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THE QUANTUM BLACK-SCHOLES EQUATION

LUIGI ACCARDI AND ANDREAS BOUKAS

Abstract. Motivated by the work of Segal and Segal in [16] on the Black-Scholes
pricing formula in the quantum context, we study a quantum extension of the Black-
Scholes equation within the context of Hudson-Parthasarathy quantum stochastic
calculus,. Our model includes stock markets described by quantum Brownian mo-
tion and Poisson process.

1. The Merton-Black-Scholes Option Pricing Model

An option is a ticket which is bought at time t = 0 and which allows the buyer at (in
the case of European call options) or until (in the case of American call options) time
t = T (the time of maturity of the option) to buy a share of stock at a fixed exercise
price K. In what follows we restrict to European call options. The question is: how
much should one be willing to pay to buy such an option? Let XT be a reasonable
price. According to the definition given by Merton, Black, and Scholes (M-B-S) an
investment of this reasonable price in a mixed portfolio (i.e part is invested in stock
and part in bond) at time t = 0, should allow the investor through a self-financing
strategy (i.e one where the only change in the investor’s wealth comes from changes
of the prices of the stock and bond) to end up at time t = T with an amount of
(XT − K)+ := max(0, XT − K) which is the same as the payoff, had the option
been purchased (cf. [12]). Moreover, such a reasonable price allows for no arbitrage
i.e, it does not allow for risk free unbounded profits. We assume that there are
no transaction costs and that the portfolio is not made smaller by consumption. If
(at, bt), t ∈ [0, T ] is a self -financing trading strategy (i.e an amount at is invested in
stock at time t and an amount bt is invested in bond at the same time) then the value
of the portfolio at time t is given by Vt = atXt + bt βt where, by the self-financing
assumption, dVt = at dXt+bt dβt. Here Xt and βt denote, respectively, the price of the
stock and bond at time t. We assume that dXt = cXt dt+ σ Xt dBt and dβt = βt r dt
where Bt is classical Brownian motion, r > 0 is the constant interest rate of the
bond, c > 0 is the mean rate of return, and σ > 0 is the volatility of the stock. The
assets at and bt are in general stochastic processes. Letting Vt = u(T − t, Xt) where
VT = u(0, XT ) = (XT −K)+ it can be shown (cf. [12]) that u(t, x) is the solution of
the Black-Scholes equation
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∂

∂t
u(t, x) = (0.5 σ2 x2 ∂2

∂x2
+ r x

∂

∂x
− r) u(t, x)

u(0, x) = (XT −K)+, x > 0, t ∈ [0, T ]

and it is explicitly given by

u(t, x) = xΦ(g(t, x)) −K e−r t Φ(h(t, x))

where

g(t, x) = (ln(x/K) + (r + 0.5 σ2) t)(σ
√
t)

−1
, h(t, x) = g(t, x) − σ

√
t

and

Φ(x) =
1√
2 π

∫ x

−∞

e−y2/2 dy =
1

2
+

1√
2 π

+∞
∑

n=0

(−1)n

2n n!

x2 n+1

2n+ 1
.

Thus a reasonable (in the sense described above) price for a European call option is

V0 = u(T,X0) = X0 Φ(g(T,X0)) −K e−r T Φ(h(T,X0))

and the self-financing strategy (at, bt), t ∈ [0, T ] is given by

at =
∂

∂x
u(T − t, Xt), bt =

u(T − t, Xt) − at Xt

βt
.

2. Quantum Extension of the M-B-S Model

In recent years the fields of Quantum Economics and Quantum Finance have ap-
peared in order to interpret erratic stock market behavior with the use of quantum
mechanical concepts (cf. [3], [4],[6]-[9], [11], and [14]-[16]). While no approach has yet
been proved prevalent, in [16] Segal and Segal introduced quantum effects into the
Merton-Black-Scholes model in order to incorporate market features such as the im-
possibility of simultaneous measurement of prices and their instantaneous derivatives.
They did that by adding to the Brownian motion Bt used to represent the evolution of
public information affecting the market, a process Yt which represents the influence of
factors not simultaneously measurable with those involved in Bt. They then sketched
a calculus for dealing with such processes. Segal and Segal concluded that the com-
bined process aBt + b Yt may be represented as (in their notation) Φ

(

(a+ ib)χ[0,t]

