete
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Table 5.2: A summary of synthesised datasets

Name Source Patch
Size

Spatial Stride Temp.
Stride

Train
Patches

Test
Patches

AllVid 80 AllVid 80 80(train);
40(test)

40 156592 8400

AllIntra 80 AllVid 80 80(train);
40(test)

40 156592 8400

UCID 80 UCID 80 80 1 131904 53480
CIFvid 80 CIFvid 80 48 30 79920 7920
AllVid 32 AllVid 32 80(train);

40(test)
40 191776 13872

AllIntra 32 AllVid 32 80(train);
40(test)

40 191776 13872

UCID 32 UCID 32 80 1 183320 26320
UCID 32 large UCID 32 32 1 974528 140512
CIFvid 32 CIFvid 32 32 60 118976 12672
CIFintra 32 CIFvid 32 32 60 118976 12672

were important to CNNs. Block edge artifacts in intra frames will present themselves at
macroblock (and subblock) boundaries. Therefore, any patch size larger than 16x16
will capture block edge artifacts. Following [194], a small patch size of 32x32 was
selected. A larger patch size of 80x80 pixels was also used. When aligned with the
macroblock grid, 80x80 pixels covers 5x5 complete macroblocks. A larger patch size
allows for more context and image features within the patch to contribute towards
QP estimation. Spatial strides were selected so that there was no patch overlap in
the training set, although patches taken from the same video sequence would exhibit
some correlation.

5.4.2 Network Architectures

For the purposes of this experiment, three simple network architectures were exam-
ined, summarised in Table 5.3. Image patches were format YUV 4:4:4, rescaled to
values between 0 and 1 and whitened. In order to preserve compression artifacts in
situ, no further data augmentation was used. Batch size was 128 patches. Unless
otherwise noted in the results, network architectures 1 and 2 were implemented with
stride = 2 for all convolutional and pooling layers.

Network architectures were designed with compression artifacts in mind. H.264/AVC
uses a minimum DCT block size of 4x4 pixels so a 4x4 kernel aligns to this. Using an
even-sized kernel is unusual but not without precedent [55]. A stride of 2 allows suffi-
cient overlap to encounter artifacts while reducing the number of network parameters.
Networks were trained and tested multiple times and average accuracy and confusion
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Table 5.3: A summary of network architectures

Name Layers
NA 1 conv4x4-64, pool3x3, norm, conv4x4-64, norm, pool3x3, fc-384, fc-192,

softmax
NA 2 conv5x5-64, pool3x3, norm, conv5x5-64, norm, pool3x3, fc-384, fc-192,

softmax
NA 3 [194] conv3x3-32, conv3x3-32, pool2x2, conv3x3-64, conv3x3-64, pool2x2,

conv3x3-128, conv3x3-128, pool2x2, conv3x3-256, conv3x3-256, pool2x2,
conv3x3-512, conv3x3-512, pool2x2, fc-512, softmax

matrix values taken for the results.

5.4.3 Estimating Quantisation Accuracy

The quantisation parameter (QP ) in H.264/AVC can be expressed as:

0 ≤ QP ≤ 52, QP ∈ R (5.1)

QP relates directly to Qs in Equation 2.1. Patches with similar QP labels exhibit similar
compression features, and confusion matrices produced by the network reflected this.
Two different QPs might have very similar effects on a given patch, depending on the
patch content. An example of this is a whole patch of solid colour, which transforms
to a single high amplitude, low frequency coefficient which is non-zero on quantisa-
tion. Such an extreme example is unlikely in natural scenes but it demonstrates how
applying close QPs might result in identical patches with different labels. Therefore,
QP has been sampled at [0, 7, 14, 21, 28, 35, 42, 49] in the synthesised datasets.
Using all possible QP would also generate an extremely large dataset and increase
model training times. Using a range of sampled QP, the confusion matrices produced
by the model can be examined and super-classes composed to estimate accuracy.
The sampled QP is sufficient to test the learned features to find out if they are useful.
We leave more accurate QP estimation for future work.

Unlike the work presented in [199], where data was decomposed based on discrete
classes, in this experiment, we combine each two adjacent classes into one, assuming
that the change in pixels is not significant within adjacent QP. Figure 5.1 gives a visual
demonstration of how this can be applied to a confusion matrix. In a confusion matrix,
predicted labels from the network are tabulated against ground truth class labels. The
overall accuracy of the network is given as the sum of the diagonal elements of the
confusion matrix divided by the sum of all the elements (Fig. 5.1a). That is, the
correctly predicted elements divided by all the elements. If some degree of error is
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(a) Standard accuracy (b) Combine adjacent
classes

(c) Removing label
ambiguity

Figure 5.1: Different class compositions in a confusion matrix

permitted in the confusion matrix, adjacent classes can be accepted as “correct” and
a new accuracy p̂ (Fig. 5.1b) can be calculated by combining adjacent classes thus:

p̂ =
1

M
{

m∑
i=0

ai,i +
m∑
i=1

ai−1,i +
m∑
i=1

ai+1,i +
m∑
i=1

ai,i−1 +
m∑
i=1

ai,i+1} (5.2)

Although Equation 5.2 combines adjacent classes well in theory, testing how well it
represents a model where classes are combined before training would involve assign-
ing different labels to identical data. Instead, we compose super classes according to
Equation 5.3 and Figure 5.1c.

p̂ =
1

M
{
m/2∑
i=0

a2i,2i +

m/2∑
i=0

a2i+1,2i +

m/2∑
i=0

a2i,2i+1 +

m/2∑
i=0

a2i+1,2i+1} (5.3)

Using Equation 5.3, labels can be unambiguously combined and a network trained on
these labels. Equation 5.3 can also be extended to create even larger super-classes
allowing for ever greater error.

5.5 Evaluating and Analysing Quantisation Estimation

The initial experiment using CIFVid 80 achieved only 36.25% accuracy. Following
[194], patch size was reduced and UCID was introduced, creating two new datasets:
CIFVid 32 and UCID 32 large. The results in Table 5.4 show that smaller patch size
did not improve accuracy, but training on intra frames only did. Halving the network
stride parameter helped, but was still worse than using a larger patch size. Net-
works trained on UCID 32 large achieved accuracy of over 58% when tested with
UCID 32 large test data, but approximately half that when tested with CIFVid 32.
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CIFintra 32, comprising all key frames (Table 5.2) answered the question of why learn-
ing from UCID 32 large did not translate well to CIFVid 32. Patches in CIFVid 32 and
CIFintra 32 come from exactly the same points in the video sequences, so their con-
tent is strongly visually correlated. Only the underlying compression modes differ. The
best performing network architecture was re-tested with CIFintra 32. The accuracy
on CIFintra 32 using the network trained on UCID 32 showed good improvement over
testing on CIFVid 32 (54.14% vs 30.35%).

CIFVid 32, CIFintra 32 and UCID 32 large were mismatched in terms of patch quan-
tity within the training sets. To investigate whether this accounted for some of the differ-
ences in accuracy, AllVid 32, AllIntra 32 and UCID 32 were created. Table 5.5 shows
the accuracy achieved on each combination. The larger training set UCID 32 large im-
proved accuracy by an average 7.9% on the UCID 32 test set but only average 2.34%
on AllVid 32. The addition of extra training video patches when increasing CIFVid 32
to AllVid 32 did not increase accuracy. From these differences in performance, it can
be concluded that the UCID-based datasets were less correlated than those derived
from video sequences leading to more feature coverage and more generalisable net-
works. In Table 5.5 intra-only trained networks still out-performed those trained on
AllVid 32, except in the case of AllIntra 32 versus AllVid 32. Given that AllVid 32 and
AllIntra 32 contain visually similar pixel patches, this implies that the network trained
on AllVid 32 has learned some features distinct to predicted frames that do not trans-
late to key frames. This pattern was repeated with patch size 80x80.

Larger patch size datasets AllVid 80, AllIntra 80 and UCID 80 were generated and
used to train and test different network architectures. Table 5.5 shows the results.
Comparing results for AllVid 80 with CIFVid 80 and AllVid 32 (35.27%, 36.25%,
26.78%, respectively) show that increasing the number of patches did not improve
accuracy but increasing the patch size did. Although networks trained and tested on
UCID 80 achieved good accuracy (72.75%, Table 5.5), the learning did not transfer
to AllVid 80 (36.72%). It did, however, translate to AllIntra 80 (63.40%). From this, it
can be deduced that QP can be successfully estimated directly from the pixels of key
frames but does not translate well to predicted frames. Networks trained on predicted
frame patches achieve lower accuracy than that those trained on key frame patches.
Moreover, the accuracy of networks trained on UCID 80 is higher than those trained
on AllIntra 80. This can be partly attributed to weaker correlation in UCID 80 image
patches.

Overall, NA 3, the deepest network, had the lowest accuracy. The limited size of
the datasets may have contributed to this, but it is more likely that the depth of the
network did not help with compression features. Compression features in H.264/AVC
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(a) Full (35.27%) (b) Reduced (54.65%) (c) Composed (56.25%)

Figure 5.2: Confusion matrices for NA 2 trained/tested on AllVid 80 (overall accuracy for a
single network)

are related to the size of the transforms used in the codec and these vary from 4x4
to 16x16 pixels. It can be deduced that though deeper networks go some way to
accounting for differences in scale in traditional object classification, this is largely
unnecessary when examining compression.

Table 5.4: Initial results: Accuracy for patch size 32 (network 3 failed to train)

Network Tested on CIFVid 32 trained UCID 32 large
trained

1 CIFVid 32 27.30 33.14
1 UCID 32 large 31.00 58.55
2 CIFVid 32 26.69 30.35
2 UCID 32 large 32.23 59.28
2 CIFintra 32 27.30 54.14
2 (stride=1) CIFVid 32 25.34 33.67
2 (stride=1) UCID 32 large 28.46 66.88

5.5.1 Relaxing the Problem

Although the overall accuracy achieved on a network trained on predicted frame
patches from AllVid 80 was low, the confusion matrix implied a reasonable error rate.
Figure 5.2a shows the confusion matrix for NA 2 trained/tested on AllVid 80. Average
accuracy was 35.27%. With class labels combined as in equation 5.3, the accuracy
estimated from the confusion matrix is 54.65%. A network trained on the reduced la-
bel dataset yields a comparable accuracy of 56.25%. Therefore, the results obtained
from calculations on the confusion matrix after training are comparable to networks
trained specifically on these super classes. Table 5.6 shows that this is true across
all patch size 80 datasets. Composing super classes from adjacent classes prior
to training reduces the number of labels and slightly enhances generalisation in the
network, yielding slightly higher results from video-based datasets with correlation be-
tween video patches. The same pattern was repeated with other architectures. QP
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Table 5.5: Cross evaluation on similar sized datasets. accuracy for patch size 32 (network 3
failed to train) and for patch size 80

Patch size 32 Patch size 80

Network Tested on AllVid 32
trained

AllIntra 32
trained

UCID 32
trained

Tested on AllVid 80
trained

AllIntra 80
trained

UCID 80
trained

1 AllVid 32 26.72 24.68 31.34 AllVid 80 34.93 26.02 36.72
1 AllIntra 32 27.75 33.75 44.14 AllIntra 80 34.11 37.94 63.40
1 UCID 32 33.74 41.56 50.96 UCID 80 41.28 47.46 72.75
2 AllVid 32 26.78 25.38 31.79 AllVid 80 35.27 29.39 37.28
2 AllIntra 32 27.07 33.16 45.05 AllIntra 80 34.93 46.54 62.50
2 UCID 32 33.83 41.25 51.07 UCID 80 42.04 56.66 71.65
3 - - - - AllVid 80 29.97 24.91 29.35
3 - - - - AllIntra 80 29.94 42.67 55.95
3 - - - - UCID 80 38.99 53.81 61.17

in predicted frames can be estimated to within ±7 (one class) with more than 54%
accuracy. Higher quality frames are more challenging and this may be attributed to
the larger range of frequencies available in uncompressed data. CNN models cannot
distinguish between frequencies removed by compression and those simply absent in
the source data.

