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Abstract

The notion of smart contracts was introduced in 1997 by Nick Szabo, to
describe agreements among mutually distrusting parties that can be auto-
matically enforced without resorting to a trusted intermediary. Then, the
idea was mostly forgotten due to the technical impossibility to implement
it. The advent of distributed ledger technologies, pioneered by Bitcoin,
provided a technical foundation to reshape and develop smart contracts.

Since smart contracts handle the ownership of valuable assets, attack-
ers may be tempted to exploit vulnerabilities in their implementation to
steal or tamper with these assets. For instance, a series of vulnerabilities
in Ethereum contracts have been exploited, causing money losses in the
order of hundreds of millions of dollars.

Over the last years, a variety of smart contracts for Bitcoin have been
proposed, both by the academic community and by that of developers.
However, the heterogeneity in their treatment, the informal (often in-
complete or imprecise) descriptions, and the use of poorly documented
Bitcoin features, poses obstacles to the development of secure smart con-
tracts. Using formal models and domain-specific languages to describe
the behaviour of the underlying platform, and to model contracts, could
help to overcome these security issues, by reducing the distance between
the intended behaviour of a contract and the implementation.

In this thesis, we propose a formal model of Bitcoin transactions, which
is the foundation for a new process algebra for defining Bitcoin smart con-
tracts. Furthermore, we present a toolchain for developing smart contracts
in BitML, a domain-specific language based on the contributions of this
thesis. Moreover, we propose a new extension to Bitcoin, called neigh-
bourhood covenants, which extends its expressiveness as a smart contract
platform. We then exploit neighbourhood covenants to implement fungi-
ble tokens on Bitcoin.
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Introduction

In recent years we have observed a growing interest around cryptocurren-
cies. Bitcoin [116], the first decentralized cryptocurrency, was introduced
in 2009, and through the years it has consolidated its position as the most
popular one. Bitcoin and other cryptocurrencies have pushed forward
the concept of decentralization, providing means for reliable interactions
between mutually distrusting parties on an open network.

Besides the intended monetary application, the Bitcoin blockchain can
be seen as a way to consistently maintain the state of a system over a peer-
to-peer network, without the need of a trusted authority. If the system is
a currency, its state is the amount of funds in each account. This concept
can be generalised to the case where the system is a smart contract [72],
namely an executable computer protocol which can also handle transfers
of currency. The idea of exploiting the Bitcoin blockchain to build smart
contracts has recently been explored by several works. Lotteries [4, 26,
62, 23], gambling games [57], contingent payments [12], covenants [63,
66], and other kinds of fair computations [1, 56] are some examples of the
capabilities of Bitcoin as a platform for smart contracts.

The term “smart contract” was conceived by Nick Szabo [72] to de-
scribe agreements between two or more parties, that can be automatically
enforced without a trusted intermediary. Fallen into oblivion for several
years, the idea of smart contract has been resurrected with the recent
surge of distributed ledger technologies, led by Ethereum [98] and Hyper-
ledger [109]. In such incarnations, smart contracts are rendered as com-
puter programs. Users can request the execution of contracts by sending
suitable transactions to the nodes of a peer-to-peer network. These nodes
collectively maintain the history of all transactions in a public, append-
only data structure, called blockchain. The sequence of transactions on
the blockchain determines the state of each contract, and, accordingly,
the assets of each user.

A crucial feature of smart contracts is that their correct execution does



2 Introduction

not rely on a trusted authority: rather, the nodes which process trans-
actions are assumed to be mutually untrusted. Potential conflicts in the
execution of contracts are resolved through a consensus protocol, whose
nature depends on the specific platform (e.g., it is based on “proof-of-
work” in Ethereum). Ideally, contracts execute correctly whenever the
adversary does not control the majority of some resource (e.g., computa-
tional power for “proof-of-work” consensus).

Since smart contracts handle the ownership of valuable assets, attack-
ers may be tempted to exploit vulnerabilities in their implementation to
steal or tamper with these assets. Although analysis tools [60, 27, 52]
may improve the security of contracts, so far they have not been able
to completely prevent attacks. For instance, a series of vulnerabilities in
Ethereum contracts [8]) have been exploited, causing money losses in the
order of hundreds of millions of dollars [124, 120, 77].

Unlike Ethereum, where contracts can be expressed as computer pro-
grams with a well-defined semantics [51, 125], Bitcoin contracts are usu-
ally realised as cryptographic protocols relying on features of Bitcoin that
go beyond the standard transfers of currency. Roughly, participants of
the protocols send/receive messages, verify signatures, and put/search
custom-designed transactions on the blockchain. While the vast majority
of Bitcoin transactions uses scripts only to verify signatures, the transac-
tions of smart contracts exploit more complex scripts, e.g. to determine
the winner of a lottery, or to check if a secret has been revealed. Smart
contracts may also exploit other (infrequently used) features of Bitcoin,
e.g. various signature modifiers, and temporal constraints on transactions.

As a matter of fact, using these advanced features to design a new
smart contract is not a trivial matter, for two reasons. First, while the
overall behaviour of Bitcoin is clear, the details of many of its crucial as-
pects are poorly documented. To understand the details of how a mech-
anism actually works, one has to explore various web pages (often inac-
curate, or inconsistent, or overly technical), and eventually resort to the
source code of the Bitcoin client [83] to have the correct answer. Second,
the description of advanced features is often too concrete to be effectively
used in the design and analysis of a smart contract (indeed, in many cases
the only available description coincides with the implementation).

The informal (often incomplete or imprecise) narration of these proto-
cols, together with the use of poorly documented features of Bitcoin (e.g.,
segregated witnesses, scripts, signature modifiers, temporal constraints),
and the overall heterogeneity in their treatment, pose serious obstacles to
the research on smart contracts in Bitcoin.

Using formal models and and domain-specific languages (possibly, not
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Turing-complete) to describe the behaviour of the underlying platform
and to model contracts could help to overcome these security issues. by
reducing the distance between contract specification and implementation.

Contributions
Bitcoin formalization We propose a formal model of Bitcoin trans-
actions. This model is abstract enough to allow for formal reasoning on
the behaviour of Bitcoin transactions. For instance, we use our model
to formally prove some properties of the Bitcoin blockchain, e.g. that
transactions cannot be spent twice (Theorem 3.1.2), and that the overall
value contained in the blockchains (excluding the coinbase transactions)
is decreasing (Theorem 3.1.5).

Our model formally specifies some poorly documented features of Bit-
coin, e.g. transaction signatures and signature modifiers (Definition 3.5),
output scripts (Definitions 3.1 and 3.9), multi-signature verification (Def-
inition 3.8), Segregated Witnesses (Definitions 3.3 and 3.11), paving the
way towards automatic verification.

Then, we provide the first systematic survey of smart contracts on Bit-
coin. In order to obtain a uniform and precise treatment, we propose a new
formal model of contracts, which exploits the previous one about Bitcoin
transactions. This model is based on a process calculus with primitives
to construct Bitcoin transactions, to put them on the blockchain, and to
search the blockchain for transactions matching given patterns. Our cal-
culus allows us to give smart contracts a precise operational semantics,
which describes the interactions of the (possibly dishonest) participants
involved in the execution of a contract.

We systematically formalise a large portion of the contracts proposed
so far both by researchers and Bitcoin developers. In many cases, we
find that specifying a contract with the intended security properties is
significantly more complex than expected after reading the informal de-
scriptions of the contract. Usually, such informal descriptions focus on
the case where all participants are honest, neglecting the cases where one
needs to compensate for some unexpected behaviour of the dishonest en-
vironment.

New Bitcoin extensions We propose a variant of covenants, named
neighbourhood covenants, which can inspect not only the redeeming trans-
action, but also the siblings and the parent of the spent one. This ex-
tension preserves the basic UTXO design of Bitcoin, adding only a few
opcodes to its script language, which is kept efficient, loop-free, and non
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Turing-complete. Still, neighbourhood covenants significantly increase
the expressiveness of Bitcoin as a smart contracts platform, allowing to
execute arbitrary smart contracts by appending a chain of transactions
to the blockchain. Technically, we prove that neighbourhood covenants
make Bitcoin Turing-complete.

We summarise the contribution as follows:
• we propose neighbourhood covenants as a Bitcoin extension (Sec-

tion 4.1), and we show that they make Bitcoin Turing-powerful
(Theorem 4.1.1). We then discuss how to efficiently implement them
on Bitcoin (Section 4.4);

• we use our formal model to specify complex Bitcoin contracts, which
largely extend the set of use cases expressible in pure Bitcoin.

• we show how this form of covenants can be exploited in an high-level
language like BitML.

A toolchain for Developing BitML contract We consider BitML,
a high-level language for smart contracts, featuring a computationally
sound embedding into Bitcoin [22], and a sound and complete verification
technique of relevant trace properties [24]. BitML can express many of
the smart contracts appeared in the literature [15, 9], and execute them
by appending suitable transactions to the Bitcoin blockchain.

We develop a toolchain for writing and verifying BitML contracts, and
for deploying them on Bitcoin. More specifically, our contribution can be
summarised as follows:

• A BitML embedding in Racket [42], which allows for programming
BitML contracts within the DrRacket IDE.

• A security analyzer which can check arbitrary LTL properties of
BitML contracts. In particular, the analysis can decide liquidity,
a landmark property of smart contracts. requiring that the funds
within a contract do not remain frozen forever.

• A compiler from BitML contracts to standard Bitcoin transactions.

• A collection of BitML contracts, which we use as a benchmark to
evaluate our toolchain. This collection contains some of the most
complex contracts ever developed for Bitcoin, e.g. financial services,
auctions, timed commitments, lotteries, and a variety of other gam-
bling games. We use our benchmarks to discuss the expressiveness
and the limitations of Bitcoin as a smart contracts platform.