)

where for a Hilbert space element f , ei Φ(f) is the corresponding Weyl operator, and
χ[0,t] is the characteristic function of the interval [0, t]. In the context of the Hudson-
Parthasarathy quantum stochastic calculus of [10] and [13] (see Theorem 20.10 of [13])
simple linear combinations of Φ(f) and Φ(i f) define the Boson Fock space annihilator
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and creator operators Af and A†
f . Segal and Segal used Φ(χ[0,t]) as the basic integra-

tor process with integrands restricted to a special class of exponential processes. In
view of the above reduction of Φ to A and A†, it makes sense to study option pricing
using as integrators the annihilator and creator processes of Hudson-Parthasarathy
quantum stochastic calculus, thus exploiting its much larger class of integrable pro-
cesses than the one considered in [16]. The Hudson-Parthasarathy calculus has a
wide range of applications. For applications to, for example, control theory we refer
to [2], [5] and the references therein. Quantum stochastic calculus was designed to
describe the dynamics of quantum processes and we propose that we use it to study
the non commutative Merton-Black-Scholes model in the following formulation (no-
tice that our model includes also the Poisson process): We replace (see [1] for details
on quantization) the stock process {Xt / t ≥ 0} of the classical Black-Scholes theory
by the quantum mechanical process jt(X) = U∗

t X ⊗ 1Ut where , for each t ≥ 0, Ut

is a unitary operator defined on the tensor product H ⊗ Γ(L2(R+, C)) of a system
Hilbert space H and the noise Boson Fock space Γ = Γ(L2(R+, C)) satisfying

(2.1) dUt = −
((

iH +
1

2
L∗L

)

dt+ L∗ S dAt − LdA†
t + (1 − S) dΛt

)

Ut, U0 = 1

where X > 0, H , L, S are in B(H), the space of bounded linear operators on H, with
S unitary and X, H self-adjoint. We identify time-independent, bounded, system
space operators x with their ampliation x ⊗ 1 to H ⊗ Γ(L2(R+, C)). The value
process Vt is defined for t ∈ [0, T ] by Vt = at jt(X) + bt βt with terminal condition
VT = (jT (X) − K)+ = max(0, jT (X) − K), where K > 0 is a bounded self-adjoint
system operator corresponding to the strike price of the quantum option, at is a real-
valued function, bt is in general an observable quantum stochastic processes (i.e bt is
a self-adjoint operator for each t ≥ 0) and βt = β0 e

t r where β0 and r are positive
real numbers. Therefore bt = (Vt − at jt(X)) β−1

t . We interpret the above in the sense
of expectation i.e given u⊗ ψ(f) in the exponential domain of H⊗ Γ, where we will
always assume u 6= 0 so that ‖u⊗ ψ(f)‖ 6= 0,

< u⊗ ψ(f), Vt u⊗ ψ(f) > = at < u⊗ ψ(f), jt(X) u⊗ ψ(f) >

+ < u⊗ ψ(f), bt u⊗ ψ(f) > βt

(i.e the value process is always in reference to a particular quantum mechanical state,
so we can eventually reduce to real numbers) and

< u⊗ ψ(f), VT u⊗ ψ(f) > = < u⊗ ψ(f), (jT (X) −K)+ u⊗ ψ(f) >

= max(0, < u⊗ ψ(f), (jT (X) −K) u⊗ ψ(f) >).

As in the classical case we assume that the portfolio (at, bt), t ∈ [0, T ] is self -financing
i.e
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dVt = at djt(X) + bt dβt

or equivalently

dat · jt(X) + dat · djt(X) + dbt · βt + dbt · dβt = 0.

Remark 1.

The fact that the value process (and all other operator processes Xt appearing in
this paper) is always in reference to a particular quantum mechanical state, allows
for a direct translation of all classical financial concepts described in Section 1 to the
quantum case by considering the expectation (or matrix element) < u⊗ψ(f), Xt u⊗
ψ(f) > of the process at each time t. If the process is classical (i.e, if Xt ∈ R) then we
may divide out ‖u⊗ ψ(f)‖2 and everything is reduced to the classical case described
in Section 1.