Table 5.6: Accuracy for patch size 80 (NA 2): composition after/before training

Tested on AllVid 80 trained AllIntra 80 trained UCID 80 trained
AllVid 80 54.65 / 56.25 52.99 / 54.08 60.70 / 59.55
AllIntra 80 55.24 / 56.51 66.62 / 67.55 78.81 / 78.47
UCID 80 66.81 / 67.94 78.58 / 79.57 88.43 / 88.41

The shape of the confusion matrices (Fig. 5.2) gives insight into the model’s learning.
Confusion matrices across all architectures and datasets demonstrated similar shapes
where the bottom left corner approached zero. Patches of high QP were seldom mis-
classified as low QP. In contrast, the top right corner of the confusion matrix, although
it displays lower numbers than the diagonal portion, does not always approach zero.
This pattern suggests that the model has learned something about the frequency do-
main. Natural images contain a large variety of frequencies, however quantisation in
the frequency domain selectively reduces these. Weaker (low amplitude) frequency
components are quantised to zero and thus filtered out of an image, leaving behind
only dominant frequencies. For natural scenes, where lower frequencies tend to dom-
inate, quantisation applied in video compression is effectively a low pass filter. This
explains the blocky appearance of compressed video. Low amplitude, high frequency
components aid smooth colour or intensity transition and removing these components
leads to sharper colour transitions at macroblock edges. The detection of high fre-
quency components within macroblocks therefore indicates lower QP. Unfortunately,
the converse is not necessarily true. An absence of high frequencies does not indi-
cate high QP, since some images naturally lack high frequency components.
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(a) First Layer Filters (Network Architecture 2,
AllIntra 32

(b) First layer filters (c) 4x4 DCT

Figure 5.3: Some of the first layer filters display visual similarity to a spatial representation of
the 4x4 DCT transform used in H.264/AVC. The first layer filters in this image are 5x5 pixels,
enlarged to enhance visibility.

5.5.2 First Layer Filters

A visual examination of the first layer filters confirms the presence of frequency fea-
tures. Figure 5.3a shows that these are not typical edge features and colour blobs like
those associated with image classification. Figure 5.3c shows a spatial representation
of the 4x4 Discrete Cosine Transform used in H.264/AVC. These are pixels that result
from an inverse DCT on a 4x4 coefficient matrix where only one coefficient is non-
zero. Figure 5.3b shows selected first layer filters from NA 2 trained on AllIntra 32.
Visual similarities are obvious. The CNN uses some first layer filters to infer frequency
information directly from the pixels. Statistical analysis of frequency was also used in
[197] to detect multiple compression.
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5.5.3 Whole Image Heat Map

Figure 5.4 shows classification results for 80x80 patches of a key frame from the se-
quence “flowers” at QP 0 and 35. A plain black border was added added after com-
pression to allow classification of 80x80 patches centred on every 16x16 macroblock.
The heatmaps all show misclassification along the top row due to the black border.
Comparing Figures 5.4a and 5.4d, it is difficult for human eyes to differentiate between
QP values, despite the large difference. The fine colour transition in the sky section is
correctly classified by a network trained on UCID 80 as low QP. The network trained
on AllVid 80 tends to overestimate sky QP and perform better on the colourful flower
section. At moderate QP, the model trained on UCID 80 performs well. The AllVid 80
trained network achieves a reasonable mean over the whole image but underesti-
mates QP in busy areas and overestimates in areas with fewer sharp edges. Mode 28
in Figure 5.4f shows how the model confuses adjacent labels and validates the use of
superclasses.

(a) flowers QP 0 (b) UCID (16.7/0) (c) AllVid (25.4/21)

(d) flowers QP 35 (e) UCID (35.6/35) (f) AllVid (33.0/28)

Figure 5.4: The heat maps showing the predicted QP for a frame from the sequence “flowers”,
NA 2 used (mean/mode)

5.5.4 Limitations

It should be noted that although it was possible to train many standard layer-style
CNNs to estimate the quantisation parameter, successful training was highly suscep-
tible to initial conditions. Some networks with the given architecture failed to train or
trained only after a large number of epochs. This may support the authors of [18],
who argued that convolutional neural networks in their current form are better suited
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to learning features relating to image content rather than those associated with manip-
ulation detection. However, it can be seen in this chapter that some networks can be
trained on this data and they learn frequency-style features consistent with the com-
pression algorithm used. Moreover, some applications of deep neural networks, such
as those mentioned in Section 3.3 show that many neural networks have an almost
unreasonable affinity for detecting patterns in images that are invisible to human eyes.
These patterns may be related to compression, and in order to investigate this, it is
reasonable to use a deep architecture with no novel layers. Although novel layers
have been proposed to detect low level features associated with video manipulation
[18], this work demonstrates that they are not necessary for all low level video features.

Additional experiments performed with closer together QP, such as QP =
[0,1,2,3,4,5,6,7]; QP = [0,2,4,6,8,10,12,14] and QP = [0,3,6,9,12,15,18,21] demon-
strated that accuracy was much lower when QP was closer together. In each case, a
perfectly balanced dataset was prepared using only intra frames and 80x80 patch size.
In the case of QP = [0,1,2,3,4,5,6,7], the network trained but achieved accuracy little
better than random chance. For QP = [0,2,4,6,8,10,12,14], the best accuracy achieved
was 16.37%. For QP = [0,3,6,9,12,15,18,21], the best accuracy was 21.64%. It can
be the case in compression that applying different QP to the same pixels can result
in identically transformed pixels: the different frequencies removed by the quantisa-
tion process simply do not exist in the data, so there is no change. The simplest
example of this is an area of flat colour which will remain unchanged by compression,
regardless of the QP value. In the case of our datasets, this could potentially result in
pixel patches which consisted of identical pixels but differing labels. To analyse how
frequent this was in natural content, the datasets were checked to see how many du-
plicates they contained. It was found that less than 1% of the patches in the dataset
were exactly duplicated in pixels but not in label, and that duplication was limited to the
test set or to very low QP values. This is acceptable and expected in a problem which
is intrinsically ambiguous. However, this test did not cover near-duplication and it can
be hypothesised that the image patches were simply too similar to allow the network to
differentiate between them. The strength of CNNs is in their ability to generalise. Data
augmentation aids learning in CNNs specifically because it allows more generalised
features to be learned. It can be hypothesised that if a process creates effects that
are more subtle than those produced by common data augmentation, then it may not
be possible for a standard CNN to adequately learn these effects. In any case, the
dataset with QP=[0,7,14,21,28,35,42,49] was used moving forward because, although
not perfect, it may be good enough for the application.
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5.6 Conclusions

We have shown that the level of compression of small image patches can be estimated
objectively by a CNN with a relatively straightforward architecture. The accuracy of
CNNs trained on intra frames is much higher than those trained on predicted frames.
The experimental results also strongly suggest that compression features learned from
still images (intra frames) alone do not transfer to predicted frames. Although a neural
network can be trained to estimate the QP in key frame patches, the results for pre-
dicted frames were weaker. In predicted frames, quantisation is applied to the residual
difference between predicted and actual pixels. CNN compression estimation may be
improved by using residuals from the compressed bitstream rather than reconstructed
pixels. It may also be necessary to first identify intra macroblocks within an image or
intra frames within a sequence in order to gain an estimate of accuracy in QP estima-
tion and use this feature to its maximum advantage.

Larger patch sizes yield higher precision but further investigation is needed to clarify
whether an optimum patch size exists. Smaller patch sizes are desirable if the model
is to serve as accurate tampering detection. The features learned in the first layer of
CNNs strongly resemble patterns of DCT coefficients, so QP estimation or the relia-
bility of network training may be improved by initialising some of the first layer weights
with DCT patterns or moving the problem in its entirety to the frequency domain.

Compression is no longer an irreversible “black box”. Although recompression de-
stroys information about original compression mechanisms in the compressed bit-
stream, tell-tale signs in the pixels can be used to estimate original levels and this
information could be used to detect video tampering, including splicing and multiple
compression.
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Chapter 6

A Compression Fingerprint

Chapter 5 examined learning quantisation parameters from pixels in detail, but found
a number of factors that influence the accuracy of this. In this chapter, we look at how
these factors can be detected and thus offset any disadvantages. In particular, it was
found in Chapter 5 that QP estimation from pixels by CNN was more accurate for intra
frames than predicted frames. Therefore, this chapter focusses on how to determine
from pixels which frames are intra frames and which are predicted. To this end, we
examine learning the inter/intra mode directly from pixel patches using CNN.

We also look at learning the H264/AVC deblocking filter [200, 27] setting directly from
pixels. The deblocking filter in H.264/AVC is a psychovisual feature which filters pixels
at the edges of macroblocks and sub-blocks according to the size of the associated
motion vector. It counteracts block artifacts in a sequence. It is turned on or off at
a sequence level and, because of this, could prove a useful feature for detection of
spliced video.

The main findings of this chapter and Chapter 7 are accepted to appear in the jour-
nal “Neural Computing and Applications” as the paper “Video Tampering Localisation
Using Features Learned from Authentic Content” [26].

6.1 Pixel Forensics

Any processing, particularly compression, can leave a forensic fingerprint on the pixels
of a video sequence. Analysing this fingerprint can provide a means to detect evidence
of video tampering, such as splicing, inpainting or inter-frame tampering. Here we look
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specifically at aspects of video compression that can usefully contribute towards this
fingerprint.

Fingerprints in video have been examined before, primarily in the area of video foren-
sics. Sensor pattern noise for camera model identification was examined in [1]. Shul-
lani et al [20] found that sensor pattern noise was affected by the compression applied
by two different social media platforms. However they also showed that video pro-
cessed by YouTube could be differentiated from video processed by WhatsApp. This
implies that individual social media platforms use different encoder settings, or even
encoders, which leave evidence of themselves in the pixels. In [167], an ensemble of
CNNs was used to extract the processing history of a given image, including evidence
of resizing, high pass filtering, recompression and Gaussian blurring. Unlike [18], the
authors of [167] did not use any novel convolutional layers. This shows that evidence
of processing can be learned by ordinary CNN layers.

As noted in Section 2.1, in H.264/AVC and MPEG-2, frames divide into macroblocks
and each macroblock can be intra or inter coded. Intra frames can only contain in-
tra macroblocks, but inter frames can contain both intra and inter macroblocks. For
non-predicted data, the pixel data itself is transformed into the frequency domain us-
ing Discrete Cosine Transforms (DCTs), quantised and variable length encoded for
transmission. For predicted data, a suitable patch of reference pixels is located, then
the difference between current and reference data is transformed, quantised and en-
coded. Knowledge of the inner workings of a compression encoder shows that the
inter/intra decision is made at the block level.

The detection of inter/intra mode is important in video tampering detection. There are
already a number of techniques for detecting video tampering which utilise intra-frame
detection. The authors of [201, 129] noted that recompressing a key frame as a pre-
dicted frame resulted in statistical features in the compression choices made by the
encoder; specifically, former intra frames had fewer skipped macroblocks when re-
encoded as predicted frames. These patterns were used to detect recompression and
could also detect deleted frames, provided a fixed GOP was used. The method pro-
posed in [202] also used intra-frame position analysis to detect digital video forgeries.
Using machine learning techniques, deleted frames in an MPEG-2 encoded video se-
quence were detected with 95% accuracy using elements of compression. However,
given that compression features were extracted directly from the bitstream itself, the
methods of [202] could be simply defeated via recompression. In this chapter, we aim
to overcome that challenge by estimating compression parameters directly from the
pixels. In Chapter 7, these patterns are then used to identify areas of inconsistency
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related to video tampering. In their survey, the authors of [21] noted that many inter-
frame tampering detectors failed when dynamic GOP was used or when an integer
number of GOPs were removed, implying that their functionality was based on identi-
fying “misplaced” intra-frames. This research shows that identification of intra-frames
in itself is a useful feature in video manipulation detection.

While intra-frame detection is useful in inter-frame tampering and recompression de-
tection, detecting a patch of intra-macroblocks could be useful for detecting splicing or
spatio-temporal copy-moves. There is no guarantee that intra-frames will align when
compositing two video sequences together. Intra-frames occur relatively infrequently,
so it is actually statistically unlikely for the intra-frames of composited content to co-
occur. Therefore, detection of intra-regions is a valid feature in itself to use to detect
tampering. There is also the possibility of some encoders using periodic intra refresh,
whereby intra-frames are only sent at the very beginning of a sequence. Subsequent
access points into the sequence are provided by intra-encoding successive regions of
macroblocks. Motion estimation is then restricted to use only refreshed regions, and
the decoder instructed to postpone frame display until a full frame has been refreshed.
This mode of operation has the potential to nullify any method that relies on intra-frame
detection, however intra-region detection may provide new valid methods.

The H.264/AVC deblocking filter is a filter designed to remove blocking artifacts as
part of the encoding process. Blocking artifacts (see Section 2.1.6) arise due to the
use of macroblocks. The deblocking filter acts at the horizontal and vertical edges of
blocks. Macroblock edges are filtered according to different parameters defined in the
standard [27], such as the size of the motion vectors and the deblocking filter settings.
It is one of the more visible compression settings. It is set on a sequence level and, as
such, provides a theoretical means to identify regions which have come from different
sequences and thus detect splicing.

