2,659 research outputs found

    Coherence properties of infrared thermal emission from heated metallic nanowires

    Full text link
    Coherence properties of the infrared thermal radiation from individual heated nanowires are investigated as function of nanowire dimensions. Interfering the thermally induced radiation from a heated nanowire with its image in a nearby moveable mirror, well-defined fringes are observed. From the fringe visibility, the coherence length of the thermal emission radiation from the narrowest nanowires was estimated to be at least 20 um which is much larger than expected from a classical blackbody radiator. A significant increase in coherence and emission efficiency is observed for smaller nanowires.Comment: 4 pages,figures include

    Propagation of thermal excitations in a cluster of vortices in superfluid 3He-B

    Full text link
    We describe the first measurement on Andreev scattering of thermal excitations from a vortex configuration with known density, spatial extent, and orientations in 3He-B superfluid. The heat flow from a blackbody radiator in equilibrium rotation at constant angular velocity is measured with two quartz tuning fork oscillators. One oscillator creates a controllable density of excitations at 0.2Tc base temperature and the other records the thermal response. The results are compared to numerical calculations of ballistic propagation of thermal quasiparticles through a cluster of rectilinear vortices.Comment: 6 pages, 4 figure

    Thermophotovoltaic space power system, phase 3

    Get PDF
    Work performed on a research and development program to establish the feasibility of a solar thermophotovoltaic space power generation concept was summarized. The program was multiphased. The earlier work is summarized and the work on the current phase is detailed as it pertains to and extends the earlier work. Much of the experimental hardware and materials development was performed on the internal program. Experimental measurements and data evaluation were performed on the contracted effort. The objectives of the most recent phase were: to examine the thermal control design in order to optimize it for lightweight and low cost; to examine the concentrator optics in an attempt to relieve pointing accuracy requirements to + or - 2 degrees about the optical axis; and to use the results of the thermal and optical studies to synthesize a solar thermophotovoltaic (STPV) module design that is optimized for space application

    Modulated infrared radiant source

    Get PDF
    A modulated, infrared radiant energy source was developed to calibrate an airborne nadir-viewing pressure modulated radiometer to be used to detect from Earth orbit trace gases in the troposphere. The technique used an 8 cm long, 0.005 cm diameter platinum-iridium wire as an isothermal, thin line radiant energy source maintained at 1200 K. A + or - 20 K signal, oscillating at controllable frequencies from dc to 20 Hz, was superimposed on it. This periodic variation of the line source energy was used to verify the pressure modulated radiometer's capability to distinguish between the signal variations caused by the Earth's background surface and the signal from the atmospheric gases of interest

    A metamaterial frequency-selective super-absorber that has absorbing cross section significantly bigger than the geometric cross section

    Full text link
    Using the idea of transformation optics, we propose a metamaterial device that serves as a frequency-selective super-absorber, which consists of an absorbing core material coated with a shell of isotropic double negative metamaterial. For a fixed volume, the absorption cross section of the super-absorber can be made arbitrarily large at one frequency. The double negative shell serves to amplify the evanescent tail of the high order incident cylindrical waves, which induces strong scattering and absorption. Our conclusion is supported by both analytical Mie theory and numerical finite element simulation. Interesting applications of such a device are discussed.Comment: 16 pages, 5 figure

    Photon noise limited radiation detection with lens-antenna coupled Microwave Kinetic Inductance Detectors

    Get PDF
    Microwave Kinetic Inductance Detectors (MKIDs) have shown great potential for sub-mm instrumentation because of the high scalability of the technology. Here we demonstrate for the first time in the sub-mm band (0.1...2 mm) a photon noise limited performance of a small antenna coupled MKID detector array and we describe the relation between photon noise and MKID intrinsic generation-recombination noise. Additionally we use the observed photon noise to measure the optical efficiency of detectors to be 0.8+-0.2.Comment: The following article has been submitted to AP

    Measurement of the Blackbody Radiation Shift of the 133Cs Hyperfine Transition in an Atomic Fountain

    Full text link
    We used a Cs atomic fountain frequency standard to measure the Stark shift on the ground state hyperfine transiton frequency in cesium (9.2 GHz) due to the electric field generated by the blackbody radiation. The measures relative shift at 300 K is -1.43(11)e-14 and agrees with our theoretical evaluation -1.49(07)e-14. This value differs from the currently accepted one -1.69(04)e-14. The difference has a significant implication on the accuracy of frequency standards, in clocks comparison, and in a variety of high precision physics tests such as the time stability of fundamental constants.Comment: 4 pages, 2 figures, 2 table

    Conceptual design study for Infrared Limb Experiment (IRLE)

    Get PDF
    The phase A engineering design study for the Infrared Limb Experiment (IRLE) instrument, the infrared portion of the Mesosphere-Lower Thermosphere Explorer (MELTER) satellite payload is given. The IRLE instrument is a satellite instrument, based on the heritage of the Limb Infrared Monitor of the Stratosphere (LIMS) program, that will make global measurements of O3, CO2, NO, NO2, H2O, and OH from earth limb emissions. These measurements will be used to provide improved understanding of the photochemistry, radiation, dynamics, energetics, and transport phenomena in the lower thermosphere, mesosphere, and stratosphere. The IRLE instrument is the infrared portion of the MELTER satellite payload. MELTER is being proposed to NASA Goddard by a consortium consisting of the University of Michigan, University of Colorado and NASA Langley. It is proposed that the Space Dynamics Laboratory at Utah State University (SDL/USU) build the IRLE instrument for NASA Langley. MELTER is scheduled for launch in November 1994 into a sun-synchronous, 650-km circular orbit with an inclination angle of 97.8 deg and an ascending node at 3:00 p.m. local time

    Thermal emittance enhancement of graphite-copper composites for high temperature space based radiators

    Get PDF
    Graphite-copper composites are candidate materials for space based radiators. The thermal emittance of this material, however, is a factor of two lower than the desired emittance for these systems of greater than or equal to 0.85. Arc texturing was investigated as a surface modification technique for enhancing the emittance of the composite. Since the outer surface of the composite is copper, and samples of the composite could not be readily obtained for testing, copper was used for optimization testing. Samples were exposed to various frequencies and currents of arcs during texturing. Emittances near the desired goal were achieved at frequencies less than 500 Hz. Arc current did not appear to play a major role under 15 amps. Particulate carbon was observed on the surface, and was easily removed by vibration and handling. In order to determine morphology adherence, ultrasonic cleaning was used to remove the loosely adherent material. This reduced the emittance significantly. Emittance was found to increase with increasing frequency for the cleaned samples up to 500 Hz. The highest emittance achieved on these samples over the temperature range of interest was 0.5 to 0.6, which is approximately a factor of 25 increase over the untextured copper emittance
    corecore