Lemma 1. Let jt(X) = U∗
t X ⊗ 1Ut where {Ut / t ≥ 0} is the solution of (2.1). If

α = [L∗, X]S, α† = S∗ [X,L], λ = S∗X S −X,

and

θ = i [H,X] − 1

2
{L∗ LX +X L∗ L− 2L∗X L}

then

djt(X) = jt(α
†) dA†

t + jt(λ) dΛt + jt(α) dAt + jt(θ) dt(2.2)

and for k ≥ 2

(djt(X))k = jt(λ
k−1 α†) dA†

t + jt(λ
k) dΛt + jt(αλ

k−1) dAt + jt(αλ
k−2 α†) dt(2.3)

Proof. Equation (2.2) is a standard result of quantum flows theory (cf. [13]). To
prove (2.3) we notice that for k = 2, using (2.2), the Itô table

· dA†
t dΛt dAt dt

dA†
t 0 0 0 0

dΛt dA†
t dΛt 0 0

dAt dt dAt 0 0
dt 0 0 0 0

and the homomorhism property jt(x y) = jt(x) jt(y), we obtain

(djt(X))2 = djt(X) djt(X) = jt(λα
†) dA†

t + jt(λ
2) dΛt + jt(αλ) dAt + jt(αα

†) dt

so (2.3) is true for k = 2. Assuming (2.3) to be true for k we have
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(djt(X))k+1 = djt(X) (djt(X))k

= djt(X)
(

jt(λ
k−1 α†) dA†

t + jt(λ
k) dΛt + jt(αλ

k−1) dAt + jt(αλ
k−2 α†) dt

)

= jt(λ
k α†) dA†

t + jt(λ
k+1) dΛt + jt(αλ

k) dAt + jt(αλ
k−1 α†) dt

Thus (2.3) is true for k + 1 also.
�

3. Derivation of the Quantum Black-Scholes Equation

In the spirit of the previous section, let Vt := F (t, jt(X)) where F : [0, T ]×B(H⊗
Γ) −→ B(H ⊗ Γ) is the extension to self-adjoint operators x = jt(X) of the analytic
function F (t, x) =

∑+∞

n,k=0 an,k(t0, x0) (t− t0)
n (x− x0)

k, where x and an,k(t0, x0) are

in C, and for λ, µ ∈ {0, 1, ...}

Fλ µ(t, x) :=
∂λ+µF

∂tλ ∂xµ
(t, x)

=

+∞
∑

n=λ,k=µ

n!

(n− λ)!

k!

(k − µ)!
an,k(t0, x0) (t− t0)

n−λ (x− x0)
k−µ

and so, if 1 denotes the identity operator then

an,k(t0, x0) = an,k(t0, x0) 1 =
1

n! k!
Fn k(t0, x0).

Notice that for (t0, x0) = (0, 0) we have

Vt =

+∞
∑

n,k=0

an,k(0, 0) tn jt(X)k =

+∞
∑

n,k=0

an,k(0, 0) tn jt(X
k).

Proposition 1. (Quantum Black-Scholes Equation)

a1,0(t, jt(X)) + a0,1(t, jt(X)) jt(θ) +
∑+∞

k=2 a0,k(t, jt(X)) jt(αλ
k−2 α†) =

at jt(θ) + Vt r − at jt(X) r

(this is the quantum analogue of the classical Black-Scholes equation) and
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a0,1(t, jt(X)) jt(α
†) +

+∞
∑

k=2

a0,k(t, jt(X)) jt(λ
k−1 α†) = at jt(α

†)

a0,1(t, jt(X)) jt(α) +

+∞
∑

k=2

a0,k(t, jt(X)) jt(α λ
k−1) = at jt(α)

+∞
∑

k=1

a0,k(t, jt(X)) jt(λ
k) = at jt(λ).

Proof. By Lemma 2.1 and the Itô table for quantum stochastic differentials

dVt = dF (t, jt(X)) = F (t+ dt, jt+dt(X)) − F (t, jt(X))

= F (t+ dt, jt(X) + djt(X)) − F (t, jt(X))

=
+∞
∑

n,k=0

n+k>0

an,k(t, jt(X)) (dt)n (djt(X))k

= a1,0(t, jt(X)) dt+

+∞
∑

k=1

a0,k(t, jt(X)) (djt(X))k

= a1,0(t, jt(X)) dt+ a0,1(t, jt(X)) djt(X) +

+∞
∑

k=2

a0,k(t, jt(X)) {jt(λk−1 α†) dA†
t

+ jt(λ
k) dΛt + jt(αλ

k−1) dAt + jt(αλ
k−2 α†) dt}

where α, α†, λ are as in Lemma 2.1. Thus

dVt =

(

a1,0(t, jt(X)) + a0,1(t, jt(X)) jt(θ) +

+∞
∑

k=2

a0,k(t, jt(X)) jt(αλ
k−2 α†)