6.2 Learning Compression Features

As noted in previous sections, there are a number of video features related to com-
pression that are likely to be useful in video analysis. We will examine:

• Quantisation Parameter (QP), which will give a measure of compression

• Inter/intra (I/P) frame mode, which will help to ascertain the expected accuracy
of the QP estimate
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• Deblocking filter settings, which may help to differentiate between the pixels of
sequences with different psycho-visual settings

• Frame deltas, or the differences between frames

• Key frames, inferred from the other features

The methods used to identify these features are detailed in the following subsections.
QP, I/P and deblocking features are learned from authentic sequences by CNN. The
frame delta value was set to 1 whenever the mean absolute difference of a given 16x16
pixel patch and the co-located patch in the previous frame was non-zero, and set to
zero otherwise.

6.2.1 Authentic Datasets for CNN training

When examining the effects of compression, is vital to start with unprocessed data.
For this we used standard YUV 4:2:0 sequences from xiph.org, which are commonly
used for video compression quality analysis [37]. Strictly speaking, YUV 4:2:0 is a
compressed format due to reduced resolution of the colour channels however it is
widely used as a starting format in video compression. The sequences from xiph.org
come in various dimensions and cover a wide variety of subjects from studio-shot
sequences to outdoor scenes. All sequences are single camera, continuous scenes
with varying degrees of camera motion.

A large amount of data is required to train a neural network and uncorrelated data
will produce a more generalised network. It is possible to use still image data as sin-
gle frame sequences when focussing on spatial compression artifacts and excluding
temporal compression. For this purpose, the images of UCID [166] were used. UCID
consists of uncompressed images which are either 512x384 pixels or 384x512 pixels
and cover a wide variety of subject matter. All are natural scenes and taken with the
same camera. Of the original reported 1338 images in the dataset, only 882 were
available for download1. Using a dataset of single images is not ideal since predicted
frames cannot be examined. However it allows for a greater variety of pixel combina-
tions in a smaller dataset because individual images are uncorrelated. Each image
from UCID was regarded as a single frame video sequence.

Following [25], we processed the video using various compression parameters to syn-
thesise a number of original datasets summarised in Table 6.1. Each video sequence
was compressed using the open source H.264/AVC encoder x264 and one of a range

1UCID images from http://jasoncantarella.com/downloads/ucid.v2.tar.gz

99



Table 6.1: A summary of original datasets from publicly available sources

Name Source Length Dimensions Key Deblock
AllVid xiph.org 45 videos 176x144 to 1920x1080 1/250 off
AllIntra xiph.org 45 videos 176x144 to 1920x1080 all off
AllDeblock xiph.org 45 videos 176x144 to 1920x1080 1/250 on
UCID UCID [166] 882 images 512x384 or 384x512 all off

of constant QP levels in variable bitrate mode. Constant quantisation parameters were
selected with an even distribution: QP=[0, 7, 14, 21, 28, 35, 42, 49]. Constant bitrate
rate control and psychovisual options were turned off. Deblocking filter was set as
specified in Table 6.1. For datasets containing predicted frames, the key frame inter-
val was 250. Patches were then extracted from the decoded YUV 4:2:0 sequences.
Patches were upsampled from YUV 4:2:0 to YUV 4:4:4, where the Y-channel repre-
sents intensity and U and V channels are colour.

Table 6.2 summarises synthesised datasets. A large temporal stride was used to
limit correlation between patches from the same video sequence. Consecutive frames
are similar to each other and a neural network trained with correlated dataset will be
subject to overfitting. All datasets were prepared in advance of network training and
original video sequences were split into disjoint train and test sets prior to compression
and patch sampling to prevent data leakage2. The images of UCID were encoded as
all intra frames, and used as supplemental data to AllIntra.

A patch size of 80x80 pixels was used. Block edge artifacts in intra frames will present
themselves at macroblock and sub-block boundaries. Therefore, any patch size larger
than 16x16 will capture block edge artifacts. In [194], a small patch size of 32x32 was
selected, but results in [25] and Chapter 5 showed that larger patch sizes yielded more
accurate local results. When aligned with the macroblock grid, 80x80 pixels covers 5x5
complete macroblocks. A larger patch size allows for more context and image features
within the patch to contribute towards QP estimation. Spatial strides were selected so
that there was no patch overlap in the training set, although patches taken from the
same video sequence would exhibit some correlation.

Each dataset in Table 6.2 consists of a number of YUV 4:4:4 patches, each labelled
appropriately. QP was labelled according to the quantisation parameter. The inter
or intra labels depended only on the frame type, and not on individual macroblock
types. The deblocking filter label was selected based on sequence level parameters.
From each synthesised dataset, a neural network was trained to perform classification

2Training sequences: akiyo, bridge-close, bridge-far, carphone, claire, coastguard, foreman, hall,
highway, mobile, mother-daughter, paris, silent, stefan, tennis, waterfall, old town cross, crowd run,
ducks take off, in to tree, mobcal, old town cross, parkrun, shields. Test sequences: bus, flower, news,
tempete
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Table 6.2: A summary of patch datasets

Name Source Label # Train # Test
IntraForQP AllIntra QP 764640 56392
Intra0vsInter1 AllIntra, AllVid I=0, P=1 836512 12992
Deblock1 AllDeblock, AllVid Deblock=0,1 836512 12992

according to the label.

6.2.2 Network Architecture

In Chapter 5, three different network architectures (NAs) were examined for one com-
pression parameter (the quantisation parameter or QP). Here, one fully convolutional
architecture was used, similar to the architecture used in [159] which obtained particu-
larly good results on CASIA2 [44]. CASIA2 is known to suffer from asymmetric image
processing between tampered and non-tampered image classes [160], therefore this
network architecture is already known to perform well in detecting image process-
ing, and specifically recompression. An independent network with this architecture
was trained for each separate compression parameter, yielding three sets of network
weights, one each for QP, deblock and inter/intra.

Using the notation defined in Table 2.3, the architecture used was: conv5x5-30, norm,
pool2x2, conv3x3-16, conv3x3-16, conv3x3-16, norm, pool2x2, conv3x3-16, conv3x3-
16, softmax. A convolutional stride of 2 allowed sufficient overlap to encounter com-
pression artifacts while reducing the number of network parameters. Input was image
patches of format YUV 4:4:4 which were rescaled to values between 0 and 1 and
whitened. In order to preserve compression artifacts in situ, no further data augmen-
tation was used. Batch size was 128 patches. Adam [203] was used for gradient
descent in the quantisation parameter network and stochastic gradient descent for the
intra/inter and deblock features. The networks were implemented using TensorFlow.

6.2.3 CNN Compression Parameter Estimation Accuracy

The mechanism of quantisation with H.264/AVC is discussed in Section 2.1.1 The
quantisation parameter (QP) in H.264/AVC can be expressed as:

0 ≤ QP ≤ 52, QP ∈ R (6.1)

Patches with similar QP labels exhibit similar compression features, and confusion
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matrices and analysis in Section 5.5 reflect this. Two different QPs might have very
similar effects on a given patch, depending on the patch content. As noted in Section
5.5.4, pixel-wise duplicates are uncommon, but using close QP results in low network
accuracy. Therefore, QP was sampled at [0, 7, 14, 21, 28, 35, 42, 49]. Another source
of ambiguity is the presences of skipped macroblocks. In simple terms, a skipped
macroblock in a predicted frame can be almost identical to the reference macroblock
in the reference frame. This means that there may exist some predicted regions whose
pixel content is identical to regions in a key frame. Using larger patch sizes decreases
this risk, and, as noted in Section 5.5.4, the datasets contained very few samples
where pixel content was identical but labels differed.

6.2.4 Key Frame Detection

One thing that was evident from Section 5.5 was that accurate estimation of quantisa-
tion parameters in predicted frames is challenging. This is because the quantisation
parameter is applied to the difference between the motion compensated macroblock
from previous encoded frames and the current macroblock being encoded. If this delta
is unknown, as in the case where only the pixels can be relied on, then it is difficult
to estimate the quantisation parameter. For this reason, QP estimation on predicted
frames relies on the presence of skipped blocks which remain unchanged since the
last key frame and intra blocks. In order to avoid such challenges, it was decided to
identify and process only key frames.

A large percentage of compression in video comes from predicted frames. It is much
more efficient to compress the differences between frames than it is to compress ev-
ery single frame independently. With the advent of integer transforms in standard
compression codecs, periodic key frames are no longer required to correct transform
rounding error accumulation. Therefore, it is reasonable to assume that key frames
are in the minority in a video sequence. Moreover, because non-predicted frames are
inherently larger than predicted frames, and rate control mechanisms attempt to avoid
peaks in bitrates, key frames are often compressed using higher QP than predicted
frames. Key frames can also exhibit more block artifacts than predicted frames since
macroblock edges are all aligned. These features can be used to identify key frames.

To identify key frames we first estimated the quantisation parameter qp, the inter/intra
parameter ip and the deblocking parameter db for patches in every frame of a se-
quence. Note that qp is distinct from QP in that the variable qp has been estimated
directly from the pixels themselves as, as such, may be subject to inaccuracies. The
patches were 80x80 pixels and separated by a stride of 16 pixels (overlapping). Patch
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values for qp, ip and deblock were then averaged over each frame in a sequence and
the differences between the averages taken. The three different predictions were then
combined as in Equation 6.2

af = (qpf − qpf−1)× (ipf − ipf−1)× (dbf − dbf−1) (6.2)

Where qpf represents the average CNN predicted quantisation parameter for frame
f and qpf−1 is the same parameter for the previous frame. Key frames were then
defined as any frame where the value of af was more than two standard deviations
from the mean of af .

6.2.5 Tampered Video Datasets

Two publicly available datasets were used for evaluation: D’Avino et al [16] and Video
Tampering Dataset (VTD) [15]. Both of these datasets are intended for tampering
detection, but contain evidence of real world compression. VTD is distributed via
YouTube and, as such, has also been subject to recompression. The details of
the latest YouTube compression are available direct from the downloaded bitstream.
D’Avino’s dataset is supplied as uncompressed .avi files, therefore there is no bit-
stream evidence of compression, however the video sources are well described in the
associated paper [15] and some compression features can be inferred. Further details
of these datasets are available in Section 7.3.

Raw YUV 4:2:0 files from Derf’s media collection [37] were also used to test the ef-
ficacy of the intra-frame detection (see Section 6.3.2 for details on processing and
results).

6.3 Evaluation of Compression Feature Detectors

Results indicate that standard CNNs can be trained to achieve a reasonable level of
accuracy in determining three compression parameters directly from pixels, and that
this accuracy is sufficient to identify key frames.
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Table 6.3: Accuracy of CNNs trained for compression parameter classification

Trained to classify Number of classes Accuracy
QP 8 71.18 %
Inter/Intra 2 69.23 %
Deblock 2 66.53 %

6.3.1 CNN Compression Parameter Estimation

The three trained CNNs achieved the accuracies listed in Table 6.3. Training a network
to detect compression parameters directly from pixels will always be subject to some
degree of error. For example, areas of flat colour, although relatively uncommon in nat-
ural images, are not subject to quantisation of frequency components, since there are
no high frequency components to quantise. This is an extreme example, but it can be
generalised: not all pixel regions will naturally contain all relevant features necessary
for classification. This effect can be seen in the confusion matrix (Figure 6.1). The
network incorrectly labels some lightly compressed patches as heavily compressed,
and this is likely due to a natural lack of high frequencies in those regions. Similarly
for the inter/intra network, we label on the frame level, not on the macroblock level.
It is possible for the pixels in a macroblock to remain unchanged between key and
predicted frames if the video content is static. With regards to the deblock filter, al-
though it is set on or off on a sequence level, the parameters which control the level of
filtering on individual macroblocks are also partly controlled by motion vectors. All of
these factors contribute to ambiguity in the labels for individual macroblocks, but are
sufficiently evened out over a patch size of 80x80 pixels to achieve a workable level
of accuracy. This can be seen in Figure 6.2 where the average estimated QP for the
complete frame is accurate but individual regions display some variance. In particu-
lar, the white sky region is allocated a relatively high QP, demonstrating a lack of high
frequency coefficients in this saturated area.

Figure 6.1: Confusion matrix for QP-trained network
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Figure 6.2: QP heatmap for test sequence flowers, QP=35. The heatmap gives an average
prediction of QP=35 but there is some variation between individual regions

6.3.2 Key Frame Identification

The key frame identification was performed as in Section 6.2.4. Because it is based
on outliers, this method of key frame identification assumes at least one key frame in
the sequence, other than the initial frame. Key frames occur when specified by the
compression encoder. Cut scenes will sometimes trigger the encoding of a key frame,
but not always, and not all key frames occur on cut scenes. Frame differences can
sometimes indicate key frames, but they are not reliable as can be seen by comparing
Figures 6.3 and 6.4.