The toolchain is open-source and its component are available at [95].

Stefano Lande Formal Methods for Secure Bitcoin Smart Contracts



Introduction 5

On-chain Fungible Tokens on Bitcoin Bitcoin, due to the limitation
of its simple scripting language, does not support fungible tokens directly.
Nevertheless, the first implementations of tokens were developed before
Ethereum, on top of Bitcoin. All these implementations have a common
drawback: the correctness of the token actions is not guaranteed by the
consensus protocol of the blockchain. In fact, the blockchain is used just
to notarize the actions that manipulate tokens, but not to check that these
actions are actually permitted.

By contrast, modern blockchain platforms support on-chain to-
kens, whose correctness is guaranteed by the consensus protocol of the
blockchain. Since adding native tokens to Bitcoin appears to be out of
reach, we exploit neighborhood covenants, which increases the expressive-
ness of Bitcoin enough to support tokens. Summarising:

• we introduce a symbolic model of fungible tokens, which formalises
their archetypal features: their minting and burning, the split and
join operations, and the exchange of tokens with other tokens or
with bitcoins (Section 7.2);

• we exploit neighbourhood covenants to implement tokens on Bitcoin
(Section 7.3);

Structure of the thesis
We briefly describe the overall structure this thesis below.

Chapter 1: Blockchain and Smart Contracts overviews blockchain
technologies and Bitcoin in particular. Part of this material borrows
from [11, 7].

Chapter 2: BitML: a calculus for Bitcoin smart contracts briefly
overviews BitML, an high-level language for specifying smart con-
tracts which can be executed on Bitcoin. Then, it gives an intuition
of the notion of liquidity of a contract, and its verification technique.
Part of this material borrows from [24].

Chapter 3: A Formal Model of Bitcoin Transactions proposes a
formal model of Bitcoin transactions, which is sufficiently abstract
to enable formal reasoning, and at the same time is concrete enough
to serve as an alternative documentation to Bitcoin. This chapter
is based on [11].

Chapter 4: Extending Bitcoin with Neighborhood Covenants
proposes a formal model of covenants, i.e. linguistic primitives that

Stefano Lande Formal Methods for Secure Bitcoin Smart Contracts
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allow transactions to constrain the scripts of the redeeming ones.
Our proposal increases the expressivity of traditional covenants by
allowing the spending conditions in a transaction to depend on the
neighbour transactions We use our model to specify some complex
Bitcoin contracts, and we discuss how to exploit covenants to design
high-level language primitives for Bitcoin contracts. This chapter is
based on [18].

Chapter 5: Bitcoin Smart Contracts as Endpoint Protocols
presents a comprehensive survey of smart contracts on Bitcoin, in
a uniform framework. Our treatment is based on a new formal
specification language for smart contracts, which also helps us to
highlight some subtleties in existing informal descriptions, making
a step towards automatic verification. We discuss some obstacles to
the diffusion of smart contracts on Bitcoin, and we identify the most
promising open research challenges. This chapter is based on [9].

Chapter 6: A Toolchain for Developing BitML Contracts present
a BitML toolchain for developing and verifying smart contracts
that can be executed on Bitcoin. Our toolchain translates BitML
contracts into sets of standard Bitcoin transaction, and automati-
cally verifies relevant properties of contracts. This chapter is based
on [10].

Chapter 7: On-chain Fungible Tokens on Bitcoin proposes a secure
and efficient implementation of fungible tokens on Bitcoin, based on
neighbourhood covenants. We propose a symbolic model for fungible
token which can be applied to UTXO-based blockchains, and prove
some relevant security properties. This chapter is based on [19].

Conclusions summarises our work and shows a comparison with the
related ones. Finally, it outlines some future perspectives and ex-
tensions.

Stefano Lande Formal Methods for Secure Bitcoin Smart Contracts
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Chapter 1

Blockchain and Smart
Contracts

A blockchain is an immutable data structure that maintains an ordered
set of transactions. For implementation reasons, transactions are grouped
into blocks. Each block is chained together with the previous one by
including its hash. Changing the past, i.e. altering the data contained in
a block, would change its hash, consequently invalidating the chain. The
blockchain is distributed and maintained by a network of nodes: each node
maintain a local copy of the blockchain and use a consensus mechanism
that ensures that each node agrees on the new block to append.

The process of append a new block is called mining. A subset of nodes,
called miners, try to build a new block to append to the blockchain. To
avoid conflicts and regulate this process, miners reach consensus on the
blockchain by voting. In Bitcoin and Ethereum, the vote is done though
Proof of Work, i.e. a miner must solve a cryptographic puzzle that re-
quires time-consuming computations. Conceptually, the more computing
power a miner has, the more voting power she has on deciding the next
block In other blockchain platforms, like Algorand, miners voting power
is proportional to the amount of currency they own. This mechanism is
called Proof of Stake.

The purpose of a transaction depends on the blockchain platform,
although the main goal is usually to exchange a currency. In Bitcoin,
transactions register a transfer of bitcoins between users, albeit alternative
uses have been studied to store arbitrary data on the blockchain [21, 17].

This chapter provides an overview of Bitcoin. Section 1.1 explains its
main aspects, detailed enough to understand the formal model of Bitcoin
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Figure 1.1: Simplified Blockchain.

transactions and its extension proposed in Chapters 3 and 4, and the
model of Bitcoin contracts as protocols in Chapter 5.

1.1 Bitcoin
Bitcoin [116], is the first decentralized cryptocurrency. The nodes of the
Bitcoin network maintain a public and immutable data structure, called
blockchain. The blockchain stores the historical record of all transfers
of bitcoins, which are referred to as transactions. When a node up-
dates the blockchain, the other nodes verify if the appended transactions
are valid, e.g. by checking if the conditions specified in scripts are satis-
fied. Scripts are programmable boolean functions: in their standard (and
mostly used) form they verify a digital signature against a public key.
Since the blockchain is immutable, tampering with a stored transaction
would result in the invalidation of all the subsequent ones. Updating the
state of the blockchain, i.e. appending new transactions, requires solving a
moderately difficult cryptographic puzzle. In case of conflicting updates,
the chain that required the largest computational effort is considered the
valid one. Hence, the immutability and the consistency of the blockchain
is bounded by the total computational power of honest nodes. An ad-
versary with enough resources can append invalid transactions, e.g. with
incorrect digital signatures, or rewrite a part of the blockchain, e.g. to
perform a double-spending attack. The attack consists in paying some-
one by publishing a transaction on the blockchain, and then removing it
(making the funds unspent).

Stefano Lande Formal Methods for Secure Bitcoin Smart Contracts
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1.1.1 Transactions
Users interact with Bitcoin through addresses, which they can freely gen-
erate. Transactions describe transfers of bitcoins (B) between addresses.
The log of all transactions is recorded on a public, immutable and decen-
tralised data structure called blockchain. To explain how the blockchain
works, consider the transactions T0 and T1 displayed in Figure 1.2.

T0
in: · · ·
wit: · · ·
out: (λx.versig(k, x), v0B)

T1
in: T0
wit: σ
out: (λy.e , v1B)

Figure 1.2: Two Bitcoin transactions.

The transaction T0 contains v0B, which can be redeemed by putting
on the blockchain a transaction (e.g., T1), whose in field is a reference to
T0. To redeem T0, the witness of the redeeming transaction (the value in
its wit field) must make the output script of T0 (the first element of the
pair in the out field) evaluate to true. When this happens, the value of
T0 is transferred to the new transaction, and T0 is no longer redeemable.

In the example displayed before, the output script of T0 evaluates
to true when receiving a digital signature on the redeeming transaction
T1, with a given key pair k. We denote with versig(k, x) the verification
of the signature x on the redeeming transaction: of course, since the
signature must be included in the witness of the redeeming transaction,
it will consider all the parts of that transaction except its wit field. We
assume that σ is the signature of T1, computed with the key pair k.

Now, assume that the blockchain contains T0, not yet redeemed, and
someone tries to append T1. To validate this operation, the nodes of the
Bitcoin network check that v1 ≤ v0, and then they evaluate the output
script of T0, by instantiating its formal parameter x to the signature σ in
the witness of T1. The function versig(k, σ) verifies that σ is actually the
signature of T1: therefore, the output script succeeds, and T1 redeems
T0. Subsequently, a new transaction can redeem T1 by satisfying its
output script λy.e (not specified in the figure). The formalism used to
representT0 and T1 is fully presented in Chapter 3.

Bitcoin transactions may be more general than the ones illustrated
by the previous example. First, there can be multiple inputs and out-
puts. Each output has an associated output script and value, and can
be redeemed independently from the others. Consequently, in fields must
specify which output they are redeeming. A transaction with multiple in-

Stefano Lande Formal Methods for Secure Bitcoin Smart Contracts
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puts associates a witness to each of them. The sum of the values of all the
inputs must be greater or equal to the sum of the values of all the outputs,
otherwise the transaction is considered invalid. In its general form, the
output script is a program in a (non Turing-complete) scripting language,
featuring a limited set of logic, arithmetic, and cryptographic operators.
Finally, a transaction can specify time constraints (absolute, or relative
to its input transactions) about when it can appear on the blockchain.

1.1.2 Smart contracts
Albeit the primary usage of Bitcoin is to exchange currency, its blockchain
and consensus mechanism can also be exploited to securely execute some
forms of smart contracts. These are agreements among mutually distrust-
ing parties, which can be automatically enforced without resorting to a
trusted intermediary.