)

dt

+

(

a0,1(t, jt(X)) jt(α
†) +

+∞
∑

k=2

a0,k(t, jt(X)) jt(λ
k−1 α†)

)

dA†
t

+

(

a0,1(t, jt(X)) jt(α) +

+∞
∑

k=2

a0,k(t, jt(X)) jt(αλ
k−1)

)

dAt

+
+∞
∑

k=1

a0,k(t, jt(X)) jt(λ
k) dΛt(3.1)

where θ is as in Lemma 2.1. We can obtain another expression for dVt with the use
of the self-financing property. We have
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dVt = at djt(X) + bt dβt = at djt(X) + bt βt r dt

= at djt(X) + (Vt − at jt(X)) β−1
t βt r dt

= at djt(X) + (Vt − at jt(X)) r dt

= at

(

jt(α
†) dA†

t + jt(λ) dΛt + jt(α) dAt + jt(θ) dt
)

+ (Vt − at jt(X)) r dt

which can be written as

dVt = (at jt(θ) + Vt r − at jt(X) r) dt+ at jt(α
†) dA†

t + at jt(α) dAt

+ at jt(λ) dΛt(3.2)

Equating the coefficients of dt and the quantum stochastic differentials in (3.1) and
(3.2) we obtain the desired equations.

�

4. The case S = 1: Quantum Brownian motion

Proposition 2. Let F be as in the previous section. If S = 1 then the equations of
Proposition 3.1 combine into

u1 0(t, x) =
1

2
u0 2(t, x) g(x) + u0 1(t, x) h(x) − u(t, x) r

with initial condition u(0, jT (X)) = (jT (X)−K)+ where u(t, x) = F (T−t, x), g(x) =
[y∗, x] [x, y], h(x) = x r and x, y ∈ B(H⊗ Γ)

Proof. If S = 1 then, in the notation of Lemma 2.1, α = [L∗, X], α† = [X,L], λ = 0,
and θ = i [H,X] − 1

2
{L∗ LX +X L∗ L− 2L∗X L} and the equations of Proposition

3.1 reduce to

a1,0(t, jt(X)) + a0,1(t, jt(X)) jt(θ) + a0,2(t, jt(X)) jt(αα
†) = at jt(θ) + Vt r − at jt(X) r

and

a0,1(t, jt(X)) jt(α
†) = at jt(α

†)

a0,1(t, jt(X)) jt(α) = at jt(α)

which are condensed into

a1,0(t, jt(X)) + a0,1(t, jt(X)) jt(θ) + a0,2(t, jt(X)) jt(αα
†) = at jt(θ) + Vt r − at jt(X) r

and

a0,1(t, jt(X)) = at.



8 LUIGI ACCARDI AND ANDREAS BOUKAS

Upon substituting the second of the last two equations into the first one and simpli-
fying we obtain

a1,0(t, jt(X)) + a0,2(t, jt(X)) jt([L
∗, X] [X,L]) + a0,1(t, jt(X)) jt(X) r − Vt r = 0

which can be written as

F1 0(t, jt(X))+
1

2
F0 2(t, jt(X)) jt([L

∗, X] [X,L])+F0 1(t, jt(X)) jt(X) r = F (t, jt(X)) r

with terminal condition F (T, jT (X)) = (jT (X) −K)+. Letting x = jt(X), y = jt(L)
be arbitrary elements in B(H ⊗ Γ) and letting g(x) = [y∗, x] [x, y], h(x) = x r, we
obtain

F1 0(t, x) +
1

2
F0 2(t, x) g(x) + F0 1(t, x) h(x) = F (t, x) r.

Letting u(t, x) := F (T − t, x), u1 0(t, x) = −F1 0(T − t, x), u0 2(t, x) = F0 2(T − t, x)
and u0 1(t, x) = F0 1(T − t, x) we obtain

u1 0(t, x) =
1

2
u0 2(t, x) g(x) + u0 1(t, x) h(x) − u(t, x) r

with u(0, jT (X)) = (jT (X) −K)+.
�

5. The case S 6= 1: Quantum Poisson Process

In this section we examine the equations of Proposition 3.1 under the assumption
S 6= 1.