158 159 160 161

Figure 6.3: Frames 158-161 of sequence “forgery CCTV London Str” [15], showing (top to
bottom) sequence, binary frame difference for 16x16 blocks (black = no difference, white = dif-
ferences) and QP prediction using a trained neural network. Frame differences clearly indicate
the key frame, even though it is not visible in the sequence. The key frame is frame 160

To gauge its efficacy, the method of key frame identification was tested on a number
of sequences which comprised compressed and recompressed versions of YUV test
sequences. These were first compressed with the open source encoder x264 using
different bitrates (0.01, 0.02, 0.05, 0.1, 0.2 bits per pixel) and an intra-frame frequency
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158 159 160 161

Figure 6.4: Frames 158-161 of sequence “forgery basketball skills” [15], showing (top to bot-
tom) original sequence, binary frame difference for 16x16 blocks (black = no difference, white
= differences) and QP prediction using a trained neural network. Frame differences do not
always highlight key frames. The key frame is frame 160

Figure 6.5: F1 scores for key frame identification in singly and doubly compressed sequences

of 1/30. The resulting compressed sequences were then re-compressed using the
same bitrates but an intra-frame frequency of 1/25. It was found that the method per-
formed very well between bitrates of 0.02 and 0.2 bits per pixel (bpp) in identifying the
key frame from the latest compression. This is shown by the graph for single com-
pression and the line for the second compression in the graph of double compression
in Figure 6.5. Below bitrates of 0.02 bpp, the visual video quality was very poor and
the predicted quantisation parameter started to saturate to its highest level, leading to
inaccuracies in key frame identification. Above bitrates of 0.2 bpp, the predicted quan-
tisation parameter did not saturate but accuracy still dropped. It is probable that the
reduced accuracy was due to rate control choices made in the x264 encoder. With a
higher bitrate available, peaks in bitrate due to key frames are comparatively reduced.
Therefore, it becomes more efficient to encode key frames with higher quality, yielding
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more accurate reference frames and consequently reducing the bits required for pre-
dicted frames. Re-compression at bitrates below 0.1 bpp effectively camouflaged key
frames from the previous compression. As bitrates of the second compression process
increased, evidence of key frames from the previous compression process emerged,
as can be seen by the rise in the “first compression i-frames” F1 score graph.

diffs QP I/P deblock combined

Figure 6.6: Graphs showing differences between the mean value per frame of each feature for
the sequences “Forgery basketball skills” (top) and “Forgery CCTV London Str” (bottom) [15].
Frame averages vs frame number for (left to right): absolute frame differences; predicted
QP; predicted inter/intra; predicted deblock; combination as in Equation 6.2. The key
frames can be clearly identified as outliers using a combination of the CNN predicted features
and verified as correct by analysing the compressed bitstream.

The method of identifying key frames was then applied to VTD. It should be noted that
our method was effective at bitrates corresponding to those of VTD. As can be seen
in the graphs in Figure 6.6, combining predicted QP, inter/intra and deblocking values
as in Equation 6.2 provided a clear indication of key frames in the latest compression.
Using the frame averaged mean absolute difference between frames yielded noisy
results and did not accurately identify key frames. Comparing the key frames identified
using this method with those extracted from the bitstreams of the forged sequences
of VTD [15] achieved 87 true positives out of a total of 93 key frames. There were 27
false positives, giving an F1 score of 0.84. The majority of false positives (16 false
positives) came from two sequences: “Forgery cake cooking” and “Forgery Awesome
Cuponk” which both contain “fade” cut scenes. “Forgery cake cooking” also contains
evidence of temporal upsampling from 25 fps to 30 fps. The robustness of this method
of key frame detection against temporal upsampling has not been investigated, and
this is left for future work. Since non-uniform temporal upsampling would be indicative
of video splicing, a method to detect it would prove useful.

The key frame detection method was also applied to D’Avino et al’s dataset [16]. Al-
though the dataset is supplied as uncompressed .avi files, the key frame detector
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provided evidence of previous compression by locating regular key frames at approxi-
mately 30 frame intervals.

6.4 Conclusions

We have shown that three features of H.264/AVC compression, namely quantisation
parameter, intra/inter and deblock modes, can be estimated objectively by CNN using
authentic, synthesised datasets. These features have been used to predict the location
of key frames in video sequences, where they provide some advantage over the use
of simple frame deltas. We have also investigated how well the intra-frame localisation
works through recompression and shown that evidence of previous compressions re-
main provided subsequent compressions use a sufficient bitrate or quality level. Previ-
ous compression can be effectively laundered only when subsequent recompressions
use lower quality encoder settings, such as lower bitrate. This is consistent with the
functionality of H.264/AVC compression.
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Chapter 7

Tampering Detection

Chapters 5 and 6 looked at how the compression features of a sequence can be esti-
mated and analysed. Here, we examine how these features can be used in detection
of video manipulation.

Video tampering detection remains an open problem in the field of digital media foren-
sics. As video manipulation techniques advance, it becomes easier for tamperers to
create convincing forgeries that can fool human eyes. Deep learning methods have
already shown great promise in discovering effective features from data, particularly in
the image domain, however they are exceptionally data hungry. Labelled datasets of
varied, state-of-the-art, tampered video which are large enough to facilitate machine
learning of state-of-the-art tampering techniques may never exist while the field of dig-
ital video manipulation is advancing at such an unprecedented pace. Therefore, it is
vital to develop techniques which can be trained on authentic or synthesised video but
used to localise the patterns of manipulation within tampered videos. In this chapter,
we develop a framework for tampering detection which uses the features derived from
authentic content in Chapters 5 and 6 to localise tampered regions in publicly available
tampered video datasets. Extensive evaluation suggests these features can be used
successfully to localise tampering, subject to some explainable limitations.

The main findings of this chapter and Chapter 6 are accepted to appear in the jour-
nal “Neural Computing and Applications” as the paper “Video Tampering Localisation
Using Features Learned from Authentic Content” [26].
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7.1 Challenges in Detecting Tampered Video

There are a number of challenges in the detection of tampered video. As shown in
Chapter 3 there are many, many different ways to alter video content, but compari-
tively few publicly available datasets. In their 2017 paper reviewing video content au-
thentication techniques, Singh and Aggarwal [70] noted that there was no consistent
database of realistically doctored videos. More recently, a number of datasets have
become available, but their composition varies. VTD [15] supplies authentic and tam-
pered versions of the same sequences but does not explicitly supply masks. D’Avino
et al [16] supplies tampered and authentic counterparts and includes masks. Face-
Forensics [17] focused exclusively on the tampering method of Face2Face [6], but its
recent successor FaceForensics++ [22], also provides video that uses FaceSwap and
DeepFakes manipulation.

Some video manipulation techniques are completely invisible to human viewers, so a
fully labelled dataset is required. Manipulation techniques are currently more powerful
than detection techniques [168], with many ways to digitally alter an image or video but
relatively few methods to detect such manipulations, and fewer still that are agnostic
to the type of tampering applied. There is therefore a need to develop detection tech-
niques that are independent of the type of video manipulation. Moreover, some video
manipulation methods ultimately create a video sequence where the majority of pixels
are authentic. This leads to a class imbalance problem in video tampering localisation.

Although video tampering detection techniques exist, these are often tailored to spe-
cific tampering techniques and evidence suggests that they do not always generalise.
The authors of [17] produced FaceForensics, one of the largest manipulated video
datasets to date, based exclusively on the digital re-enactment strategy Face2Face
[6]. Authentic sources were taken from YouTube and used to perform digital puppetry
[6]. A deep neural network was successfully trained to detect manipulated video con-
tent with less than 1% error where humans did little better than guessing, but in [80] is
was shown that a similarly trained network completely failed to detect digital tampering
in other sequences. The authors of [80] compiled their “Fake Face in the Wild” (FFW)
dataset by mining content from YouTube which already contained digital facial manip-
ulations. They also used SwapMe from [204], which is a dataset of swapped faces
on JPEG images. The fake faces in both FFW and SwapMe went almost completely
unnoticed by an Inception network trained on FaceForensics. This result implies that
there is some consistency within FaceForensics which is absent in SwapMe and FFW.
One likely source to be overlooked by human eyes is compression. SwapMe has
JPEG compression, and FFW, like the FaceForensics authentic sources, is subject to
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YouTube compression. The high quality FaceForensics manipulated content, however,
is uncompressed, or, rather, lacks features associated with common YouTube levels of
compression, as we demonstrate in this chapter.

Machine learning techniques are evidently very good at discovering consistencies
and patterns within data and are successfully used to detect tampering on singular
datasets[17, 2], but techniques are required to fulfil their large data requirements. In
[168], a Siamese neural network was used to identify whether image patches exhib-
ited consistent image metadata and could, therefore, have come from the same image
pipeline and be part of the same authentic image. Their network was trained using
only authentic images and their associated EXIF metadata, so a large dataset could
be gathered quickly and simply. Using 80 features from EXIF metadata and 3 fur-
ther processing techniques (JPEG compression level, Gaussian blur and re-scaling),
the authors managed to classify whether two 128x128 pixel patches were consistent
with each other or not and achieve a new state-of-the-art in image tampering localisa-
tion. Also in the image domain, similar methods were used in [204] on face swapped
images: a large dataset of face swapped images was generated using two different
methods of face swapping. A triplet network was used to ascertain whether given
patches were more consistent with background patches from the same image or from
different images. The second network of the two-stream architecture was trained to
classify faces as authentic or fake. The network trained on SwapMe achieved accuracy
of 99.5% and 82.9% when tested on SwapMe and FaceSwap test sets, respectively.

While image metadata is often available in online image files, authentic video metadata
is not as readily available. Video files are much larger and will often be edited or
compressed and recompressed for storage or streaming purposes. Recompression
can also mask tampering, but some evidence can remain.

The method of tampering detection presented in [16] relied on the availability of several
authentic frames. The authentic frames were used to train a neural network autoen-
coder, which “encoded” 128128 pixel patches to their quintessential components and
then “decoded” them back to their original size. Because the autoencoder was trained
using only pristine patches, spliced content resulted in a large, detectable error be-
tween the output of the autoencoder and the pixels of the actual patch. This error was
used to classify frames as tampered or authentic. The method relied on the availabil-
ity of authentic frames from the sequence under test, however, and these cannot be
guaranteed.
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7.2 A Framework for Video Tampering Detection

The full proposed framework for tampering localisation is summarised in Figure 7.1.
First the sequence is split into 80x80 patches. This allows for differing frame dimen-
sions and differing sequence lengths. Only intra frames are selected to overcome the
limitations associated with the current trained networks, and these are identified using
the methods described in Chapter 6. With a fully labelled dataset, individual patches
can be labelled as tampered or untampered according to the mask. For simplicity,
the minimum tampered region in a patch necessary to assign a “tampered” label is
1 pixel. The features are currently features of compression, and the CNNs used to
extract them are trained using authentic data as in Chapters 5 and 6. The features
used are Quantisation Parameter (QP), deblocking filter and inter/intra mode. The
patch feature vectors can then be used to train a simpler classifier, and in this case
we used Random Forest [205] with 100 estimators. We also tested Decision Trees,
Naive Bayes and Support Vector Machine classifiers, but Random Forest gave the
best results, although all four classifiers were very similar.

Sequence (YUV) 80x80 pixel patches
(labelled) Patch features patch classification

(authentic or tampered)

Sliding window for
overlapping patches

Feature extractor
(CNN classifiers)

Feature classifiers
trained with labelled

data

Figure 7.1: Proposed tampering detection framework

The use of 80x80 patches allows for tampering localisation within frames of a video
sequence. It yields more samples from a smaller dataset, and allows both tampered
and authentic patches to come from the same sequence. Tampered datasets can also
be balanced if they are represented as a small number of patches. Class imbalance
is an inherent challenge in tampering localisation with many sequences consisting of
far more authentic pixels than tampered.

7.3 Datasets for Tampering Detection

As seen in Section 3.4, large and varied datasets for video tampering detection are in
short supply. Three publicly available datasets were used for evaluation: FaceForen-
sics [17], D’Avino et al [16] and Video Tampering Dataset (VTD) [15].
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For D’Avino and VTD, “frame deltas” were calculated for 16x16 pixel patches to corre-
spond with the QP prediction values as described in Section 6.2. Frame deltas were
not calculated for FaceForensics, since only a single frame was used.

