27,982 research outputs found

    Black-Scholes option pricing within Ito and Stratonovich conventions

    Get PDF
    Options financial instruments designed to protect investors from the stock market randomness. In 1973, Fisher Black, Myron Scholes and Robert Merton proposed a very popular option pricing method using stochastic differential equations within the Ito interpretation. Herein, we derive the Black-Scholes equation for the option price using the Stratonovich calculus along with a comprehensive review, aimed to physicists, of the classical option pricing method based on the Ito calculus. We show, as can be expected, that the Black-Scholes equation is independent of the interpretation chosen. We nonetheless point out the many subtleties underlying Black-Scholes option pricing method.Comment: 14 page

    Relativistic Black-Scholes model

    Full text link
    Black-Scholes equation, after a certain coordinate transformation, is equivalent to the heat equation. On the other hand the relativistic extension of the latter, the telegraphers equation, can be derived from the Euclidean version of the Dirac equation. Therefore the relativistic extension of the Black-Scholes model follows from relativistic quantum mechanics quite naturally. We investigate this particular model for the case of European vanilla options. Due to the notion of locality incorporated in this way one finds that the volatility frown-like effect appears when comparing to the original Black-Scholes model.Comment: 18 pages, publishe

    The Quantum Black-Scholes Equation

    Get PDF
    Motivated by the work of Segal and Segal on the Black-Scholes pricing formula in the quantum context, we study a quantum extension of the Black-Scholes equation within the context of Hudson-Parthasarathy quantum stochastic calculus. Our model includes stock markets described by quantum Brownian motion and Poisson process.Comment: Has appeared in GJPAM, vol. 2, no. 2, pp. 155-170 (2006

    Option Pricing in a Fractional Brownian Motion Environment

    Get PDF
    The purpose of this paper is to obtain a fractional Black-Scholes formula for the price of an option for every t in [0,T], a fractional Black-Scholes equation and a risk-neutral valuation theorem if the underlying is driven by a fractional Brownian motion BH (t), 1/2fractional Brownian motion, fractional Black-Scholes market, quasiconditional expectation
    • …
    corecore