Proposition 3. Let F be as in Section 3. If [X,S] = S then the equations of
Proposition 3.1 combine into

u1 0(t, x) =
+∞
∑

k=2

1

k!
u0k(t, x) g(x) + u0 1(t, x) h(x) − u(t, x) r

with initial condition u(0, jT (X)) = (jT (X)−K)+ where u(t, x) = F (t−T, x), g(x) =
[y∗, x] [x, y]− i [z, x] + 1

2
{y∗ y x+ x y∗ y − 2 y∗ x y}, h(x) = x r and x, y, z ∈ B(H⊗ Γ)

Proof. Since X is self-adjoint and S is unitary, assuming that [X,S] = S is equivalent
to assuming that λ = S∗X S −X = 1 and the equations of Proposition 3.1 take the
form

a1,0(t, jt(X))+a0,1(t, jt(X)) jt(θ)+
+∞
∑

k=2

a0,k(t, jt(X)) jt(αα
†) = at jt(θ)+Vt r−at jt(X) r
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and

a0,1(t, jt(X)) jt(α
†) +

+∞
∑

k=2

a0,k(t, jt(X)) jt(α
†) = at jt(α

†)

a0,1(t, jt(X)) jt(α) +
+∞
∑

k=2

a0,k(t, jt(X)) jt(α) = at jt(α)

+∞
∑

k=1

a0,k(t, jt(X)) = at

which are satisfied if

a1,0(t, jt(X))+a0,1(t, jt(X)) jt(θ)+

+∞
∑

k=2

a0,k(t, jt(X)) jt(αα
†) = at jt(θ)+Vt r−at jt(X) r

and at =
∑+∞

k=1 a0,k(t, jt(X)) which, if substituted in the previous one, yields

a1,0(t, jt(X))+a0,1(t, jt(X)) jt(X) r+
+∞
∑

k=2

a0,k(t, jt(X))
(

jt(αα
† − θ) + jt(X) r

)

= Vt r.

But

jt(αα
† − θ) = [jt(L)∗, jt(X)] [jt(X), jt(L)] − i [jt(H), jt(X)]

+
1

2
{jt(L)∗ jt(L) jt(X) + jt(X) jt(L)∗ jt(L) − 2 jt(L)∗ jt(X) jt(L)}

Letting x = jt(X), y = jt(L), z = jt(H), h(x) = x r and

g(x) = [y∗, x] [x, y] − i [z, x] +
1

2
{y∗ y x+ x y∗ y − 2 y∗ x y}

using the notation of the previous section we obtain the Black-Scholes equation for
the case S 6= 1 as stated in the Proposition.

�

6. Solution of the Quantum Brownian Motion Black-Scholes

Equation

To solve the Quantum Brownian motion Black-Scholes equation we assume that
jt(X

2) = jt([L
∗, X] [X,L]) which is the same as X2 = [L∗, X] [X,L]. Since X = X∗, it

follows that [L∗, X] = [X,L]∗ and so letting φ(X) = [X,L] we find X2 = φ(X)∗ φ(X)
i.e φ(X) = W X which implies that [X,L] = W X and [L∗, X] = XW ∗, where W is
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an arbitrary unitary operator acting on the system space. In this case equation (2.2)
takes the form

djt(X) = jt

(

i [H,X] +
1

2
(L∗W X +XW ∗L)

)

dt+ jt(XW ) dA†
t + jt(W

∗X) dAt.

Lemma 2. If H > 0 is a bounded self-adjoint operator on a Hilbert space H then
there exists a bounded self-adjoint operator A on H such that H = eA.

Proof. Let H =
∫ b

a
λ dEλ where [a, b] ⊂ (0,+∞) and a ≤ ‖H‖ ≤ b. Letting λ = eµ

we obtain H =
∫ ln b

ln a
eµ dF (µ) where F (µ) = E(eµ). Thus H = eA where A =

∫ ln b

ln a
µ dF (µ) with ‖A‖ ≤ max (| ln a|, | ln b|). To show that the family {F (µ)/ ln a ≤

µ ≤ ln b} is a resolution of the identity we notice that for h ∈ H and λ, µ ∈ [ln a, ln b]
we have:

(i) F (λ)F (µ) = E(eλ)E(eµ) = E(eλ ∧ eµ) = F (λ ∧ µ),

(ii) lim
λ→µ−

F (λ) h = lim
eλ→eµ−

E(eλ) h = E(eµ) h = F (µ) h,

(iii) λ < µ⇒ eλ < eµ ⇒ E(eλ) < E(eµ) ⇒ F (λ) < F (µ),

(iv) λ < ln a⇒ eλ < a⇒ E(eλ) = 0 ⇒ F (λ) = 0,

(v) λ > ln b⇒ eλ > b⇒ E(eλ) = 1 ⇒ F (λ) = 1.

and the proof is complete.
�

The equation in Proposition 4.1 now has the form

u1 0(t, x) =
1

2
u0 2(t, x) x

2 + u0 1(t, x) x r − u(t, x) r

with initial condition u(0, jT (X)) = (jT (X) −K)+ where we may assume that x is a
bounded self-adjoint operator. Since

u(t, x) = F (T − t, x) =

+∞
∑

n,k=0

an,k(0, 0) (T − t)n xk

and x = jt(X) > 0, and K are invertible, we may let x = K ez where z is a bounded
self-adjoint operator commuting with K, and obtain
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ω(t, z) := u(t,K ez) =

+∞
∑

n,k=0

an,k(0, 0) (T − t)n (K ez)k

ω0 1(t, z) =
+∞
∑

n,k=0

an,k(0, 0) (T − t)n k (K ez)k =
+∞
∑

n=0,k=1

an,k(0, 0) (T − t)n k xk

=
+∞
∑

n=0,k=1

an,k(0, 0) (T − t)n k xk−1 x = u0 1(t, x) x

Similarly

ω0 2(t, z) =

+∞
∑

n=0,k=1

an,k(0, 0) (T − t)n k2 (K ez)k =

+∞
∑

n=0,k=1

an,k(0, 0) (T − t)n k2 xk

=
+∞
∑

n=0,k=1

an,k(0, 0) (T − t)n (k (k − 1) + k) xk

=

+∞
∑

n=0,k=2

an,k(0, 0) (T − t)n k (k − 1) xk−2 x2

+

+∞
∑

n=0,k=1

an,k(0, 0) (T − t)n k xk−1 x

= u0 2(t, x) x
2 + u0 1(t, x) x

and so

ω0 2(t, z) − ω0 1(t, z) = u0 2(t, x) x
2.

Finally

ω1 0(t, z) = −
+∞
∑

n=1,k=0

an,k(0, 0)n (T − t)n−1 (K ez)k

= −
+∞
∑

n=1,k=0

an,k(0, 0)n (T − t)n−1 xk = u1 0(t, x)

and so

ω1 0(t, z) = 1
2
ω0 2(t, z) + ω0 1(t, z)

(

r − 1
2

)

− ω(t, z) r(6.1)

with initial condition ω(0, zT ) = (jT (X)−K)+ where zT is defined by K ezT = jT (X).
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Theorem 1. In analogy with the classical case presented in section 1, the solution of
(6.1) is given by

ω(t, z) = K ez Φ(g(t,K ez)) −K Φ(h(t,K ez)) e−r t

where

g(t,K ez) = z t−1/2 + (r + 0.5) t1/2

h(t,K ez) = z t−1/2 + (r − 0.5) t1/2,

and

Φ(x) =
1

2
+

1√
2 π

+∞
∑

n=0

(−1)n

2n n!

x2 n+1

2n+ 1

Proof. We have

ω1 0(t, z) = K ez (Φ◦g)1 0(t,K ez)−K (Φ◦h)1 0(t,K ez) e−r t+K (Φ◦h)(t,K ez) r e−r t,

ω0 1(t, z) = K ez (Φ ◦ g)(t,K ez) +K ez (Φ ◦ g)0 1(t,K ez) −K (Φ ◦ h)0 1(t,K ez) e−r t,

and

ω0 2(t, z) = K ez (Φ ◦ g)(t,K ez) + 2K ez (Φ ◦ g)0 1(t,K ez) +K (Φ ◦ g)0 2(t,K ez)

− K (Φ ◦ h)0 2(t,K ez) e−r t

where

(Φ ◦ h)(t,K ez) =
1

2
+

1√
2 π

+∞
∑

n=0

(−1)n

2n n!