7.3.1 FaceForensics: Synthetic Regions

FaceForensics [17] is a large, tampered video dataset. The content is restricted to talk-
ing heads, including news readers, with minimum dimensions of 480p and 300 frames.
The authentic source videos originally came from YouTube and, as such, began their
life compressed. In this dataset, video manipulation is done using Face2Face [6], and,
when present, tampering begins on the first frame of the sequence. Every tampered
video has an authentic counterpart, and the video sequences are supplied as loss-
lessly compressed files. The sequences are also available compressed, but we leave
this dataset for future work.

Only the first frame of every sequence in the dataset was used and there is no guaran-
tee that every first frame is an intra frame. In order to balance the dataset and speed
up processing, crops of the tampered areas and corresponding authentic areas were
created by using the difference between related authentic and tampered sequences.
Areas outside of the crops were pixel-wise identical between tampered and authentic
content. Figure 7.2 gives an example from FaceForensics and shows how cropping
was done.

Crops of the first frame of each sequence were split into 80x80 patches. The individ-
ual patches were then passed through pre-trained CNNs from Chapters 5 and 6, to
estimate their QP parameter along with inter/intra mode and deblocking setting. The
patches, now represented by 3 values (QP val, intra/inter mode and deblocking filter
setting) were then used to train and test several basic, supervised machine learning
classifiers: Naive Bayes, Decision Tree, Random Forest and Support Vector Machine
(SVM). The test/train splits defined in the dataset were used.

7.3.2 D’Avino’s Spliced Video Dataset

The dataset provided by D’Avino et al [16] consists of 10 spliced videos. The se-
quences are all 720p and 281-488 frames in length. Each sequence is a single
camera, continuous scene, although the camera is not always static and some se-
quences are subject to significant camera motion. Individual frames of the sequence
do not always contain a tampered region. Unlike FaceForensics, in some sequences
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(a) Authentic, full (b) Binary diff (c) Tampered, full

(d) Authentic, crop (e) Difference (f) Tampered, crop

Figure 7.2: Example from FaceForensics.

of D’Avino, the tampered region does not appear in the first frame of the sequence.
This meant that for our detection framework, intra frames had to be extracted using
the method in Chapter 6, reducing the size of the dataset. Only sequences contain-
ing spliced content were considered, and masks were used to label pixels patches as
authentic or tampered.

The dataset itself provides uncompressed .avi video files for original, forged and binary
mask for each sequence, however the source videos used to create splices have been
compressed in the past and evidence of compression can be found in the pixels (see
Section 7.4). Original background videos were filmed by the authors, but content for
the chroma-keyed regions was obtained from YouTube and other sources1. Splicing
was achieved using Adobe After Effects CC.

The authors have benchmarked this dataset using an autoencoder which was trained
on 50 authentic frames and then used to process 100 test frames from each sequence.
The error between the autoencoder-constructed frame and the actual frame was then
thresholded on a sliding-window basis to obtain a “tampered” or “authentic” classifica-
tion. Using this method, the authors were able to obtain an average true positive rate
of over 0.9 for an average false positive rate of 0.1.

1Some spliced content of [16] came from https://www.hollywoodcamerawork.com/green-screen-
plates.html
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7.3.3 VTD: Compressed Video Tampering Dataset

VTD [15] comprises 26 forged sequences and their 26 authentic counterparts. There
are also 7 authentic sequences available in the dataset. The tampered video files
comprise 10 sequences of spatio-temporal copy-move, 6 inter-frame tampering (frame
shuffling), and 10 spliced sequences. For our purposes only 10 copy-move and 10
spliced sequences were used. The sequences are between 420 and 480 frames
in length and are all available in 720p, barring a single 420p sequence. Some se-
quences contain cut scenes and there is evidence of non-motion compensated re-
sampling within the dataset, which implies that source videos were not pristine.

The dataset is distributed via a YouTube channel and, as such, is subject to re-
compression. The videos were downloaded from YouTube selecting the highest pos-
sible bitrate and frame dimensions, and the average bitrate was 1.7 Mbps, which
equates to a compression rate of 0.06 bits per pixel (bpp). Re-compression itself
makes mask extraction noisy, and tampering localisation particularly challenging, as
outlined in Section 3.5. The lack of mask provision for this dataset also highlights
the somewhat philosophical question of whether a pixel which remains unchanged
between authentic and tampered sequences, yet forms part of a tampered object,
is considered tampered or not. However, data from the compressed bitstream is also
available, allowing accurate identification of key frames from the most recent (YouTube)
compression. VTD is, as yet, unbenchmarked.

For VTD, masks were extracted using a thresholded difference between each frame
of the forged and corresponding authentic sequences. Pixels with a difference
higher than the threshold were labelled tampered, and those below labelled authentic.
Thresholds in the range 0 to 64 were selected manually for each sequence. The mask
pixels were then filtered temporally, using majority vote across 3 frames consecutive
frames to remove erroneous compression noise. Finally, morphological operations
were applied to each frame for further consolidation of the mask.

Again, intra frames were extracted using details from the downloaded bitstream. It was
found that this dataset contained very few key frames, typically only 3 per sequence
and a tampered region coinciding with a key frame was not guaranteed.

7.4 Compression Feature Distributions

In order to first show that predicted compression parameters can be used to locate
tampering in video frames, we first examine the compression feature distributions of
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Table 7.1: Predicted QP on authentic and tampered pixels in detected key frames

Sequences Average QP
(mask=0)

Average QP
(mask=1)

Average ab-
solute diff.

FaceForensics [17] (Face2Face) 26.81 11.27 15.54
D’Avino [16] (splice) 20.00 9.77 10.28
VTD [15] (splice) 31.55 26.46 5.08
VTD [15] (copy-move) 32.43 34.18 3.85

Table 7.2: Compression Features in D’Avino’s Spliced Dataset

Sequences QP
(mask=0)

QP
(mask=1)

Deblock
(mask=0)

Deblock
(mask=1)

I/P
(mask=0)

I/P
(mask=1)

01 TANK 22.13 12.26 0.64 0.62 0.70 0.80
02 MAN 27.85 14.95 0.69 0.90 0.61 0.84
03 CAT 12.38 7.80 0.85 0.75 0.90 0.96
04 HELICOPTER 17.83 10.13 0.34 0.76 0.94 0.96
05 HEN 23.31 10.36 0.59 0.91 0.85 0.89
06 LION 27.52 10.94 0.45 0.87 0.59 0.88
07 UFO 14.57 10.16 0.81 0.96 0.73 0.98
08 TREE 21.26 7.92 0.25 0.86 0.88 0.96
09 GIRL 17.60 6.71 0.51 0.86 0.77 0.86
10 DOG 16.03 7.07 0.61 0.87 0.70 0.91

the datasets. Table 7.1 shows predicted QP, averaged over the regions defined by the
binary tampered mask. The last column in Table 7.1 shows the absolute difference
in average QP averaged over all sequences for D’Avino and VTD. It is necessary
to look at the difference in QP within individual files in this way because although
the tampering method is consistent throughout the dataset, the sources differ. The
hypothesis is that spliced patches will differ from authentic patches within a sequence,
not that there will be a similarity between spliced content of a given dataset.

It can be seen in Table 7.1 that there is a distinct difference in QP averaged over
authentic and tampered regions, particularly for the spliced content of [16] and the
digital re-enactment content of [17] where the average absolute difference is larger
than the granularity of the QP classifier.

Figure 7.3 shows the predicted QP class distribution for some sequences from [16].
Table 7.2 shows the averages per sequence. This shows that authentic regions and
spliced regions display two different quantisation parameter distributions. The masked
content in general has a lower QP while the authentic background content displays
higher QP. The sequences of [16] consist of authentic content filmed on hand-held
camera phones spliced with green screen plates. It can be deduced that, for these
sequences, the hand-held cameras produced video of a lower quality than the green
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screen plates, resulting in distinct differences in QP distribution. Similarly, the higher
quality tampered data evidences more features consistent with the application of a
deblocking filter. It cannot be ascertained whether this reflects the original settings
of the source sequences, but it does allow a degree differentiation between tampered
and authentic patches in some sequences. The inter/intra feature provides the least
distinction between tampered and authentic patches, but the spliced patches, in this
case, are more likely to be classified as “inter”. Given that this test was run over only
intra frames, and that the intra frame decision was made using frame deltas and QP,
this demonstrates that the I/P feature may not be particularly accurate on real data
with constant bit rate, however it may still be useful for differentiating content in the
same frame from two different sources.

(a) 05 HEN (b) 06 LION (c) 07 UFO (d) 08 TREE

Figure 7.3: Predicted QP class distribution for authentic and spliced content in detected key
frames of tampered sequences from [16]

Figure 7.4 shows graphs of QP distribution of some sequences from VTD. Table 7.3
shows results for the splice and copy-move content. The copy-move content does
not display a marked difference in predicted QP parameters because all copy-move
content comes from within the same sequence and, hence same QP distribution. The
sequence “dahua” has an overall average key frame QP of 34.36, with authentic con-
tent of 34.40 and tampered content average 33.93. The difference for spliced content
is slightly higher, and the spliced sequence shown in Figure 7.4 has overall average
key frame QP of 32.69, with authentic content of 33.14 (variance 15.25) and tampered
content average 25.88 (variance 6.11). This is not significant enough for our CNN QP
predictor to ascertain with high levels of accuracy which distribution individual regions
come from. The training set for our QP predictor used QP steps of 7, and the differ-
ence between spliced and authentic content of VTD is smaller than this. This effect
can be attributed to the re-compression step in the processing of this video: if the qual-
ity of both spliced and authentic content was reduced during re-compression, then any
differences in QP distribution will be consequently smoothed. Frame shuffling may ex-
hibit differences in QP, but our current technique is limited by its reliance on key frame
detection.

Table 7.4 shows frame deltas (Section 7.3) averaged over regions and sequences for
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Table 7.3: Compression Features in VTD Dataset

Sequences QP
(mask=0)

QP
(mask=1)

Deblock
(mask=0)

Deblock
(mask=1)

I/P
(mask=0)

I/P
(mask=1)

Spliced Sequences
billards 28.72 25.01 0.37 0.55 0.77 0.86
studio 30 24.68 0.71 0.25 0.73 0.88
plane 35.17 33.12 0.31 0.31 0.73 0.97
bowling 32.37 25.16 0.35 0.22 0.71 0.97
kitchen 32.71 23.59 0.37 0.68 0.47 0.92
passport 26.64 23.29 0.73 0.88 0.64 0.63
highway 35.46 - 0.52 - 0.57 -
carpark 33.36 29.39 0.22 0.61 0.33 0.6
carplate 32.84 27.42 0.3 0.42 0.8 0.89
cake 32.11 26.46 0.58 0.6 0.49 0.68
Copy-move Sequences
swimming 32.96 35.05 0.41 0.09 0.65 0.84
archery 31.81 28.3 0.47 0.22 0.6 1
basketball 33.83 39.08 0.55 0 0.68 1
camera 33.02 42.57 0.36 0.1 0.78 0.98
cctv 29.34 - 0.39 - 0.74 -
clarity 29.95 - 0.24 - 0.62 -
dahua 34.4 33.93 0.16 0.44 0.78 0.73
football 31.1 26.69 0.69 0.81 0.44 0.31
manstreet 30.01 34.98 0.33 0.17 0.44 0.34
whitecar 32.3 32.87 0.42 0.72 0.51 0.49

VTD and D’Avino. It can be seen that the averaged frame deltas for the tampered
and authentic content of [16] are very close. There is a much bigger difference in
VTD’s spliced content. This is because some sequences, such as “Forgery Billiards”
and “Forgery Studio” simply used static images as their spliced content. Similarly,
some of the copy-move sequences, such as “Forgery basketball skills” and “Forgery
100m swimming”, also used static content, however since the tampered areas are also
relatively static, it is not clear if this is an explicit feature of the tampering itself or simply
of the region that was tampered.

Figure 7.5 shows the distribution of QP parameter over tampered and authentic con-
tent of the FaceForensics dataset. Figure 7.5b shows the unmodified distribution over
the complete first frames of the test set. It demonstrates the imbalance problem that
is common in video tampering: there exists far more authentic content than labelled,
tampered content, even in tampered datasets themselves. Figure 7.5c shows the
same distributions but oversamples the tampered class to achieve a better balance.
Figure 7.5a shows the distribution over the complete dataset when it is balanced by
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(a) Copy-move: dahua (b) Splice: bowling (c) Shuffle: swann

Figure 7.4: Predicted QP class distribution for authentic and spliced content in detected key
frames of sequences from VTD

Table 7.4: Predicted frame deltas on authentic and tampered pixels in detected key frames

Sequences Average Diff
(mask=0)

Average Diff
(mask=1)

Average abso-
lute diff.