Bitcoin scripting language permits the definition of several smart con-
tracts. Differently from Ethereum, where smart contracts are long-lived
programs stored and invoked on the blockchain through transactions, in
Bitcoin they are modelled as cryptographic protocols that may spread
multiple transactions, they have no state, and cannot be reused once ter-
minated.

A new process algebra to express smart contracts in Bitcoin is pre-
sented in Chapter 5. This formalism is expressive enough to model real
use-cases in the Bitcoin community, providing a clear semantics and en-
abling formal reasoning. Briefly, the participants involved in a smart con-
tract create and publish new transactions on the blockchain and interact
with other participants to exchange signatures.

Stefano Lande Formal Methods for Secure Bitcoin Smart Contracts
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Chapter 2

BitML: a calculus for
Bitcoin smart contracts

In this section we briefly overview BitML, a domain-specific language for
Bitcoin smart contracts. BitML is a process calculus, with primitives
to stipulate contracts and to exchange currency according to the con-
tract terms. In this respect, BitML departs from the current practice of
representing Bitcoin contracts as cryptographic protocols: rather, BitML
pioneers the “contracts-as-program” paradigm for Bitcoin, by completely
abstracting from Bitcoin transactions and cryptographic details. We then
give some intuition about liquidity and our verification technique.

We assume a set of participants, ranged over by A,B, . . ., and a set of
names, of two kinds: x, y, . . . denote deposits of B, while a, b, . . . denote
secrets. We write x (resp. a) for a finite sequence of deposit (resp. secrets)
names.

2.1 BitML in a nutshell
BitML allows participants to exchange cryptocurrency according to pre-
agreed contract rules. In BitML, any participant can broadcast a contract
advertisement {G}C , where C is the actual contract, specifying the rules
to transfer bitcoins (B), while G is a set of preconditions to its execution.

Preconditions (Figure 2.1) may require participants to deposit some
B in the contract (either upfront or at runtime), or to commit to some
secret. More in detail, A:! v @x requires A to own vB in a deposit x, and
to spend it for stipulating a contract C . Instead, A:? v @x only requires A
to pre-authorize the spending of x, which can be gathered by the contract
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G ::= A:? v @x volatile deposit of vB, expected from A
| A:! v @x deposit of vB put by A
| A:secret a secret committed by A
| G | G composition

Figure 2.1: Syntax of BitML contract preconditions.

C ::=
∑

i∈I Di contract

D ::= guarded contract
putx& reveala if p.C put deposits and reveal secrets (if p is true)

| withdraw A transfer the balance to A

| split v → C split the balance

| A : D wait for A’s authorization

| after t : D wait until time t

p ::= predicate
true truth
| p ∧ p conjunction
| ¬p negation
| E = E equality
| E < E less than

E ::= contract expression
a secret
| E + E addition
| E − E subtraction

Figure 2.2: Syntax of BitML contracts.

at run-time. The precondition A:secret a requires A to commit to a
secret a before C starts.

After {G}C has been advertised, each participant can choose whether
to accept it, or not. When all the preconditions G have been satisfied,
and all the involved participants have accepted, the contract C becomes
stipulated. The contract starts its execution with a balance, initially set to
the sum of the !-deposits required by its preconditions. Running C will
affect this balance, when participants deposit/withdraw funds to/from the
contract.

A contract C (Figure 2.2) is a choice among zero or more branches.
Each branch is a guarded contract which enables an action, and possi-
bly proceeds with a continuation C ′. The guarded contract withdraw A
transfers the whole balance to A, while split v1 → C 1 | · · · | vn → Cn

decomposes the contract into n parallel components C i, each one with

Stefano Lande Formal Methods for Secure Bitcoin Smart Contracts
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balance vi. The guarded contract putx& reveala if p atomically per-
forms the following: (i) spend all the ?-deposits x, adding their values to
the contract balance; (ii) check that all the secrets a have been revealed
and satisfy the predicate p. When enabled, the above-mentioned actions
can be fired by anyone, at anytime. To restrict who can execute actions
and when, one can use the decoration A : D , which requires the autho-
rization of A, and the decoration after t : D , which requires to wait until
time t.

2.1.1 A basic example
As a first example, we express in BitML the timed commitment [4], a basic
protocol to construct more complex contracts, like e.g. lotteries and other
games [5]. In the timed commitment, a participant A wants to choose a
secret, and promises to reveal it before some time t. The contract ensures
that if A does not reveal the secret in time, then she will pay a penalty of
1B to B (e.g., the opponent player in a game). In BitML, this is modelled
as follows:

{A:! 1 @x | A:secret a} (reveal a. withdraw A + after t : withdraw B)

The precondition requires A to pay upfront 1B, and to commit to a se-
cret a. The contract is a non-deterministic choice between two branches.
Only A can choose the first branch, by performing reveal a (syntactic
sugar for put ε& reveal a if true, where ε is the empty sequence). Sub-
sequently, anyone can transfer 1B to A. Only after t, if the reveal has
not been fired, any participant can fire withdraw B in the second branch,
moving 1B to B. So, before t, A has the option to reveal a (avoiding the
penalty), or to keep it secret (paying the penalty). If no branch is taken
by t, the first one who fires its withdraw gets 1B.

2.2 BitML semantics
We briefly recall from [22] the semantics of BitML. The semantics is a
labelled transition system between configurations of the following form:

• {G}C , representing the advertisement of contract C with precon-
ditions G ;

• 〈C , v〉x , representing a stipulated contract, holding a current bal-
ance of vB. The name x uniquely identifies the contract in a con-
figuration;
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• 〈A, v〉x representing a fund of vB owned by A, and with unique
name x;

• A B χ, representing A’s authorizations to perform some operation
χ. We refer to [22] for the syntax of authorizations (some of them
are exemplified below);

• {A : a#N}, representing that A has committed to a random secret
a with (secret) length N ;

• A : a#N , representing that A has revealed her secret a (with its
length N).

• Γ | ∆ is the parallel composition of two configurations (with identity
0);

• Γ | t is a timed configuration, where t ∈ N is a global time.

We now illustrate the BitML semantics by examples; when time is
immaterial, we only show the steps of the untimed semantics. We omit
labels on transitions.

Deposits. When A owns a deposit 〈A, v〉x, she can use it in various
ways: she can divide the deposit into two smaller deposits, or join it
with another deposit of hers to form a larger one; the deposit can also be
transferred to another participant, or destroyed. For instance, to donate
a deposit x to B, A must first issue the authorization A B x B B; then,
anyone can transfer the money to B:

〈A, v〉x | · · · −→ 〈A, v〉x | A B x B B | · · · −→ 〈B, v〉y | · · · (y fresh)

Advertisement. Any participant can advertise a new contract C (with
preconditions G). This is obtained by performing the step Γ −→ Γ |
{G}C .

Stipulation. Stipulation turns a contract advertisement into an active
contract. For instance, let G = A:! 1 @x | A:? 1 @ y | A:secret a . Given
a contract C , the stipulation of {G}C is done in a few steps:

〈A, 1〉x | 〈A, 1〉y | {G}C −→∗ 〈A, 1〉y | 〈C , 1〉z | {A : a#N}

Above, the funds in the deposit x are transferred to the newly created
contract, to fulfill the precondition A:! 1 @x. Instead, the deposit y re-
mains in the configuration, to be possibly spent after some time. The
component {A : a#N} represents the secret committed to by A, with its
length N .
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Withdraw. Executing withdraw A terminates the contract, and trans-
fers its whole balance to A by creating a fresh deposit owned by A:

〈withdraw A + C ′, v〉x −→ 〈A, v〉y (y fresh)

Above, withdraw A is executed as a branch within a choice: as usual,
taking a branch discards the other ones (denoted as C ′).

Split. The split primitive can be used to spawn several new concurrent
contracts, dividing the balance among them. For instance:

〈(split v1 → C 1 | v2 → C 2), v1 + v2〉x −→ 〈C 1, v1〉y | 〈C 2, v2〉z
(y, z fresh)

Reveal. A prefix reveal a if p can be fired when the previously com-
mitted secret a (satisfying the predicate p) has been revealed. For in-
stance:

〈reveal a if a = N.C , v〉x | {A : a#N}
−→ 〈reveal a if a = N.C , v〉x | A : a#N
−→ 〈C , v + v′〉y | A : a#N

In the first step, A reveals her secret a. In the second step, any
participant fires the prefix.

Authorizations. When a branch is decorated by A : · · · it can be taken
only after A has provided her authorization. For instance:

〈A : withdraw B + A : withdraw C , v〉x
−→〈A : withdraw B + A : withdraw C , v〉x | A B xB A : withdraw B
−→〈B, v〉y

In the first step, A authorizes to take the branch withdraw B . After
that, any participant can fire such branch.

Time. We always allow time t to advance by a delay δ > 0, through
a transition Γ | t −→ Γ | t + δ. Advancing time can enable branches
decorated with after t. For instance, if t0 + δ ≥ t, we have the following
computation:

〈(after t : withdraw B) + C ′, v〉x | t0
−→ 〈(after t : withdraw B) + C ′, v〉x | t0 + δ −→ 〈B, v〉y | t0 + δ
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2.2.1 Runs and strategies.
A run S is a (possibly infinite) sequence:

Γ0 | t0
α0−→ Γ1 | t1

α1−→ · · ·

where αi are the transition labels, Γ0 contains only deposits, and t0 = 0.
If S is finite, we write ΓS for its last untimed configuration, and δS for its
last time. A strategy Σs

A is a PPTIME algorithm which allows A to select
which actions to perform (possibly, time delays), among those permitted
by the BitML semantics. The choice among these actions is controlled
by the adversary strategy Σs

Adv , which acts on behalf of all the dishonest
participants. Given the strategies of all participants (including Adv), there
is a unique run conforming to all of them.