(z t−1/2 + (r − 0.5) t1/2)2 n+1

2n+ 1

(Φ ◦ g)(t,K ez) =
1

2
+

1√
2 π

+∞
∑

n=0

(−1)n

2n n!

(z t−1/2 + (r + 0.5) t1/2)2 n+1

2n+ 1

Thus

ω1 0(t, z) −
1

2
ω0 2(t, z) − ω0 1(t, z) (r − 1

2
) + ω(t, z) r = K

(

Ae−r t + ez B
)

where
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A = −(Φ ◦ h)1 0(t,K ez) +
1

2
(Φ ◦ h)0 2(t,K ez) + (Φ ◦ h)0 1(t,K ez) (r − 1

2
)

B = (Φ ◦ g)1 0(t,K ez) − 1

2
(Φ ◦ g)0 2(t,K ez) − (Φ ◦ g)0 1(t,K ez) (r +

1

2
)

It follows that A = B = 0 thus proving (6.1). Moreover, in order to prove that the
initial condition is satisfied, we have

ω(0, zT ) = K ezT Φ(g(0, K ezT )) −K Φ(h(0, K ezT ))

= (K ezT −K) Φ(g(0, K ezT )) +K (Φ(g(0, K ezT )) − Φ(h(0, K ezT ))) .

But

g(0, K ezT ) − h(0, K ezT ) = lim
t→0+

(

z√
t

+ (r + 0.5)
√
t− z√

t
− (r − 0.5)

√
t

)

= 0

and so Φ(g(0, K ezT )) − Φ(h(0, K ezT )) = 0. Thus, it suffices to show that

Φ(g(0, K ezT )) =

{

1 if K ezT ≥ K
0 if K ezT < K

We have

Φ(g(0, K ezT )) = lim
t→0+

(Φ ◦ g)(t,K ezT ))

=
1

2
+ lim

t→0+

1√
2 π

+∞
∑

n=0

(−1)n

2n n!

1

tn+1/2

z2 n+1
T

2n+ 1

Suppose that K ezT ≥ K. Then zT ≥ 0 and by the spectral resolution theorem
z2 n+1

T =
∫ +∞

0
λ2 n+1 dEλ. So

Φ(g(0, K ezT )) =
1

2
+ lim

t→0+

1√
2 π

+∞
∑

n=0

(−1)n

2n n!

1

tn+1/2

∫ +∞

0

λ2 n+1

2n+ 1
dEλ

=
1

2
+ lim

t→0+

1√
2 π

∫ +∞

0

∫ λ
√

t

0

e−
s2

2 ds dEλ

=
1

2
+

1√
2 π

∫ +∞

0

∫ +∞

0

e−
s2

2 ds dEλ

=
1

2
+

1√
2 π

∫ +∞

0

√
2 π

2
dEλ = 1
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Similarly, ifK ezT < K then zT < 0 and if we let zT = −wT where wT =
∫ +∞

0
λ dEλ >

0, then

z2 n+1
T = (−1)2 n+1

∫ +∞

0

λ2 n+1 dEλ = −
∫ +∞

0

λ2 n+1 dEλ

and so, as before, Φ(g(0, K ezT )) = 1
2
− 1

2
· 1 = 0.

�

Corollary 1. The reasonable price for a quantum option is ω(T, z0) where ω is as
in Theorem 6.1 and z0 is defined by X = K ez0. The associated quantum portfolio
(at, bt) is given by

at = ω0 1(t− T, zt)

bt = (ω(T − t, zt) − at jt(X)) e−t r β0
−1

where zt is defined by jt(X) = K ezt. ( As in the classical case described in Section
1, a reasonable price is defined as one which when invested at time t = 0 in a mixed
portfolio, allows the investor through a self-financing strategy to end up at time t = T
with an amount of

< u⊗ ψ(f), VT u⊗ ψ(f) > = < u⊗ ψ(f), (jT (X) −K)+ u⊗ ψ(f) >

= max(0, < u⊗ ψ(f), (jT (X) −K) u⊗ ψ(f) >)

which is the same as the payoff, had the option been purchased. Here, u⊗ψ(f) is any
vector in the exponential domain of H⊗ Γ).

Proof. By Theorem 6.1, the reasonable price for a quantum option is V0 = F (0, j0(X)) =
F (0, X) = u(T,X) = ω(T, z0). The formulas for at and bt follow from the definition
of the portfolio, given in Section 2. �
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