VTD [15] (copy-move) 0.68 0.43 0.31
VTD [15] (splice) 0.72 0.56 0.32
D’Avino [16] (splice) 0.90 0.92 0.11

(a) Cropped (b) First frame (c) Oversampled First Frame

Figure 7.5: The distribution of predicted QP in FaceForensics

cropping the masked regions from both the authentic and altered subsets. The QP pa-
rameter distribution for all sequences in the dataset can be plotted on a single graph
because all the authentic sequences came from a single source (YouTube) and all the
tampered sequences have been tampered using the same technique. In Figure 7.5a,
it can be seen that while the authentic content has a mean value of QP=26.8, the
tampered content has a much lower mean of 11.3. In Figure 7.5b (the test set), au-
thentic data has QP=28.9 and the tampered content 12.2 This corresponds to QP=28
and QP=14 in our QP classifier. A T-test also showed that the tampered content QP
distribution is distinct from the authentic content distribution. The distributions are also
different shapes with the tampered content producing much higher response in the
“uncompressed” class QP=0, and QP=7.

Table 7.5 shows the compression features for different subsets of the FaceForensics
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Table 7.5: Compression Features in FaceForensics Data Subset

Set QP
(mask=0)

QP
(mask=1)

Deblock
(mask=0)

Deblock
(mask=1)

I/P
(mask=0)

I/P
(mask=1)

Crop (train) 26.81 11.28 0.85 0.95 0.30 0.79
Crop (test) 26.71 10.54 0.84 0.97 0.31 0.83
Crop (val) 26.83 11.51 0.86 0.96 0.30 0.78
Full Frame (test) 28.92 12.20 0.66 0.95 0.50 0.81

Table 7.6: Ablation Study of Compression Features in Cropped FaceForensics Dataset

Features TPR TFR Average
quant 0.94 0.68 0.81
deblock 0.96 0.15 0.56
i/p 0.80 0.70 0.75
quant, deblock 0.93 0.71 0.82
quant. i/p 0.86 0.87 0.87
i/p, deblock 0.77 0.76 0.77
quant, deblock, i/p 0.86 0.89 0.88

dataset. It can be seen that the cropped subsets (test, train and validation) have
roughly similar averages for features. Using the full frame instead of a crop results in
a slight rise in the QP of tampered regions, which could be attributed to our method
of labelling some patches as tampered even when they contain only a very small
tampered proportion. In the cropped dataset, these ambiguous patches have been
mostly cropped out. The rise in QP in the authentic regions can be partly attributed to
features of the background itself or encoder choices made during compression.

7.5 Tampered or Authentic?

The proposed framework from Section 7.2 was now put into effect. The differences
in distribution in the cropped FaceForensics dataset allowed individual 80x80 patches
in the test set to be classified as tampered or authentic with 81.46% using QP alone
when analysed with Random Forest and SVM. This rose to 88.1% accuracy with all
three compression features, giving an F1 score of 0.881. Cropping the dataset like this
resulted in a completely balanced dataset, so accuracy and F1 score were identical.
Results were slightly lower on the validation set with 86.3% accuracy. Using a simple
majority voting system on the patches of FaceForensics, these techniques were able
to correctly classify 96% of the cropped first frames from the test set as either authentic
or tampered.
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Table 7.7: Prediction Results for a Random Forest Classifier trained with Cropped FaceForen-
sics Training Data. Final column illustrates dataset imbalance.

Test Set TN FP FN TP TPR TNR % +ve
FaceForensics
crop test

9562 1313 1271 9604 0.88 0.88 50

FaceForensics
crop val

20892 2364 4010 19246 0.83 0.90 50

FaceForensics
test

454868 70807 2629 13916 0.84 0.87 3.05

D’Avino all 191152 190930 2520 14398 0.85 0.50 4.24
D’Avino low 77798 137099 697 6406 0.90 0.36 3.20
D’Avino high 113354 53831 1823 7992 0.81 0.68 5.55
VTD splice 247438 29406 4189 967 0.17 0.89 1.83
VTD copy move 294358 14503 3118 21 0.01 0.95 1.01

An ablation study of the features themselves was performed by training a random
forest on each of the three compression features individually and in their various com-
binations. Only the cropped FaceForensics datasets were used. The results, Table
7.6, demonstrate that the use of all three features gives the best balance between
true positives and true negatives. The quantisation parameter gave the best individual
feature result but it was more prone to false positives. Adding both deblock and i/p
features rectified this.

Applying a random forest trained on cropped FaceForensics training patches to the
full first frame patches of the FaceForensics test set resulted in many false positives.
Figure 7.6 shows an example. It can be seen that the QP is particularly low, classi-
fied as uncompressed, centred on the tampered region of the face. Other areas in
the background of the frame, however, also have relatively low quantisation and this
causes them to be classified as tampered.

Table 7.7 shows the results of this random forest classifier on all datasets in terms of
True Negatives (TN), False Positives (FP), False Negatives (FN), True Positives (TP),
True Positive Rate (TPR), True Negative Rate (TNR) and the percentage of all sam-
ples that were labelled as the positive (or tampered) class. For the VTD and D’Avino
datasets, full intra frames were extracted using the method in Chapter 6. The Face-
Forensics datasets were either the cropped (and therefore balanced) datasets or the
first frame of each sequence for the test set only. The full first frame FaceForensics
dataset exhibits a large dataset imbalance because the tampered areas occupy rel-
atively few pixels compared to the background pixels (which are identical between
matched tampered and authentic frames). Approximately only 3% of all samples in
the dataset are tampered. This leads to poor F1 scores due to a high number of
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(a) Authentic (b) Authentic, QP (c) Authentic, Class

(d) Tampered (e) Tampered, QP (f) Tampered, Class

(g) Authentic (h) Authentic, QP (i) Authentic, Class

(j) Tampered (k) Tampered, QP (l) Tampered, Class

(m) Authentic (n) Authentic, QP (o) Authentic, Class

(p) Tampered (q) Tampered, QP (r) Tampered, Class

Figure 7.6: Full frame results from FaceForensics.
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false positives relative to true positives. TPR and TNR, however, are unaffected by
the large imbalance and therefore remain consistent between cropped and full frame
datasets. This shows that features of compression are useful for tampering detection
and localisation.

Table 7.7 also shows that dataset imbalance is also present in D’Avino’s dataset and
VTD. In D’Avino, 4.24% of patches are tampered, but this can vary between se-
quences. For the spliced content of VTD, less than 2% of patches are tampered and
in the copy-move sequences of VTD, only just over 1% of patches are tampered. The
classification results, however, show that a random forest trained on the balanced,
cropped frame patches of FaceForensics can still identify the majority of tampered
patches in D’Avino. This is because the compression feature distribution of D’Avino’s
tampered and authentic patches is quite similar to that of FaceForensics. The high
number of false positives can be attributed to D’Avino’s sequences having lower QP in
general than FaceForensics, and half of the sequences have QP much lower than that
in FaceForensics, as can be seen in Table 7.2. If D’Avino is split into two sets for high
and low authentic QP, the set containing high QP exhibits fewer false positives. This
yields results that are almost comparable to D’Avino’s benchmark with in terms of true
positive rate of 0.85 (compared with 0.9). Although the benchmark false positive rate
is much lower than ours, it should be emphasised that this classifier was trained on a
different dataset entirely and does not require separate identification of pristine frames
in the sequence. The same random forest classifier performs very poorly on VTD. It
cannot detect the copy-move patches because these patches come from within the
same sequence. It also fails to detect the majority of spliced patches, because it relies
on absolute QP value. The VTD sequences have been recompressed by YouTube, so
very few patches occupy QP=0 and QP=7 classes, which signify tampered content in
both FaceForensics and D’Avino, and those that do may even be incorrect classifica-
tions.

The results on FaceForensics demonstrate how tampered content, no matter how re-
alistic it appears to human eyes, does not necessarily emulate compression patterns
that can be found in authentic data. Moreover, it may be that the higher quality of the
tampered content of FaceForensics contributed to the inability of human viewers to
differentiate between tampered and authentic content. Human viewers may naturally
prefer high quality content and be more likely to declare it authentic. This result also
helps to explain the findings of [80], where it was demonstrated that a CNN trained
on a subset of FaceForensics did not generalise at all well to the authors’ own dataset
“Fake Faces in the Wild” (FFW). The FFW dataset comprises a list of YouTube handles
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along with start/end times. Sequence-wise, the content is entirely non-authentic, how-
ever manipulation techniques vary from CGI regions, to face swapping and the use of
FakeApp. Because all the frames in FFW come from YouTube, they are ALL subject
to YouTube compression or recompression, similar to VTD. All the manipulated frames
in uncompressed FaceForensics are subject to the original YouTube compression ev-
erywhere except in the tampered region. If the CNN trained in [80] relied on features
that specifically related to uncompressed faces to specify tampering, then it would fail
to detect fake faces which are compressed to the same levels as the authentic con-
tent. As shown in Chapter 4, CNNs trained on high quality data are less robust against
increasing levels of compression. The network in [80] effectively used almost uncom-
pressed tampered pixels for training, but was applied to much lower quality data. This
alone would cause a drop in accuracy, even assuming that other tampering features
were consistent between FFW and FaceForensics.

7.5.1 Unsupervised Clustering

Tampering techniques vary from sequence to sequence, and may vary within datasets
in future. Classifiers trained on a particular dataset will always be subject to the distri-
bution of that dataset and may not generalise to other sequences which use different
tampering methods. A more generalisable method of differentiating between tampered
and authentic patches would use only patches from within the suspicious sequence
itself. Unsupervised clustering is one possibility to achieve this, although clustering
is not classification. Clustering will simply group like samples together and not nec-
essarily label the classes correctly. Because of this, we use Matthews Correlation
Coefficient (as described in Section 2.2.3) for evaluation.

Using all three compression parameters from the cropped FaceForensics test patches,
and unsupervised k-means clustering, assuming two clusters, we achieved MCC of
0.67 and mean F1 score of 0.81. Clustering could be validly performed over the whole
dataset because the tampering method is the same for all sequences, and the source
video footage all came from a single platform. Unfortunately k-means clustering did
not perform as well with full first frames of FaceForensics, achieving MCC=0.11, but
when this dataset was balanced by random oversampling, MCC rose to 0.58 with
mean F1 over both classes of 0.76.

Using only frame deltas and predicted QP as features and forming two clusters us-
ing unsupervised k-means clustering, the following were achieved on D’Avino et al’s
dataset [16]: mean MCC: 0.249, mean F1 score: 0.255, mean IoU: 0.163. MCC rises
to 0.302 if the two lowest scoring sequences (“07 UFO” and “03 CAT”) are ignored.
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In both these sequences, spliced objects occupy relatively few key frames, and the
tampered region in key frames is particularly small. Moreover, QP distributions for au-
thentic and tampered regions in these two sequences are much less distinct than in
the other sequences, and fall under the QP step size of 7 necessary for our CNN QP
predictor.

In all the sequences of [16], key frames were estimated to occur at an interval of
one every 30 frames. While this dataset is supplied as uncompressed, it is evidently
compiled from compressed sources and one key frame per second at a frame rate
of 30 fps is relatively standard in compression. Figure 7.7 shows example frames for
some of the sequences from [16]. It can be seen that the quantisation parameters in
tampered regions is generally lower than in authentic content. Unsupervised clustering
of predicted QP and frame deltas was used to group pixel patches into one of two
groups. These groups were nominatively labelled “authentic” or “tampered”, however
given that some tampered video content is simply two or more authentic videos spliced
together, these labels could be effectively switched to more closely match the ground
truth.

Figure 7.7: Heatmap for test sequence (top to bottom) 08 TREE, 05 HEN and 06 LION from
[16]: (left to right) real, fake, ground truth, clustered data, QP predictions. Darker areas mean
lower QP predictions

The results on VTD [15] were somewhat less encouraging. While key frames were
detected every 30 frames in [16], the most common gap between key frames in VTD
was 160 frames, resulting in only 3 key frames for over half of the sequences in the
dataset. Some sequences completely lacked key frames coinciding with any tampered
regions, and these were removed from our analysis. Excluding these sequences,
the mean MCC was 0.082, F1 0.065 and IoU 0.035. This shows little correlation
between predicted and actual tampered areas, which can be partly attributed to re-
compression causing an equalisation in the QP distribution between tampered and
authentic regions. Although a realistic process, re-compression of this dataset also

125



resulted in challenges in extracting an accurate tampering mask and this may also
be a contributory factor. The authors of [16] also noted that YouTube compression
had a negative effect on their autoencoder-based tampering detector. This highlights
challenges for tampering detection in video distributed using one of the most common
video-sharing platforms in the world. Further work is needed if tampering detectors
are to thoroughly overcome the challenges of re-compression.