2.3 Liquidity
A desirable property of smart contracts is liquidity, which requires that the
contract balance is always eventually transferred to some participant. In
a non-liquid contract, funds can be frozen forever, unavailable to anyone,
hence effectively destroyed. There are many possible flavours of liquidity,
depending e.g. on which participants are assumed to be honest, and on
which are their strategies. The simplest form of liquidity is to consider
the case where everyone cooperates: i.e. a contract is liquid if there exists
some strategy for each participant such that no funds are ever frozen.
However, this notion does not capture the essence of smart contracts, i.e.
to allow mutually untrusted participants to safely interact.

For instance, consider the following contract, where A and B contribute
1B each for a donation of 2B to either C or D (we omit the preconditions
for brevity):

A : B : withdraw C + A : B : withdraw D

In order to unlock the funds, A and B must agree on the recipient of
the donation, by giving their authorization on the same branch. This
contract would be liquid only by assuming the cooperation between A
and B: indeed, A alone cannot guarantee that the 2B will eventually be
donated, as B can choose a different recipient, or even refuse to give any
authorization. Consequently, unless A trusts B, it makes sense to consider
this contract as non-liquid, from the point of view of A (and for similar
reasons, also from that of B).

Consider now the timed commitment contract discussed before:

reveal a. withdraw A + after t : withdraw B
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This contract is liquid from A’s point of view (even if B is dishonest),
because A can reveal the secret and then redeem the funds from the
contract. The timed commitment is also liquid from B’s point of view: if
A does not reveal the secret (making the first branch stuck), the funds in
the contract can be redeemed through the second branch, after time t.

In a mutual timed commitment contract, where A and B have to ex-
change their secrets or pay a 1B penalty, achieving liquidity is a bit more
challenging. We first consider a wrong attempt:

reveal a. reveal b. split (1B→ withdraw A | 1B→ withdraw B)
+ after t : withdraw B

Intuitively, A has only the following strategies, according to when she
decides to reveal her secret a: (i) A chooses to reveal a unconditionally,
and to perform the reveal a action. This strategy is not liquid: indeed, if
B does not reveal b, the contract is stuck. (ii) A chooses to reveal a only
after B has revealed b. This strategy is not liquid: indeed, if B chooses
not to reveal b, the contract will never advance. (iii) A chooses to wait
until B reveals secret b, or until time t′ ≥ t, whichever comes first. If b
was revealed, A reveals a, and splits the contract balance between A and
B. Otherwise, if the deadline t′ is expired, A transfers the whole balance
to B. Note that, although this strategy is liquid, it is not satisfactory for
A, since in the second case she will lose money.

This example highlights a crucial point: participants’ strategies have
to be taken into account when defining liquidity. Indeed, the mere fact
that a liquid strategy exists does not imply that it is the ideal strategy
for the honest participant. To fix this issue, we revise the mutual timed
commitment as follows:

reveal a.
(
reveal b. split (1B→ withdraw A | 1B→ withdraw B)

+ after t′ : withdraw A
)

+ after t : withdraw B

where t < t′. Now, A has a liquid strategy where she does not pay the
penalty. First, A reveals a before time t. After that, if B reveals b, then
A can execute the split, transferring 1B to herself and 1B to B (note
that this does not require B’s cooperation); otherwise, after time t′, A can
withdraw 2B by executing the withdraw A in the after t′ : · · · branch.

These examples, albeit elementary, show that detecting if a strategy
is liquid for a contract is not straightforward, in general. The problem
of determining a liquid strategy for a given contract seems even more
demanding. Automatic techniques for the verification and inference of
liquid strategies can be useful tools for the developers of smart contracts.
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2.3.1 Verifying liquidity
One of the main features of BitML is a verification technique for the liquid-
ity of BitML contracts. The technique is based on a more general result,
i.e. a strict correspondence between the concrete semantics of BitML and
a new abstract semantics, which is finite-state. The abstraction is a cor-
rect and complete approximation of the concrete semantics with respect
to a given set of contracts [24]. To obtain a finite-state abstraction, we
need to cope with three sources of infiniteness of the concrete semantics of
BitML: the unbounded passing of time, the advertisement/stipulation of
new contracts, and the operations on deposits. The abstraction replaces
the time t in concrete configurations with a finite number of time inter-
vals T = [t0, t1), and it disables the transitions to advertise new contracts.
Further, the only operations on deposits allowed by the abstract seman-
tics are the ones for transferring them to contracts and for destroying
them. The latter is needed e.g. to properly model the situation where a
participant spends a ?-deposit.

The intended use of our abstraction is to start from a configuration
containing an arbitrary (but finite) set of contracts, and then analyse
their possible evolutions in the presence of an honest participant and an
adversary. This produces a finite set of (finite) traces, which we can
model-check for liquidity. Soundness and completeness of the abstraction
are exploited to prove that liquidity is decidable. The computational
soundness of the BitML compiler [22] guarantees that if a contract is
verified to be liquid according to our analysis, this property is preserved
when executing it on Bitcoin.
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Chapter 3

A Formal Model of
Bitcoin Transactions

Bitcoin [116], the first decentralized cryptocurrency, was introduced in
2009, and through the years it has consolidated its position as the most
popular one. Bitcoin and other cryptocurrencies have pushed forward
the concept of decentralization, providing means for reliable interactions
between mutually distrusting parties on an open network.

Besides the intended monetary application, the Bitcoin blockchain can
be seen as a way to consistently maintain the state of a system over a peer-
to-peer network, without the need of a trusted authority. If the system is
a currency, its state is the amount of funds in each account. This concept
can be generalised to the case where the system is a smart contract [72],
namely an executable computer protocol which can also handle transfers
of currency. The idea of exploiting the Bitcoin blockchain to build smart
contracts has recently been explored by several works. Lotteries [4, 26,
62, 23], gambling games [57], contingent payments [12], covenants [63,
66], and other kinds of fair computations [1, 56] are some examples of the
capabilities of Bitcoin as a platform for smart contracts.

Smart contracts often rely on features of Bitcoin that go beyond the
standard transfers of currency. For instance, while the vast majority of
Bitcoin transactions uses scripts only to verify signatures, smart contracts
like the above-mentioned ones exploit more complex scripts, e.g. to de-
termine the winner of a lottery, or to check if a secret has been revealed.
Smart contracts may also exploit other (infrequently used) features of Bit-
coin, e.g. various signature modifiers, and temporal constraints on trans-
actions.
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As a matter of fact, using these advanced features to design a new
smart contract is not a trivial matter, for two reasons. First, while the
overall behaviour of Bitcoin is clear, the details of many of its crucial as-
pects are poorly documented. To understand the details of how a mech-
anism actually works, one has to explore various web pages (often inac-
curate, or inconsistent, or overly technical), and eventually resort to the
source code of the Bitcoin client [83] to have the correct answer. Second,
the description of advanced features is often too concrete to be effectively
used in the design and analysis of a smart contract (indeed, in many cases
the only available description coincides with the implementation).

This Chapter is structured as follows. In Section 3.1 we formalise
Bitcoin transactions. Besides transactions, we also provide an high-level
model of the blockchain, and we study its basic properties. In Section 3.2
we illustrate, through a basic case study, the impact of the Segregated
Witness feature on the expressiveness of Bitcoin smart contracts. In Sec-
tion 3.3 we show how to translate transactions from our model to standard
Bitcoin transactions. We discuss the differences between our model and
the actual Bitcoin in Section 7.3.

3.1 The model
In this section we propose a formal model of Bitcoin transactions, which
is sufficiently abstract to enable formal reasoning, and at the same time is
concrete enough to serve as an alternative documentation to Bitcoin. We
use our model to formally prove some well-formedness properties of the
Bitcoin blockchain, for instance that each transaction can only be spent
once.

In Section 3.1.1 we define the scripts that can be used in transaction
outputs. Then, in Section 3.1.2 we formalise transactions, and in Sec-
tion 3.1.3 we define a signature scheme for them. Sections 3.1.4 and 3.1.5
give semantics, respectively, to scripts and transactions. In Section 3.1.6
we model the Bitcoin blockchain, and in particular we define the crucial
notion of consistency, which corresponds to the one enforced by the Bit-
coin consensus protocol. We then state a few results about consistent
blockchains.

We start by introducing some auxiliary notation. We assume several
sets, ranged over by meta-variables as shown in the left column of Ta-
ble 3.1. We use the bold notation to denote finite sequences of elements.
We denote with xi the i-th element of a sequence x, i.e. xi = xi if
x = x1 . . . xn, and with xi..j the subsequence of x starting from the i-th
element and ending to the j-th element. We denote with |x| the num-
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A,B, . . . ∈ Part Participants
x, y, . . . ∈ Var Variables
ν, ν′, . . . ∈ Den Denotations, i.e.:
k, k′ . . . ∈ Z Constants
t, t′ . . . ∈ N Time
v, v′ . . . ∈ N Currency values
σ, σ′, . . . ∈ Z Signatures
true, false Boolean values
⊥ Undefined

e, e′ , . . . ∈ Exp Script expressions
T,T′, . . . ∈ Tx Transactions
µ, µ′ Signature modifier
sigµ,i
k

(T) Transaction signature
verk (σ,T, i) Signature verification
T, i |= λx.e Script verification
(T, i, t) v

 (T′, j, t′) Transaction redeem
B = (T1, t1) · · · Blockchains
B B (T, t) Consistent update

Table 3.1: Summary of notation.

ber of elements of x, and with ε the empty sequence. We denote with
f : A ⇀ B a partial function f from A to B, with dom f the domain of
f , i.e. the subset of A where f is defined, and with ran f the range of
f , i.e. ran f = {f(x) |x ∈ dom f}. We use ⊥ to represent an “undefined”
element; in particular, when the element is a partial function, ⊥ denotes
the function with empty domain. For a pair (x, y), we define fst(x, y) = x
and snd(x, y) = y.

