581 research outputs found

    Detection and Prevention of Blackhole Attack in the AOMDV Routing Protocol

    Get PDF
    Mobile ad-hoc network is a collection of dynamically organized nodes where each node acts as a host and router. Mobile ad-hoc networks are characterized by the lack of preexisting infrastructures or centralized administration. So, they are vulnerable to several types of attacks, especially the Blackhole attack. This attack is one of the most serious attacks in this kind of mobile networks. In this type of attack, the malicious node sends a false answer indicating that it has the shortest path to the destination node by increasing the sequence number and decreasing the number of hops. This will have a significant negative impact on source nodes which send their data packets through the malicious node to the destination. This malicious node drop received data packets and absorbs all network traffic. In order overcome this problem, securing routing protocols become a very important requirement in mobile ad-hoc networks. Multipath routing protocols are among the protocols affected by the Blackhole attack. In this paper, we propose an effective and efficient technique that avoids misbehavior of Blackhole nodes and facilitates the discovery for the most reliable paths for the secure transmission of data packets between communicating nodes in the well-known Ad hoc On-demand multi-path routing protocol (AOMDV). We implement and simulate our proposed technique using the ns 2.35 simulator. We also compared on how the three routing protocols AOMDV, AOMDV under Blackhole attack (BHAOMDV), and the proposed solution to counter the Blackhole attack (IDSAOMDV) performs. The results show the degradation on how AOMDV under attack performs, it also presents similarities between normal AOMDV and the proposed solution by isolating misbehaving node which has resulted in increase the performance metrics to the standard values of the AOMDV protocol

    Analysis of Blackhole Attack in AODV and DS

    Get PDF
    Mobile Ad-Hoc Networks (MANETs) are supreme ruler and demoralization wireless scheme. MANETs are infrastructure less i.e. their structure is not fixed, and the nodes be able to move about and can leave the network whenever they want. The nodes are to perform as more over router and host. In MANETs, the node can be in contact with every node as their configuration is not fixed and the nodes starts transmitting the packets to each other for the establishment of the connection. To hitch the link, the nodes make use of some routing protocols like Ad-Hoc On Demand Distance Vector (AODV), Dynamic Source Routing (DSR), and DestinationSequenced Distance Vector (DSDV). Security in MANET is the key matter meant for the fundamental utility of network. There are many attacks caused in MANET. Blackhole attack is one that occurs in MANET. A Black hole attack is an attack where the node, which is malicious advertise itself as having the optimal route to the destination and drops all the packets instead of forwarding further to the destination. Here, we have shown the blackhole attack in AODV and DSR. Through simulation we evaluate the performance of the two above protocols under blackhole attack

    DPRAODV: A Dynamic Learning System Against Blackhole Attack In AODV Based MANET

    Get PDF
    Security is an essential requirement in mobile ad hoc networks to provide protected communication between mobile nodes. Due to unique characteristics of MANETS, it creates a number of consequential challenges to its security design. To overcome the challenges, there is a need to build a multifence security solution that achieves both broad protection and desirable network performance. MANETs are vulnerable to various attacks, blackhole, is one of the possible attacks. Black hole is a type of routing attack where a malicious node advertise itself as having the shortest path to all nodes in the environment by sending fake route reply. By doing this, the malicious node can deprive the traffic from the source node. It can be used as a denial-of-service attack where it can drop the packets later. In this paper, we proposed a DPRAODV (Detection, Prevention and Reactive AODV) to prevent security threats of blackhole by notifying other nodes in the network of the incident. The simulation results in ns2 (ver-2.33) demonstrate that our protocol not only prevents blackhole attack but consequently improves the overall performance of (normal) AODV in presence of black hole attack

    A Comparison of AODV Routing Protocols to Prevent Black Hole Attack in Manet

    Get PDF
    Mobile ad hoc network (MANET) is a continuously self-configuring, infrastructure-less network of mobile devices connected wirelessly.Due to limited power supply, physical infrastructure and absence of central base station, malicious nodes can easily disguise themselves among the legitimate nodes. So MANET is vulnerable to many security threats, among which one is the blackhole attack. In this attack, the malicious node misuses the protocols to advertise the shortest path to destination node and drops the data packets subsequently. It deterioates the performance of the network, which is based on many factors including Packet Delivery Ratio and End-to-End Delay. Many effective techniques for detecting the blackhole attack have been devised. Among them are the solutions based on Ad-hoc On demand Distance Vector (AODV) Routing. In this review paper a comparison is done between three such solutions- CBDAODV, MOSAODV and DPRAODV based on two performance criteria mentioned above

    AODVSEC: A Novel Approach to Secure Ad Hoc on-Demand Distance Vector (AODV) Routing Protocol from Insider Attacks in MANETs

    Full text link
    Mobile Ad hoc Network (MANET) is a collection of mobile nodes that can communicate with each other using multihop wireless links without requiring any fixed based-station infrastructure and centralized management. Each node in the network acts as both a host and a router. In such scenario, designing of an efficient, reliable and secure routing protocol has been a major challenging issue over the last many years. Numerous schemes have been proposed for secure routing protocols and most of the research work has so far focused on providing security for routing using cryptography. In this paper, we propose a novel approach to secure Ad hoc On-demand Distance Vector (AODV) routing protocol from the insider attacks launched through active forging of its Route Reply (RREP) control message. AODV routing protocol does not have any security provision that makes it less reliable in publicly open ad hoc network. To deal with the concerned security attacks, we have proposed AODV Security Extension (AODVSEC) which enhances the scope of AODV for the security provision. We have compared AODVSEC with AODV and Secure AODV (SAODV) in normal situation as well as in presence of the three concerned attacks viz. Resource Consumption (RC) attack, Route Disturb (RD) attack, Route Invasion (RI) attack and Blackhole (BH) attack. To evaluate the performances, we have considered Packet Delivery Fraction (PDF), Average End-to-End Delay (AED), Average Throughput (AT), Normalized Routing Load (NRL) and Average Jitter and Accumulated Average Processing Time.Comment: 20 Pages, 24 Figure

    Elliptic Curve Cryptography Based Data Transmission against Blackhole Attack in MANET

    Get PDF
    Mobile nodes roaming around in the hostile environment of mobile adhoc network (MANET) play the role of router as well as terminal. While acting as a router, a node needs to choose a reliable routing protocol. Besides, an encryption algorithm is needed to secure data to be conveyed through the unfriendly atmosphere while acting as a terminal. We have implemented Elliptic Curve Cryptography (ECC) along with Adhoc On Demand Multipath Distance Vector (AOMDV) routing protocol to secure data transmission against blackhole attack in a MANET. ECC, a public key cryptography that works on discrete logarithm problem with a much smaller key size, has been used to encrypt data packets at source node before transmission. We have used AOMDV, a reliable routing protocol compared to its parent protocol, Adhoc On Demand Distance Vector (AODV), with a multipath extension, for routing. The encrypted packets transferring between nodes via AOMDV, has been proved secured against blackhole attack. The performance of the secured protocol has been analyzed in terms of different performance metrics and in terms of varying number of blackhole attacker nodes
    • …
    corecore