7.6 Conclusions

With video manipulation techniques currently increasing at an unprecedented rate, it is
vital to develop features that can detect tampering irrespective of the original tampering
method. A lack of large, current, comprehensive tampered video datasets and the
huge imbalance in existing tampered datasets makes learning these features directly
from tampered data impossible. Therefore it is necessary to derive such features using
mainly authentic sources. Video compression provides a common foundation for video
analysis, with the vast majority of available video sequences compressed in some
format. Moreover, the use of machine learning techniques and feature discovery from
data provide a methodology which can be used to produce updated features should
new compression standards fall in to common use.

We have shown that three features of H.264/AVC compression, namely quantisation
parameter, intra/inter mode and deblock mode, can be used to aid localisation of tam-
pered regions within key frames. Results suggest that this type of feature shows
great promise in the work towards universal tampering detection. Video manipula-
tion causes self inconsistencies within the video sequence, whether this is caused by
splicing, inpainting, inter-frame tampering or small, localised changes used to alter
content such as those used in digital re-enactment. These inconsistencies can be
made visible using different data representations. We have shown that with the use of
only four features (QP, inter/intra, deblocking and frame differences) derived only from
untampered sources, self inconsistencies within a video sequence can be detected
and exploited to localise tampering.

Also notable is the large dataset imbalance present in tampered datasets which may
become a large problem in tampering localisation. The results on the FaceForensic
cropped and first full frame datasets also suggest that k-means is not the best method
to perform unsupervised clustering on such imbalanced datasets. Alternatives might
be to use deep metric learners, such as Siamese neural networks as used in [168] for
image manipulation detection, however we leave this area for future work.
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Chapter 8

Conclusions

This chapter summarises the findings of the preceding chapters and discusses limita-
tions evident within the work.

In this work we have shown how:

• Video manipulation techniques are increasing in both number and realism [60].
Techniques which completely fool humans are already available, and although
there already exist DNN-based methods that can reliable distinguish between
authentic and tampered video, these are not always generalisable between dif-
ferent tampering techniques.

• Video compression has a negative effect on classification in DNNs [24], with
higher compression levels causing lower accuracy in classification. The selec-
tion of appropriately compressed training datasets can go some way to improv-
ing classification accuracy, however only if the compression level of the sample
under test can be ascertained.

• Compression parameters can be determined directly from pixels in video se-
quences [25], subject to some limitations.

• Compression parameters derived from pixels can be used to localise tampered
regions in video sequences [26]. The explainability of these features allows them
to be generalised to different datasets.

This thesis has provided a thorough review of the current trends in video manipula-
tion (Chapter 3). In the last few years, more and more manipulation techniques have
been presented, and many of them no longer fit in with traditional manipulation cate-
gories. Moreover, there is evidence that these manipulations are rapidly developing to
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become undetectable for human eyes. In the very near future, humans viewers may
be completely unable to identify video that has been tampered, let alone identify the
method of tampering.

Although methods of tampering detection exist and some of them are very effective,
many of them focus on a single type of manipulation. This can be partly attributed to
the lack of large and varied tampered video datasets. While many tampered image
datasets already exist, tampered video datasets still lag behind in number and qual-
ity. They suffer from non-standardised distribution processes which cause problems
in their use. We have highlighted some problems, particularly those related to com-
pression, which can inadvertently cause tampered video datasets to be much more
difficult than the benchmarked original. Yet it remains vital to develop tampering de-
tection techniques which can handle multiple different types of tampering. If human
viewers are incapable of ascertaining whether tampering is present or not, then they
cannot be expected to differentiate between different types of tampering. Moreover,
since new digital video manipulation methods are being developed at an unprece-
dented rate, specific detection methods will be required at an equivalent rate simply
to keep up. It is far more efficient to develop generalisable methods related to video
forensics.

In the chapters presented here, we have seen how the effects of video compression
on pixels can be used as an ally rather than an enemy. We have examined how com-
pression affects the performance in deep neural network classifiers and shown how
these problems can be observed in the features of the very first layer in the network
(Chapter 4). Although low quality video will always cause a reduction in observed clas-
sification accuracy, some of this reduction could be offset by applying the same level
of compression to the training data. This is an important find as it gives insight into
how transferable features can be developed.

We have also presented a novel method to derive specific compression features di-
rectly from the pixels of a video sequence (Chapter 5). Using standard layers, a CNN
can extract compression features such as quantisation parameter, intra/inter mode
and deblocking filter settings from a relatively small image patch. Accuracy on these
features is sufficient that these can be used to uncover evidence of the processing his-
tory (Chapter 6), and in some cases, identify frames that were previously compressed
using a different mode.

We have shown how compression-related features show great promise in the field of
tampering detection (Chapter 7). Most importantly these are features which can be
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learned from authentic or synthesised data, thus satisfying deep learning’s data hun-
gry needs without a requirement for a perpetually updated, large and varied tampered
video dataset. The use of synthesised datasets also provides a convenient means to
verify the authenticity of the training set. With some manipulated video already avail-
able online and some tampering techniques already in the public domain, it is only
a matter of time before datasets scraped from publicly available sources are subject
to a degree of pollution by tampered video. Some deep learning video manipulation
detection techniques are trained using very specific datasets on which they achieve
high accuracy, and we have shown how some of this accuracy may be attributable to
compression features. Deep neural networks will learn whichever features yield the
best results. These are not always explainable, but explanation yields enlightenment.
Specifically, if video tampering detection methods depend on compression features,
then disruption of these features via recompression of the sequence will obviously dis-
rupt the detector itself. The ability to explain how these deep neural networks function
allows for better predictions to be made about their transferability. By training neural
networks to identify known, multi-variable features, we can enhance explainability.

8.1 Limitations and Future Work

The work in this thesis has shown that video compression features can be useful
in the detection of video manipulation, and with that in mind, there are a number of
improvements that can be made.

8.1.1 More Accurate Compression Features

The novel methods of compression parameter detection presented here, although ac-
curate to the extent that the features are useful, could be made more accurate still.
With a better level of accuracy, more data could be gleaned from the pixels, thus im-
proving the overall method in tampering detection. This may involve more specialised
architectures or novel neural network layers, or it could involve a shift to working in
the frequency domain. Results in [165] showed that combining spatial and frequency
domains was effective in image forensic analysis, and the video frequency domain has
been utilised already in [121].

In the experiments in Chapter 5, accuracy was particularly low for predicted frames
and this is a problem since the majority of compressed data is predicted frames. While
we have worked around this problem in this first instance by creating a method to
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identify key frames, a better solution would be to create techniques to accurately derive
quantisation parameters from predicted frame patches. Indeed, this may be necessary
as some video encoders use periodic intra refresh, and refresh frame regions rather
than risking bitrate spikes by using key frames.

A complete analysis of a compressed bitstream might allow pixel residuals to be used
to improve the accuracy of compression feature estimation for predicted frames. This
would broaden the applicability of these methods to complete sequences, and help
to overcome the shortage of key frames in modern compression implementations. In
the ideal situation, the pixel patch size would also be minimised so that video tam-
pering could be localised to a very accurate region. Although 80x80 pixels is good
enough to see some success in tampering detection, a smaller patch size would be
an improvement.

8.1.2 Features of Recompression

Although compression features have shown their effectiveness in video tampering de-
tection, it can be anticipated that recompression still provides one of the main chal-
lenges. Recompression is the simplest way to equalise the histograms of authentic
and tampered content presented in Chapter 7 and effectively conceal any evidence
of tampering. To overcome this limitation, it is most practical to simply directly use
recompression itself as a feature.

Further work is needed to ascertain the extent to which recompression detection can
be learned from authentic sources and synthesised datasets. From the work here, it
can be seen that some synthesised video content displays compression parameters
which are similar to uncompressed content. If a distinction can be made between video
patches that are compressed only once and those that are multiply compressed, then
synthesised regions can still be distinguished from authentic regions even through
recompression of the complete sequence. Ultimately, tampered video patches will
have undergone one fewer compression than their authentic counterparts from the
same sequence. If the number of recompressions can be ascertained for specific
image patches, then this would effectively overcome the problem of recompressing
tampered content to conceal manipulated areas.

Features of recompression may already be implicit in some DNNs. Work in [160]
showed that the majority of tampered images of CASIA [44] exhibited double com-
pression while authentic images were singly compressed implies that the exception-
ally high tampered/authentic classification accuracy (97%) in [159] may have been

130



attributable to recompression detection. The work in [165] demonstrated how image
recompression detection in isolation is also particularly accurate. Rebroadcast image
detection [2] by DNN was also particularly effective, and although the authors did not
mention it, recompression is very likely to be part of the rebroadcast process, regard-
less of the method of rebroadcasting. When taken together, all of these results suggest
that ordinary DNNs readily learn features related to image recompression, and these
are particularly useful for image forensics and tampering detection. The results in
[121] show that recompression can also be detected in videos. There is good rea-
son to believe that recompression detection, and particularly localised recompression
detection, will be an important area in video forensics and tampering localisation.

Combination of techniques from video forensics and video tampering detection may
lead to improved results. Focussing on video forensic features allows detectors to
become independent of tampering methods and allows the development of generic
tampering-type-agnostic detectors. This is a very important research direction as
video manipulation techniques become invisible to humans.

8.1.3 One-shot, Type-agnostic Tampering Detection

The ability to ascertain tampering using only the pixels from the sequence under test
is an important research direction. There is no guarantee that any future manipulation
technique will have an established detector associated with it, nor yet even a conve-
nient dataset demonstrating this particular type of tampering. Furthermore, although
video sequences themselves provide an abundance of data in the form of frames, in-
dividual frames can no longer be reliably manually labelled as authentic or tampered.
The key to type-agnostic tampering detection and localisation in many cases is finding
localised self-inconsistencies within individual sequences.

In the first instance, these methods may be based on clustering techniques where
patches from a video under test are simply clustered according to their features and a
spatially localised cluster is indicative of region tampering. This is similar to what was
presented in Section 7.5.1. In future work, unsupervised clustering could be replaced
with deep metric learners such as Siamese neural networks, as used in [168] for image
manipulation detection.

Any new methods for video tampering localisation must also take into account the likely
presence of class imbalance. Tampered videos may contain many more authentic
pixels than manipulated, and analysis of the datasets used in Chapter 7 shows that
this very common. Class imbalance is a well studied problem in the literature both in
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terms of handling it and evaluating results.

8.1.4 Synthetic Video Detection

The detection of fully synthetic video may evolve to become a research direction in its
own right, however at this moment in time, most AI-generated photo-realistic synthetic
video content is not suitably convincing to human eyes. As noted in Section 3.2.5,
one of the main challenges in synthetic video generation is evaluation techniques. In
particular, Table 3.1 shows that many methods rely on user comparison with previous
methods rather than user comparison with reality, and this itself is indicative of how
convincing synthetic video is. Human eyes can still easily identify a large proportion
of machine produced synthetic video, and truly convincing synthetic video remains
largely in the hands of professional movie makers.

Photo-realistic, convincing, synthetic images, however, are currently a reality, and it will
not be long before this research trickles into the video domain. When this happens,
suitable methods to identify synthetic videos will be needed and these could also be
applied to localise synthetic regions in tampered video. Some recent methods, such
as [206, 207] have shown that GAN-generated images exhibit pixel value distributions
that are much smoother and quite distinct from distributions of authentic content. This
may corroborate our observations that synthetic pixel regions generated by [6] exhib-
ited features similar to uncompressed content. Furthermore, Chapter 4 showed that
classifiers trained on uncompressed images achieved the highest accuracy overall.
This may imply that GANs are predisposed to produce high quality, uncompressed
images, rather than mimicking the compression levels of their training sets. A full in-
vestigation into how this can be useful for synthetic image detection is left for future
work.

8.1.5 Changing Compression Standards

It must also be recognised that video compression industrial standards are still evolv-
ing, too. What worked in the past for one standard may not work well for other stan-
dards. This has already been seen as MPEG-2 [28] was superceded by H.264/AVC
[27]. Although H.264/AVC is currently a very popular video compression standard, it
may not always be the case. The next standard in the series H.265/HEVC [41] has
already been released, with methods that overcome compression artifacts evident in
H.264/AVC such as banding [208]. Various factors, such as patent issues and hard-
ware limitations, may slow or halt the advance of HEVC specifically, but there are other
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compression standards available and research into efficient video compression meth-
ods continues apace. Video compression standards all seek to improve video quality
and reduce bitrate.