3.1.1 Scripts
Each output in a Bitcoin transaction contains a script, which is used
to establish when the output can be redeemed by another transaction.
Intuitively, a script is a first-order function (written in a non Turing-
equivalent language), which is applied to the witness provided by the
redeeming transaction. The output can be redeemed only if such function
application evaluates to true.

In our model, we abstract from the actual stack-based scripting lan-
guage implemented in Bitcoin [89], by using instead a minimalistic lan-
guage of expressions.

Definition 3.1 (Scripts). We define the set Exp of script expressions
(ranged over by e, e′ , . . . ) as follows:

e ::= x | k | e + e | e − e | e = e | e < e | if e then e else e | |e| |
H(e) | versig(k, e) | absAfter t : e | relAfter t : e

We denote with Script the set of terms of the form λz.e such that all the
variables in e occur in z.
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Besides some basic arithmetic and logical operators, script expres-
sions include a few operators inspired from the actual Bitcoin scripting
language. The expression |e| denotes the size, in bytes, of the evaluation
of e. The expression H(e) evaluates to the hash of e. The expression
versig(k, e) takes as arguments a sequence of m script expressions, rep-
resenting signatures of the enclosing transactions, and a sequence of n
public keys. Intuitively, it evaluates to true whenever the provided signa-
tures are verified by using m out of the n provided keys. The expressions
absAfter t : e and relAfter t : e define temporal constraints (see Sec-
tion 3.1.4). They evaluate to e if the constraints are satisfied, otherwise
they fail.

Notation 3.2. We use the following syntactic sugar for expressions:
(i) false to denote 1 = 0 (ii) true to denote 1 = 1 (iii) e ∧ e′ to de-
note if e then e′ else false (iv) e ∨ e′ to denote if e then true else e′
(v) not e to denote if e then false else true.

3.1.2 Transactions
The following definition formalises Bitcoin transactions.

Definition 3.3 (Transactions). We inductively define the set
Tx of transactions as follows. A transaction T is a tuple
(in,wit, out, absLock, relLock), where:

• in : N⇀ Tx × N

• wit : N⇀ Z∗, where dom wit = dom in

• out : N⇀ Script× N

• absLock : N

• relLock : N⇀ N, where dom relLock = dom in

where, for all i, j ∈ dom in, fst(in(i)).wit = ⊥ and i 6= j =⇒ in(i) 6= in(j).
We denote with T.f the value of field f of T, for f ∈
{in,wit, out, absLock, relLock}.
We say that T is initial when T.in = T.relLock = ⊥ and T.absLock = 0.

The fields in and out represent, respectively, the inputs and the outputs
of a transaction. There is an input for each i ∈ dom in, and an output for
each j ∈ dom out. When T.in(i) = (T′, j), it means that the i-th input
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of T wants to redeem the j-th output of T′. The side condition i 6= j ⇒
in(i) 6= in(j) ensures that inputs are pairwise distinct. The side condition
fst(in(i)).wit = ⊥ is related to the Segregated Witness (SegWit) feature
and it requires that the witness of the input transaction is left unspecified.
This feature, specified in the BIP 141 [113] and activated on August 24th
2017, implies that witnesses are not used in the computation of transaction
hashes. The output T′.out(j) is a pair (λz.e, v), meaning that v Satoshis
(1B = 108 Satoshis) can be redeemed by whoever can provide a witness
which makes the term λz.e evaluate to true. Such witness is defined
by T.wit(i). The fields T.absLock and T.relLock(i) specify a constraint
on when T can be put on the blockchain: the first in absolute terms,
whereas the second is relative to the transaction in the input T.in(i). More
specifically, T.absLock = t means that T can appear on the blockchain
only after time t. If T.relLock(i) = t, then T can appear only after time
t since the transaction in T.in(i) appeared.

To improve readability, we use the following conventions: (i) if T has
exactly one input, we denote it by T.in (omitting the index, which we
assume to be 1); We act similarly for T.wit, T.out, and T.relLock; (ii) if
T.absLock = 0, we omit it (similarly for T.relLock when it is ⊥); (iii) we
denote with scr(T.out(i)) and val(T.out(i)), respectively, the first and the
second element of the pair T.out(i).

3.1.3 Transaction signatures
We extend to transactions the signing and verification functions of the
public key signature schemes, denoted respectively as sigk(·) and verk(·, ·).
For simplicity, although we will always use k = (kp, ks) for key pairs, we
implicitly assume that sigk(·) only uses the private part ks, while verk(·, ·)
only uses the public part kp.

In Bitcoin, transaction signatures never apply to the whole transac-
tion: users can specify which parts of a transaction are signed (with the
exception of the wit field, which is never signed). However, not all pos-
sible combinations of transaction parts are possible; the legit ones are
listed in Definition 3.5. In order to specify which parts of a transaction
are signed, we first introduce the auxiliary notion of transaction substitu-
tion.

Definition 3.4 (Transaction substitutions). A transaction substitution
Σ is a function from Tx to Tx. For a transaction field f, we denote with
{f 7→ d} the substitution which replaces the value of f with d. For f 6=
absLock and i ∈ N, we denote with {f(i) 7→ d} the substitution which
replaces f(i) with d. Further, for ◦ ∈ {<,>, 6=}, we denote with {f(◦ i) 7→
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∗∗i(T) = T{wit(1) 7→ i}{wit(6= 1) 7→ ⊥}
∗0i(T) = ∗∗i(T{out 7→ ⊥})
∗1i(T) = ∗∗i(T{out(< i) 7→ (false, 0)}{out(> i) 7→ ⊥})
1∗i(T) = ∗∗1(T{in(1) 7→ T.in(i)}{in( 6= 1) 7→ ⊥}

{relLock(1) 7→ T.relLock(i)}{relLock( 6= 1) 7→ ⊥})
10i(T) = 1∗i(∗0i(T))
11i(T) = 1∗i(∗1i(T))

Figure 3.1: Signature modifiers.

d} the substitution which replaces f(j) with d, for all j ◦ i ∈ dom f.

Definition 3.5 (Signature modifiers). We define signature modifiers µ[i]
(with i ∈ N) in Figure 3.1. We associate to each modifier a substitution,
and we denote with µ[i](T) the result of applying it to the transaction T.

Each modifier is represented by a pair of symbols, describing, respec-
tively, the set of inputs and of outputs being signed (∗ = all, 1 = single, 0
= none), and an index i ∈ N. The index has different meanings, depend-
ing on the modifier. Regarding the first symbol of the modifier, if it is ∗,
then i is the index of the witness where the signature will be included,
so to ensure that a signature computed for being included in the witness
at index i can not be used in any witness with index j 6= i (see Exam-
ple 3.1.4). If the first symbol of the modifier is 1, then only the i-th input
is signed, while all the other inputs are removed from the transaction.
With respect to the second symbol of the modifier, if it is 1, then i is the
index of the signed output; otherwise, i has no effect on the outputs to
be signed. Note that a single index is used for both inputs and outputs:
in any case, the index refers to the witness where the signature will be
included.

Definition 3.6 (Transaction signatures). We define the transaction sig-
nature (under modifier µ and index i) and verification functions as fol-
lows:

sigµ,ik (T) = (sigk(µ[i](T), µ), µ)
verk(σ,T, i) = verk(w, (µ[i](T), µ)) if σ = (w, µ)

Hereafter, we use σ, σ′, . . . to range over transaction signatures.
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Note that a signature σ = (sigk((µ[i](T), µ)), µ) does not contain the
index i. Consequently, the verification function requires i to be passed
as parameter, i.e. we write verk(σ,T, i). The parameter i will be instan-
tiated by the script verification function (see Definition 3.10). Besides
the modified transaction µ[i](T), the signature also applies to the mod-
ifier µ. In this way, signing a single-input transaction T with modifier
∗∗1 and with modifier 1∗1 results in two different signatures, even though
∗∗1(T) = 1∗1(T).

Notation 3.7. Note that sigµ,ik (T) can meaningfully appear within
T.wit(i), since such signature does not depend on the wit field of trans-
actions (as all signature modifiers overwrite all the witnesses). When a
signature of T appears within T.wit(i), as a shorthand we denote it with
sigµk (so, neglecting the enclosing transaction T and the index i), or just
sigk when µ = ∗∗.

We now extend the signature verification verk(σ,T, i) to the case
where, instead of providing a single key k and a single signature σ, one has
many keys and signatures, i.e. verk(σ,T, i). Intuitively, if |σ| = m and
|k| = n, the function verk(σ,T, i) implements a m-of-n multi-signature
scheme, i.e. it evaluates to true if all the m signatures match (some of)
the keys in k. The actual definition is a bit more complex, to be coherent
with the one implemented in Bitcoin.

Definition 3.8 (Multi-signature verification). Let k and σ be sequences
of (public) keys and signatures such that |k| ≥ |σ|, and let i ∈ N. For all
m,n ∈ N, we define the function:

vern,mk (σ,T, i) ≡


true if m = 0
false if m 6= 0 and n = 0
vern−1,m−1

k (σ,T, i) if m,n 6= 0 and verkn
(σm,T, i)

vern−1,m
k (σ,T, i) otherwise

Then, we define verk(σ,T, i) = ver|k|,|σ|k (σ,T, i).

