263 research outputs found

    Evolving Bitcoin Custody

    Full text link
    The broad topic of this thesis is the design and analysis of Bitcoin custody systems. Both the technology and threat landscape are evolving constantly. Therefore, custody systems, defence strategies, and risk models should be adaptive too. We introduce Bitcoin custody by describing the different types, design principles, phases and functions of custody systems. We review the technology stack of these systems and focus on the fundamentals; key-management and privacy. We present a perspective we call the systems view. It is an attempt to capture the full complexity of a custody system, including technology, people, and processes. We review existing custody systems and standards. We explore Bitcoin covenants. This is a mechanism to enforce constraints on transaction sequences. Although previous work has proposed how to construct and apply Bitcoin covenants, these require modifying the consensus rules of Bitcoin, a notoriously difficult task. We introduce the first detailed exposition and security analysis of a deleted-key covenant protocol, which is compatible with current consensus rules. We demonstrate a range of security models for deleted-key covenants which seem practical, in particular, when applied in autonomous (user-controlled) custody systems. We conclude with a comparative analysis with previous proposals. Covenants are often proclaimed to be an important primitive for custody systems, but no complete design has been proposed to validate that claim. To address this, we propose an autonomous custody system called Ajolote which uses deleted-key covenants to enforce a vault sequence. We evaluate Ajolote with; a model of its state dynamics, a privacy analysis, and a risk model. We propose a threat model for custody systems which captures a realistic attacker for a system with offline devices and user-verification. We perform ceremony analysis to construct the risk model.Comment: PhD thesi

    Formal Methods for Secure Bitcoin Smart Contracts

    Get PDF
    The notion of smart contracts was introduced in 1997 by Nick Szabo, to describe agreements among mutually distrusting parties that can be automatically enforced without resorting to a trusted intermediary. Then, the idea was mostly forgotten due to the technical impossibility to implement it. The advent of distributed ledger technologies, pioneered by Bitcoin, provided a technical foundation to reshape and develop smart contracts. Since smart contracts handle the ownership of valuable assets, attackers may be tempted to exploit vulnerabilities in their implementation to steal or tamper with these assets. For instance, a series of vulnerabilities in Ethereum contracts have been exploited, causing money losses in the order of hundreds of millions of dollars. Over the last years, a variety of smart contracts for Bitcoin have been proposed, both by the academic community and by that of developers. However, the heterogeneity in their treatment, the informal (often incomplete or imprecise) descriptions, and the use of poorly documented Bitcoin features, poses obstacles to the development of secure smart contracts. Using formal models and domain-specific languages to describe the behaviour of the underlying platform, and to model contracts, could help to overcome these security issues, by reducing the distance between the intended behaviour of a contract and the implementation. In this thesis, we propose a formal model of Bitcoin transactions, which is the foundation for a new process algebra for defining Bitcoin smart contracts. Furthermore, we present a toolchain for developing smart contracts in BitML, a domain-specific language based on the contributions of this thesis. Moreover, we propose a new extension to Bitcoin, called neighbourhood covenants, which extends its expressiveness as a smart contract platform. We then exploit neighbourhood covenants to implement fungible tokens on Bitcoin

    Instantaneous Decentralized Poker

    Get PDF
    We present efficient protocols for amortized secure multiparty computation with penalties and secure cash distribution, of which poker is a prime example. Our protocols have an initial phase where the parties interact with a cryptocurrency network, that then enables them to interact only among themselves over the course of playing many poker games in which money changes hands. The high efficiency of our protocols is achieved by harnessing the power of stateful contracts. Compared to the limited expressive power of Bitcoin scripts, stateful contracts enable richer forms of interaction between standard secure computation and a cryptocurrency. We formalize the stateful contract model and the security notions that our protocols accomplish, and provide proofs using the simulation paradigm. Moreover, we provide a reference implementation in Ethereum/Solidity for the stateful contracts that our protocols are based on. We also adopt our off-chain cash distribution protocols to the special case of stateful duplex micropayment channels, which are of independent interest. In comparison to Bitcoin based payment channels, our duplex channel implementation is more efficient and has additional features

    The Evolution of Giving: Considerations for Regulation of Cryptocurrency Donation Deductions

    Get PDF
    This Issue Brief looks at the rapidly growing area of cryptocurrency donations to nonprofit organizations. Given the recent IRS guidance issued on taxation of Bitcoin, specifically its decision to treat cryptocurrencies as property, questions now arise as to how charitable contributions of the coins will be valued for tax deductions. Though Bitcoin resembles most other capital gain property, its volatility, general decline in value, anonymity, and potential for abuse require specific guidance on valuation and substantiation so as to handle its unique nature and prevent larger deductions for charitable contributions than those to which taxpayers are entitled
    • 

    corecore