Reduction in compression artifacts and changing compression structures ultimately
limits transferability and makes some methods obsolete. Although the individual
trained networks presented within this thesis may not transfer directly to future stan-
dards, the concepts and processes detailed herein still stand. DNNs are adaptable
and should be able to exploit the compression artifacts of future industrial standards
even if these become increasingly invisible to human eyes. In the future, the tech-
niques presented here can be applied to different video compression standards in
order to keep pace with the digital world.

8.1.6 Network Architecture Optimisation

New network architectures and associated hyperparameters for specific tasks are un-
der constant development. Although the methods in this thesis can be considered
“good enough” to obtain convincing results, we leave the discovery of optimal archi-
tectures for this particular task to future work. In Chapter 4, we used relatively shallow
network architectures. Further work is necessary to ascertain whether the negative
effects of compression on classificaiton are fully present in deeper networks. It may
be that all the networks for different levels of compression can be efficiently com-
bined in a single network, given enough network layers and parameters. Evidence
in the literature implies that different network architectures may compensate for some
compression. For example, in [17], the Xception network [122] achieved much better
performance on compressed data than other networks specifically designed for tam-
pered video detection tasks. Xception uses depthwise separable convolutions, which
separately convolve over different channels in each layer, and this may allow for de-
velopment of more specialised features.

8.2 Conclusion

Video compression is largely overlooked by researchers, or seen as a challenge rather
than an opportunity. Instead, with some understanding, it can be a means to ex-
plain some of the inner workings of deep neural networks, and develop transferable
techniques for tampering detection using authentic sources. We have demonstrated,
through the contributions in this thesis, that it can give valuable insight into how DNNs
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work. Compression features can highlight invisible weaknesses and reveal forensic
fingerprints in both synthetic and authentic content. In a world where synthetic or ma-
nipulated video can be passed off as real, it is important to develop tools which will
help us to distinguish between fact and outright fiction. The use of video compres-
sion features can even give machines a significant advantage over human eyes when
computer vision looks beyond the pixels.
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[164] Gloe T, Böhme R. The dresden image database for benchmarking digital image forensics. Journal
of Digital Forensic Practice. 2010;3(2-4):150–159.

[165] Amerini I, Uricchio T, Ballan L, Caldelli R. Localization of JPEG double compression through multi-
domain convolutional neural networks. In: 2017 IEEE Conference on computer vision and pattern
recognition workshops (CVPRW). IEEE; 2017. p. 1865–1871.

[166] Schaefer G, Stich M. UCID: An uncompressed color image database. In: Storage and Retrieval
Methods and Applications for Multimedia 2004. vol. 5307. International Society for Optics and
Photonics; 2003. p. 472–481.

[167] Boroumand M, Fridrich J. Deep learning for detecting processing history of images. Electronic
Imaging. 2018;2018(7):1–9.

[168] Huh M, Liu A, Owens A, Efros AA. Fighting fake news: Image splice detection via learned self-
consistency. In: European Conference on Computer Vision (ECCV); 2018. p. 101–117.

[169] Shullani D, Al Shaya O, Iuliani M, Fontani M, Piva A. A Dataset for Forensic Analysis of Videos
in the Wild. In: International Tyrrhenian Workshop on Digital Communication. Springer; 2017. p.
84–94.

[170] Sanderson C, Lovell BC. Multi-region probabilistic histograms for robust and scalable identity
inference. In: International conference on biometrics. Springer; 2009. p. 199–208.

[171] Guan H, Kozak M, Robertson E, Lee Y, Yates AN, Delgado A, et al. MFC Datasets: Large-Scale
Benchmark Datasets for Media Forensic Challenge Evaluation. In: 2019 IEEE Winter Applications
of Computer Vision Workshops (WACVW). IEEE; 2019. p. 63–72.

[172] Papadopoulou O, Zampoglou M, Papadopoulos S, Kompatsiaris I. A corpus of debunked and
verified user-generated videos. Online Information Review. 2019;43(1):72–88.

[173] Kancherla K, Mukkamala S. Novel blind video forgery detection using markov models on motion
residue. In: Asian Conference on Intelligent Information and Database Systems. Springer; 2012.
p. 308–315.

[174] Hsu CC, Hung TY, Lin CW, Hsu CT. Video forgery detection using correlation of noise residue. In:
Multimedia Signal Processing, 2008 IEEE 10th Workshop on. IEEE; 2008. p. 170–174.

[175] Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images. University of Toronto;
2009.
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Appendix A

Integer DCT

This appendix goes into detail on the maths and code behind the Discrete Cosine
Transform used in H.264/AVC.

The Discrete Cosine Transform is designed to transform spatial pixel data into the fre-
quency domain where it can be quantised efficiently with minimal visual effect. Here,
we discuss the 4x4 DCT as used in H.264. Full details of how the non-integer trans-
form became the H.264/AVC integer-based transform are available in [31].

A two dimensional DCT is used in H.264. This involves a horizontal transform D

followed by a vertical transform DT , followed by element wise multiplication with a
scaling matrix Ef as in Equation A.1. The inverse DCT is given in Equation A.2.

Y = DfXD
T
f ⊗ Ef (A.1)

Y = DT
i (X ⊗ Ei)Di (A.2)

Df =


1 1 1 1

2 1 −1 −2

1 −1 −1 1

1 −2 2 −1

 (A.3)
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Df =


1 1 1 1

2

1 1
2 −1 −1

1 −1
2 −1 1

1 −1 1 −1
2

 (A.4)

All of the elements of matrix Df are either ±1 or ±2 as seen in Equation A.3. All of
the elements of matrix ±1 or ±1

2 (Equation A.4). The scaling matrix multiplication can
be added in to the quantisation function for simplicity. This means that the overall DCT
function can be simplified to a process involving only addition, subtraction or bit shifts.

The inverse 4x4 DCT was used to produce Figure 2.4: each of the sixteen 4x4 squares
in the diagram represents one high coefficient and all the others set to zero.
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Appendix B

The Deep Neural Network

This appendix goes into detail on the maths behind deep neural networks.

Deep neural networks consist of an input layer, and output layer and at least one
hidden layer. Each layer consists of a number of neurons. Each neuron is connected
to a number of neurons in the previous layer. The output of each neuron is equal to the
sum of the weighted inputs plus some bias. This is shown in Equation B.1. In Equation
B.1, we are on layer L of the neural network and j is the index into layer L; k is the
index into the previous layer L − 1. jk connects neuron j and neuron k. The output
of neuron j in layer L, a(L)j consists of the sum of the inputs from the previous layer

a
(L−1)
j multiplied by some calculated weights w(L)

jk added to a bias b(L)j and passed
through a non-linear activation function f(). Thus:

a
(L)
j = f

(
b
(L)
j +

K∑
k=0

w
(L)
jk a

(L−1)
j

)
(B.1)

The activation function f can be one of a number of non-linear functions, such as:
sigmoid (f(x) = 1/ (1 + e−x)); hyperbolic tangent f(x) = tanh(x); or Rectified Linear
Unit or ReLU (f(x) = max(0, x)). The output a(L)j of one layer then becomes the input
of the next layer. Deep neural networks can contain multiple hidden layers and the
connections between them can be skipped as in skipped networks.

In a supervised neural network, the input data comes in the form of a feature vector,
and the output data is a label. The main concept is to adjust the weights and biases
such that the output of the last layer of the neural network lies close to the label with
minimal error. The process of adjusting the neural network parameters is performed
by backpropagation and gradient descent. The label can be expressed as a “one-hot
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encoded” vector. This is a vector whose length is equal to the number of possible
labels, each index into the vector represents a single labels. Every one-hot encoded
vector contains a single 1 at the index representing the correct label and all other
elements are set to 0. A neural network outputs a vector of equal size, and the logits
of this can be further processed by the softmax function (Equation B.2).

softmax(zj) =
ezj∑K
k=1 e

zk
(B.2)

Where zj is the jth element of the vector z and vector z has K elements. This is re-
peated for all j in K to get the complete vector. The purpose of the softmax function is
to ensure that the sum of all values in z totals 1. This output can then be compared di-
rectly with the one-hot encoded label vector and the corresponding difference between
them can be used to calculate the cross entropy loss. Other cost functions and loss
calculations are also available available, such as L1 loss (mean absolute error) or L2
loss (mean squared error). Cross entropy loss between predicted class ŷ and actual
label y is given by Equation B.3, where i is the number of classes, which is equal to
the length of the label vector.

H(ŷ, y) = −
∑
i

ŷ log(yi) (B.3)

Training a network involves minimising loss, and this is done using gradient descent.
Stochastic gradient descent and Adam [203], which is an optimisation of stochastic
gradient descent, are used in this thesis. For each neuron in a given layer, the partial
derivative of the output with respect to each input is calculated, using the chain rule.
The partial derivatives of each neuron (index j in layer L, index k in layer (L − 1) ,
shown in Equations B.4, B.5 and B.6 are then combined to give the gradient vector.

∂H

∂w
(L)
jk

=
∂a

(L)
j

∂w
(L)
jk

∂H

∂a
(L)
j

(B.4)

∂H

∂a
(L−1)
k

=

nL−1∑
j=0

∂a
(L)
j

∂a
(L−1)
k

∂H

∂a
(L)
j

(B.5)

∂H

∂b
(L)
jk

=
∂a

(L)
j

∂b
(L)
jk

∂H

∂a
(L)
j

(B.6)
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Figure B.1: Convolving an image with a Sobel filter produces a feature map. In this case, the
Sobel filter picks out horizontal changes in intensity, thus acting as a detector for vertical edges

This gradient vector gives the direction and magnitude of the change to the weights
and bias of the neuron that are required to minimise the loss. This is then back prop-
agated through each layer of the network right to the first layer so that the gradient
descent step is calculated for every neuron in the network. Rather than calculate the
loss on a single example, mini-batches of examples are given to the network and the
loss calculated and averaged. Calculating the loss over mini-batches, rather than the
complete training set, allows a series of smaller, less accurate steps to be taken and
this is called stochastic gradient descent.

In a fully connected layer, the output of all the neurons of the previous layer (L−1) are
connected to each neuron in the current layer, L. A convolutional neural network layer
operates slightly differently. In a fully connected layer, the absolute position of the data
has some influence on the output value. In an image, it is seldom the absolute position
of a pixel that dictates its contribution to the output label, but its position relative to
its neighbours. CNNs account for this spatial invariance by arranging neurons into
kernels or filters and convolving these over the image. In this case, convolution is
similar to a sliding window and the learned kernels transform the input data into a
new representation. Kernelised filtering is also used in Sobel filters, and Figure B.1
illustrates how a feature map is produced from convolving a Sobel kernel with image
data. Each layer of a CNN generates a feature map, which is a transformed version of
the data from the layer before.

Within a convolutional layer, a kernel is convolved with the input data and results in
transformed output data. The resultant output feature map differs from the input size
such that:

O = (I − F + 2P ) ∗ S + 1 (B.7)

Where O is the output size, I is the input size, F is the filter or kernel size, P is the
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padding. S is the stride or the number of pixels that the kernel moves as it slides
over the input data. Padding is optionally applied to the input data to maintain image
dimensions through the convolutional process.

As well as fully connected layers and convolutional layers, CNNs also utilise a pooling
layer. Again this is a kernelised convolutional layer and is designed to reduce the
dimensionality of the feature space. Most commonly, maximum pooling or “maxpool”
is used, but average pooling can also be used. To define a maxpooling layer, a kernel
size and a stride must be defined, and these control how much the feature maps are
downsampled. Although maxpooling layers are used in the networks in this thesis
for simplicity, they have been criticised recently in [209]. Maxpooling keeps only the
most dominant feature and discards the others, whereas the most recently proposed
capsule networks work to route features to appropriate “capsules”.

Networks are trained for a given number of epochs, where one epoch is the number of
mini-batches necessary to cover the complete dataset. Training time varies according
to the task, the data and the hyperparameter settings.

B.1 Whitening

Whitening involves ensuring each image has zero mean and unit variance, which is
done as in Equation B.8 where x̄ is the mean value of the pixels and s is the maximum
of the standard deviation of the pixels and the 1 over the square root of the number of
pixels n (as in Equation B.9).

x̂ =
(x− x̄)

s
(B.8)

s = max(σ,
1√
n

) (B.9)

The datasets used in each of the individual sections of this thesis are detailed in the
relevant sections.
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