Our formalisation of multi-signature verification (Definition 3.8) fol-
lows closely the implementation of Bitcoin, whose stack-based scripting
language imposes that the sequence σ is read in reverse order. Accord-
ingly, the function ver tries to verify the last signature in σ with the last
key in k. If they match, the function ver proceeds to verify the previous
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signature in the sequence, otherwise it tries to verify the signature with
the previous key.

Example 3.1.1 (2-of-3 multi-signature). Let k = kakbkc, and let σ =
σpσq be such that verka

(σp,T, 1) = verkb
(σq,T, 1) = true, and false oth-

erwise. We have that:

verk(σ,T, 1) = ver3,2
k (σ,T, 1) (as |k| = 3 and |σ| = 2)

= ver2,2
k (σ,T, 1) (as verkc(σq,T, 1) = false)

= ver1,1
k (σ,T, 1) (as verkb

(σq,T, 1) = true)
= ver0,0

k (σ,T, 1) (as verka
(σp,T, 1) = true)

= true (as m = 0)

Note that, if we let σ′ = σqσp, the resulting evaluation will be:

verk(σ′,T, 1) = ver3,2
k (σ′,T, 1) (as |k| = 3 and |σ′| = 2)

= ver2,2
k (σ′,T, 1) (as verkc

(σp,T, 1) = false)
= ver1,2

k (σ′,T, 1) (as verkb
(σp,T, 1) = false)

= ver0,1
k (σ′,T, 1) (as verka

(σp,T, 1) = true)
= false (as m 6= 0 and n = 0)

3.1.4 Semantics of scripts

Definition 3.9 gives the semantics of script expressions. This semantics will
be used in Section 3.1.5 to define when a transaction can redeem another
one. We use an environment ρ : Var ⇀ Z which associates a denotation
to each variable occurring in it. Further, we use a transaction T ∈ Tx and
an index i ∈ N to indicate the witness redeeming the script, both used to
evaluate the timelock expressions. We use the denotation ⊥ to represent
“failure” of the evaluation. This is the case e.g. of timelock expressions,
when the temporal constraint is not satisfied. All the semantic operators
used in Definition 3.9 are strict, i.e. they evaluate to ⊥ if some of their
operands is ⊥.

Definition 3.9 (Expression evaluation). Let ρ : Var ⇀ Z, let T ∈ Tx and
i ∈ N. We define the function J·KT,i,ρ : Exp → Den in Figure 3.2, where
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JxKT,i,ρ = ρ(x)
JkKT,i,ρ = k

Jversig(k, e)KT,i,ρ = verk(JeKT,i,ρ,T, i)
JH(e)KT,i,ρ = H(JeKT,i,ρ) (H is a public hash function)

JabsAfter t : eKT,i,ρ = if T.absLock ≥ t then JeKT,i,ρ else ⊥
JrelAfter t : eKT,i,ρ = if T.relLock(i) ≥ t then JeKT,i,ρ else ⊥

Je ◦ e′KT,i,ρ = JeKT,i,ρ ◦⊥ Je′KT,i,ρ (◦ ∈ {+,−,=, <})
J|e|KT,i,ρ = size(JeKT,i,ρ)

Jif e0 then e1 else e2KT,i,ρ = if Je0KT,i,ρ then Je1KT,i,ρ else Je2KT,i,ρ

Figure 3.2: Semantics of script expressions.

Den = Z ∪ {true, false}. We use the following operators on denotations:

if ν0 then ν1 else ν2 ≡


ν1 if ν0 = true
ν2 if ν0 = false
⊥ otherwise

size(ν) ≡


⊥ if ν 6∈ Z
0 if ν = 0⌈

log2 |ν|+1
7

⌉
otherwise

ν0 ◦⊥ ν1 ≡ if ν0, ν1 ∈ Z then ν0 ◦ ν1 else ⊥
(◦ ∈ {+,−,=, <})

The function size(ν) denotes the amount of bytes that are necessary to
represent the value ν, as defined in the Bitcoin scripting language [89].

Definition 3.10 (Script verification). We say that the input i of T verifies
λx.e (in symbols: T, i |= λx.e) when x = x1 . . . xn, T.wit(i) = k1 . . . kn,
and:

JeKT,i,{xj 7→kj | j∈1...n} = true

Example 3.1.2. Let H be a hash function, let s, h ∈ Z be such that
h = H(s), and let T be such that T.wit(1) = (σ, s), with σ = sig∗∗k (T).
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We prove that:

T, 1 |= λ(ς, x).
(
versig(k, ς) and H(x) = h

)
To do this, let ρ = {ς 7→ σ, x 7→ s}. We have that:

Jversig(k, ς) and H(x) = hKT,1,ρ = Jversig(k, ς)KT,1,ρ and JH(x) = hKT,1,ρ

= verk(JςKT,1,ρ,T, 1) and (JH(x)KT,1,ρ =⊥ JhKT,1,ρ)
= verk(ρ(ς),T, 1) and (H(JxKT,1,ρ) =⊥ h)
= verk(σ,T, 1) and (H(ρ(x)) =⊥ h)
= true

3.1.5 Semantics of transactions
Definition 3.11 describes when the j-th input of a transaction T′ (put on
the blockchain at time t′) can redeem v Satoshis from the i-th output of
the transaction T (put on the blockchain at time t). We denote this by
(T, i, t) v

 (T′, j, t′).

Definition 3.11 (Output redeeming). We write (T, i, t) v
 (T′, j, t′) iff

all the following conditions hold:

(a) T′.in(j) = (T{wit 7→ ⊥}, i)

(b) T′, j |= scr(T.out(i))

(c) v = val(T.out(i))

(d) t′ ≥ T′.absLock

(e) t′ − t ≥ T′.relLock(j)

We write (T, i, t) 6 (T′, j, t′) when for no v it holds that (T, i, t) v
 

(T′, j, t′).

Item (a) links the j-th input of T′ to the i-th output of T. Note that,
since we are modelling Segregated Witness, the witness in the transaction
T′.in(j) is left unspecified: this is why we set to ⊥ also the witness of
T. Item (b) requires that the j-th witness of T′ verifies the i-th output
script of T. Item (c) just defines v as the value in the i-th output of T.
Items (d) and (e) check the absolute and relative timelocks, respectively.
The first constraint states that T′ cannot appear on the blockchain before
T′.absLock; the second one states that T′ cannot appear until at least
T′.relLock(j) time units have elapsed since T was put on the blockchain.
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T0

in: · · ·
wit: · · ·
out: (λς.versig(k, ς), v0)

T1

in: (T0, 1)
wit: sigk
out: (λς.versig(k′, ς), v1)

T′1
in: (T0, 1)
wit: sigk
out: (λς.versig(k′, ς), v1)
absLock: 5.1.2017
relLock: 2 days

Figure 3.3: Three transactions. For notational conciseness, when displaying
transactions we omit the substitution {wit 7→ ⊥} for the transaction within the in
field (e.g., we just write T0 within T1.in). Also, we use dates in time constraints.

T′1
in: . . .
wit: . . .
out: (λς.versig(k, ς), 1)

T′2
in: . . .
wit: . . .
out: (λς.versig(k, ς), 2)

T′3
in: 1 7→ (T′1, 1), 2 7→ (T′2, 1)
wit: 1 7→ sigk , 2 7→ sigk
out: (λς.versig(k2, ς), 3)

Figure 3.4: Three transactions for Example 3.1.4. Note that, by Definition 3.7,
the first witness of T′3 is sig∗∗,1k (T′3), while the second is sig∗∗,2k (T′3).

Example 3.1.3. With the transactions in Figure 3.3, we have
(T0, 1, t0) v0 (T1, 1, t1). Indeed, for item (a) we have that T1.in(1) =
(T0{wit 7→ ⊥}, 1); for item (b), T1, 1 |= λς.versig(k, ς); for item (c),
v0 = val(T0.out(1)). The other two items trivially hold, as there are
no time constraints. We also have (T0, 1, 2.1.2017) v0 (T′1, 1, 6.1.2017).
To show that, we have to check also items (d) and (e). For item (d), we
have that 6.1.2017 ≥ T′1.absLock = 5.1.2017. For item (e), we have that
6.1.2017− 2.1.2017 ≥ T′1.relLock(1) = 2 days.

Example 3.1.4. Consider the transactions in Figure 3.4. The signature
in T′3.wit(1) is computed as follows:

sig∗∗,1k (T′3) = (sigk(∗∗1(T′3, ∗∗)), ∗∗) by Definition 3.6
= (sigk(T′3{wit(1) 7→ 1}{wit(6= 1) 7→ ⊥}, ∗∗), ∗∗) by Definition 3.5

Stefano Lande Formal Methods for Secure Bitcoin Smart Contracts



34 A Formal Model of Bitcoin Transactions

We prove that, when verifying (T′1, 1, t)
1
 (T′3, 1, t′), item (b) of Def-

inition 3.11 holds, i.e. T′3, 1 |= scr(T′1.out(1)). To this purpose, let
ρ = {ς 7→ (w, ∗∗)}, where w = sigk(T′3{wit(1) 7→ 1}{wit(6= 1) 7→ ⊥}, ∗∗).
We have that:

Jversig(k, ς)KT′
3,1,ρ = verk(JςKT′

3,1,ρ,T
′
3, 1) by Def. 3.9

= verk((w, ∗∗),T′3, 1) ρ(ς) = (w, ∗∗)
= verk(w, (∗∗1(T′3), ∗∗)) by Def. 3.6
= verk(w, (T′3{wit(1) 7→ 1}{wit( 6= 1) 7→ ⊥}, ∗∗)) by Def. 3.5
= true by Def. of w

We now show that w is not valid for the other witness, i.e.
(T′2, 1, t) 6

2
 (T′′3 , 2, t′), where T′′3 = T′3{wit(2) 7→ sig∗∗,1k (T′3)}. Let

ρ = {ς 7→ (w, ∗∗)}. Item (b) of Definition 3.11 does not hold:

Jversig(k, ς)KT′′
3 ,2,ρ = verk((w, ∗∗),T′′3 , 2) as above

= verk(w, (∗∗2(T′′3), ∗∗)) by Def. 3.6
= verk(w, (T′′3{wit(1) 7→ 2}{wit(6= 1) 7→ ⊥}, ∗∗)) by Def. 3.5
= false

In the last equation, w is not a valid signature for
T′′3{wit(1) 7→ 2}{wit(6= 1) 7→ ⊥} because it is computed on
T′3{wit(1) 7→ 1}{wit(6= 1) 7→ ⊥}, and the two transactions differ on
wit(1).

3.1.6 Blockchain and consistency
In Definition 3.12 we model blockchains as sequences of timed transac-
tions (T, t), where t represents the time when the transaction T has been
added. Note that our definition is very permissive: for instance, it allows
a blockchain to contain transactions which do not redeem any transac-
tions, or double-spent transactions. We will rule out such inconsistent
blockchains later on in Definition 3.15.

Definition 3.12 (Blockchain). A blockchain B is a sequence
(T1, t1) · · · (Tn, tn), where T1 is the only transaction with in = ⊥,
and ti ≤ tj for all 1 ≤ i ≤ j ≤ n.
We denote with transB the set of transactions occurring in B, and with
timeB(Ti) the time ti of transaction Ti in B. Given a transaction T, we
define matchB(T) as the set of transactions Ti such that T{wit 7→ ⊥} =
Ti{wit 7→ ⊥}.
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T1

in: ⊥
wit: ⊥

out:
1 7→ (λς.versig(k1, ς), 3)
2 7→ (λς.versig(k2, ς), 5)
3 7→ (λς.versig(k3, ς), 7)

T2

in: 1 7→ (T1, 2), 2 7→ (T1, 3)
wit: 1 7→ sigk2 , 2 7→ sigk3
out: (λς.versig(k2, ς), 10)

T3

in: (T1, 2)
wit: sigk2
out: (λς.versig(k2, ς), 5)

Figure 3.5: Three transactions for Examples 3.1.5 to 3.1.7.

Definition 3.13 (Unspent output). Let B = (T1, t1) · · · (Tn, tn) be a
blockchain. We say that the output j of transaction Ti is unspent in
B whenever:

∀i′ ≤ n, j′ ∈ N : (Ti, j, ti) 6 (Ti′ , j′, ti′)

Given a blockchain B, we define:

• UTXOB , the Unspent Transaction Output of B, as the set of pairs
(Ti, j) such that output j of Ti is unspent in B.

• val(B), the value of B, as the sum of the values of all outputs in its
UTXO.

Example 3.1.5. Consider the transactions in Figure 3.5, and let B =
(T1, 0)(T2, t2). We have that (T1, 2, 0) 5

 (T2, 1, t2) and (T1, 3, 0) 7
 

(T2, 2, t2), while the other outputs are unspent. Hence, the UTXO of B
is {(T1, 1), (T2, 1)}.

The following definition establishes when (T, t) is a consistent update
of B.

Definition 3.14 (Consistent update). We write BB (T, t) iff either B =
ε, T is initial and t = 0, or, for all i ∈ dom (T.in):

{T′i} = matchB(fst(T.in(i))) (redeemed transaction)
oi = snd(T.in(i)) (redeemed output index)
t′i = timeB(T′i) (time when T′i was added to B)
vi = val(T′i .out(oi)) (value of the redeemed output)
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the following conditions hold:

(1) ∀i ∈ dom T.in : (T′i , oi) ∈ UTXOB

(2) ∀i ∈ dom T.in : (T′i , oi, t′i)
vi (T, i, t)

(3)
∑
{vi | i ∈ dom T.in} ≥

∑
{val(T.out(j)) | j ∈ dom T.out}

(4) B = B′(T′, t′) =⇒ t ≥ t′

Firstly, for each T.in(i) we obtain the singleton {T′i} from the
blockchain, using matchB , such that fst(T.in(i)){wit 7→ ⊥} = T′i{wit 7→
⊥}. The update is inconsistent if matchB(fst(T.in(i))) is not a singleton
for some i. Condition (1) requires that the redeemed outputs are currently
unspent in B. Condition (2) asks that each input of T redeems an output
of a transaction in B. Condition (3) requires that the sum of the values
of the outputs of T is not greater than the total value it redeems. Finally,
(4) requires that the time of T is greater than or equal to the time of the
last transaction in B.

Example 3.1.6. Consider again the transactions in Figure 3.5, and let
B = (T1, 0). We prove that B B (T2, t2). Let o1 = 2, o2 = 3, t′1 = t2 = 0,
v1 = 5, v2 = 7. We now prove that the conditions of Definition 3.14
are satisfied. For condition (1), note that both (T1, 2) and (T1, 3) are
unspent, according to Definition 3.13. For condition (2), note that:

(T1, 2, 0) v1 (T2, 1, t2) (T1, 3, 0) v2 (T2, 2, t2)

hold, according to Definition 3.11. Finally, for condition (3), we have that:∑
{vi | i ∈ {1, 2}} = 5 + 7 ≥

∑
{val(T2.out(j)) | j ∈ dom T2.out} = 10

Therefore, (T2, t2) is a consistent update of B.

Example 3.1.7 (Double spending). Consider again the transactions
in Figure 3.5, and let B = (T1, 0)(T2, t2). We prove that (T3, t3) is not a
consistent update of B. Although condition (2) of Definition 3.14 holds:

(T1, 2, 0) 5
 (T3, 1, t3)

we have that condition (1) is not satisfied. In fact, according to Defini-
tion 3.13, (T1, 2) is already spent in B because

(T1, 2, 0) 5
 (T2, 1, t2)
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holds and both T1 and T2 are in B. Since T3 is trying to spend an output
already spent, this transaction should not be appended to B.

We now define when a blockchain is consistent. Intuitively, consistency
holds when the blockchain has been constructed, starting from the empty
one, by appending consistent updates, only. The actual definition is given
by induction.

Definition 3.15 (Consistency). We say that a blockchain B is consistent
if either B = ε, or B = B′(T, t) with B′ consistent and B′ B (T, t).

Note that the empty blockchain is consistent; the blockchain with a
single transaction (T1, t1) is consistent iff T1 is initial and t1 = 0. The
transaction T1 models the first transaction in the genesis block (as dis-
cussed in Section 7.3, we are abstracting away the coinbase transactions,
which forge new bitcoins).

We now establish some basic properties of consistent blockchains. The-
orem 3.1.1 states that, in a consistent blockchain, the inputs of a transac-
tion point backwards to the output of some transaction in the blockchain.

Lemma 3.1.1. If (T1, t1) · · · (Tn, tn) is consistent, then:

∀i ∈ 2 . . . n : ∀(T, h) ∈ ran (Ti.in) : ∃j < i :
Tj{wit 7→ ⊥} = T ∧ h ∈ dom (Tj .out)

Proof. By Definition 3.15, (Ti, ti) is a consistent update of
(T1, t1) · · · (Ti−1, ti−1). The thesis follows from condition (2) of Defini-
tion 3.14.

The following Theorem establishes that a transaction output cannot
be redeemed twice in a consistent blockchain.

Theorem 3.1.2 (No double spending). If (T1, t1) · · · (Tn, tn) is consis-
tent, then:

∀i 6= j ∈ 1 . . . n : ran (Ti.in) ∩ ran (Tj .in) = ∅

Proof. Let B = (T1, t1) · · · (Tn, tn) be consistent. By contradiction, as-
sume that there exist i < j and i′, j′ such that Ti.in(i′) = Tj .in(j′). By
consistency, there exist h, h′ such that (Th{wit 7→ ⊥}, h′) = Ti.in(i′).
Since B1..i−1 B (Ti, ti), then by item (2) of Definition 3.14 it must be
(Th, h′, th) (Ti, i′, ti). Hence, by Definition 3.13 it follows that (Th, h′)
is already spent in B. Since B1..j−1 B (Tj , tj), by item (1) of Defini-
tion 3.14, (Th, h′) must be unspent — contradiction.
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The following theorem states that there can be at most a single match
of an arbitrary transaction within a consistent blockchain. This implies
that the in field of an arbitrary transaction points at most to one trans-
action output within the blockchain.

Lemma 3.1.3. If B is consistent, then for all transactions T, matchB(T)
contains at most one element.

Proof. Let B = (T1, t1) · · · (Tn, tn) be consistent. By contradiction, as-
sume that Ti,Tj ∈ matchB(T), with Ti 6= Tj (and so, i 6= j). By Defini-
tion 3.12 it must be Ti{wit 7→ ⊥} = T{wit 7→ ⊥} = Tj{wit 7→ ⊥}, hence
in particular Ti.in = Tj .in. There are two cases. If Ti.in = Tj .in = ⊥,
then by Definition 3.12 B is not a blockchain, since i 6= j. Hence,
ran (Ti.in) ∩ ran (Tj .in) = ran (Ti.in) 6= ∅. By Theorem 3.1.2, this cannot
happen because B is consistent — contradiction.

Theorem 3.1.4 ensures that all the transactions on a consistent
blockchain are pairwise distinct, even when neglecting their witnesses.

Lemma 3.1.4. If (T1, t1) · · · (Tn, tn) is consistent, then:

∀i 6= j ∈ 1 . . . n : Ti{wit 7→ ⊥} 6= Tj{wit 7→ ⊥}

Proof. Straightforward from Theorem 3.1.3, taking T = Tj .

The following theorem states that the overall value of a blockchain
decreases as the blockchain grows. This is because our model does not
keep track of the coinbase transactions, which in Bitcoin allow miners to
collect transaction fees (the difference between inputs and outputs of a
transaction), and block rewards.

Theorem 3.1.5 (Non-increasing value). Let B be a consistent
blockchain, and let B′ be a non-empty prefix of B. Then, val(B′) ≥ val(B).

Proof. Let B = (T1, t1) · · · (Tn, tn). By contradiction, there exists some
i < n such that, given Bi = (T1, t1) · · · (Ti, ti):

val(Bi) < val(Bi(Ti+1, ti+1))

Let Ui and Ui+1 be the UTXOs of Bi and of Bi(Ti+1, ti+1), respectively,
and let U = Ui ∩ Ui+1. Since val(Ui) < val(Ui+1), then it must be
val(Ui \ U) < val(Ui+1 \ U). The set Ui \ U contains the outputs re-
deemed by Ti+1, while the set Ui+1 \ U contains exactly the outputs in
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TAB
in: (TA , 1)
wit: ⊥
out: (λςAςB .versig(kAkB , ςAςB), 1.1B)

TBC
in: (TAB , 1)
wit: ⊥

out: 1 7→ (λςB .versig(kB , ςB), 0.1B)
2 7→ (λςC .versig(kC , ςC), 1B)

Figure 3.6: Transactions of the chain contract.

Ti+1. Since B is consistent, then Bi B (Ti+1, ti+1). Then, by Defini-
tion 3.14, for each k ∈ dom Ti+1.in, there exists a unique j ≤ i such that,
given ok = snd(Ti+1.in(k)) and vk = val(Tj .out(ok)):

(Tj , ok, tj)
vk (Ti+1, k, ti+1)

Then, by item (3) of Definition 3.14:

val(Ui \ U) =
∑
{vk | k ∈ dom Ti+1.in}

≥
∑
{val(Ti+1.out(h)) |h ∈ dom Ti+1.out} = val(Ui+1 \ U)

while we assumed val(Ui \ U) < val(Ui+1 \ U) — contradiction.

Note that the scripting language and its semantics are immaterial in
all the statements above. Actually, proving these results never involves
checking condition (b) of Definition 3.11. Of course, the choice of the
scripting language affects the expressiveness of the smart contracts built
upon Bitcoin.

3.2 Example: static chains of transactions
We now formally specify in our model a simple smart contract, which illus-
trates the impact of Segregated Witness on the expressiveness of Bitcoin
contracts [112].

A participant A wants to send an indirect payment of 1B to C, routing
it through B. To authorize the payment, B wants to keep a fee of 0.1B.
However, A is afraid that B will keep all the money for himself, so she
exploits the following contract. She creates a chain of transactions, as
shown in Figure 3.6. The transaction TAB transfers 1.1B from A to B
(but it is not signed by A, yet), while TBC transfers 1B from B to C. We
assume that (TA , 1) is a transaction output redeemable by A through her
key kA , and that kB is the key of B.

The protocol of A is the following: A starts by asking B for his signa-
ture on TBC , ensuring that C will be paid. After receiving and verifying
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the signature, A puts TAB on the blockchain, adding her signature on the
wit field. Then, she also appends TBC , replacing the wit field with her
signature and B’s one. Since A takes care of publishing the transactions,
the behaviour of B consists just in sending his signature on TBC .

Remarkably, this contract relies on the SegWit feature: indeed, with-
out SegWit it no longer works. We can disable SegWit by changing our
model as follows:

• in Definition 3.3, we no longer require that ∀i ∈ dom in :
fst(in(i)).wit = ⊥

• in Definition 3.11, we replace item (a) with the condition: T′.in(j) =
(T, i)

• in Definition 3.12, we let matchB(T) = {T} if T occurs in B, empty
otherwise.

To see why disabling SegWit breaks the contract, assume that
the transaction T = TAB{wit 7→ sig∗∗kA

(TAB)} is unspent on the
blockchain, when participant A attempts to append also T′ = TBC{wit 7→
sig∗∗kA

(TBC) sig∗∗kB
(TBC)}. To be a consistent update, by item (2) of Defini-

tion 3.14 we must have (for some t1 ≤ t2):

(T, 1, t1) 1B
 (T′, 1, t2) (3.1)

For this, all the conditions in Definition 3.11 must hold. However, since
we have disabled SegWit, for item (a) we no longer check that:

T′.in(1) = (T{wit 7→ ⊥}, 1)

but instead we need to check the condition:

T̃′.in(1) = (T̃, 1) (3.2)

where the transactions T̃, T̃′ correspond to the non-SegWit versions of
T,T′, i.e. their in fields point to their actual parents, according to the
new Definition 3.3.

Hence, condition (3.2) checks the equality between T̃AB (the transac-
tion in the input of T̃′) and T̃AB{wit 7→ sig∗∗kA

(T̃AB)} (the transaction T̃).
Note that all the fields of the second transaction — but the wit field —
are equal to those of the first transaction. Instead, the witness of T̃AB is
⊥, while the one of T̃ contains the signature of A. This difference in the
wit field is ignored with the SegWit semantics, while it is discriminating
for the older version of Bitcoin.

A näıve attempt to amend the contract would be to set the input field
of T̃′ to T̃. However, this would invalidate the signature of A on T̃′.
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3.3 Compiling to standard Bitcoin transac-
tions

We now sketch how to compile the transactions of our abstract model
into concrete Bitcoin transactions. In particular, we aim at producing
standard Bitcoin transactions, which respect further constraints on their
fields [85]. This is crucial, because non-standard transactions are mostly
discarded by the Bitcoin network.

The compiler, and a in-depth documentation are available at [81]. It
produces output scripts of the following kinds, which are all allowed in
standard transactions:

Pay to Public Key Hash (P2PKH) takes as parameters a public key
and a signature, and checks that (i) the hash of the public key
matches the hash hardcoded in the script; (ii) the signature is veri-
fied against the public key.

Pay to Script Hash (P2SH) contains only a hash (say, h). The actual
script λx.e — which is not required to be standard — is contained
instead in the wit field of the redeeming transaction, alongside with
the actual parameters k. The evaluation succeeds if H(λx.e) = h
and (λx.e)k evaluates to true. The only constraint imposed by
P2SH is on the size of the script, which is limited to the size of a
stack element (520 bytes).

OP RETURN allows to put up to 80 bytes of data in an output script,
making the output unredeemable.

We compile the scripts of the form λς.versig(k, ς) to P2PKH, and those
of the form λ.k to OP RETURN. All other scripts are compiled to P2SH
when they comply with the size constraint, otherwise compilation fails.
In this way, our compiler always produces standard transactions.

Our compiler exploits the alternative stack as temporary storage of
the variable values. In this way we cope with the stack-based nature
of the Bitcoin scripting language. For instance, for the script λx.H(x) =
H(x+1), the variable x is pushed on the alternative stack beforehand, then
duplicated and copied in the main stack before each operation involving
x.

There exist other standard scripts: P2PK and MULTISIG. P2PK is
considered obsolete and replaced by P2PKH, while MULTISIG has some
limitations (e.g. in the number of keys) that are overcome using P2SH to
express the same semantics.
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Related works Several works have proposed to use Bitcoin beyond
the sole purpose of exchanging currency, by exploiting the flexibility of its
scripting language. They propose to implement smart contracts, intended
as sets of protocols of the participants involved in them.

Smart contracts requiring external state, namely oracles [87] and es-
crows [84], can be easily implemented using multi-signature transactions.
Such implementations, however, rely on trusted third parties. The work
[4] showed that Bitcoin can be used to implement timed commitments
through deposit transactions. The commitments are then used to per-
form multiparty computations [1], such as calculating the winner of a
lottery. The main drawback of this approach is indeed the deposit, which
grows quadratically with the number of participants. More recently, [62]
and [23] have proposed lottery smart contracts that require, respectively,
zero and constant (≥ 0) deposit. However, [62] requires the computation
of an exponential number of signature w.r.t. the number of participants,
while [23] only a quadratic one. The work [12] proposed a contingent pay-
ment protocol that can be implemented relying only on standard Bitcoin
transaction. It allows to sell solutions for a class of NP problems (e.g.
the factorization of a number), the use of zero-knowledge proofs ensure
its correctness to the buyer.
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Chapter 4

Extending Bitcoin with
Neighborhood Covenants

Bitcoin is a decentralised infrastructure to transfer cryptocurrency be-
tween users. The log of all the currency transactions is recorded in a pub-
lic, append-only, distributed data structure, called blockchain. Bitcoin
implements a model of computation called Unspent Transaction Output
(UTXO): each transaction holds an amount of currency, and specifies
conditions under which this amount can be redeemed by a subsequent
transaction, which spends the old one. Compared to the account-based
model, implemented e.g. by Ethereum, the UTXO model does not require
a shared mutable state: the current state is given just by the set of un-
spent transaction outputs on the blockchain. While, on the one hand,
this design choice fits well with the inherent concurrency of transactions,
on the other hand the lack of a shared mutable state substantially com-
plicates leveraging Bitcoin to implement contracts, i.e. protocols which
transfer cryptocurrency according to programmable rules.

The literature has shown that Bitcoin contracts support a surprising
variety of use cases, including e.g. crowdfunding [86, 9], lotteries and other
gambling games [1, 23, 9, 26, 57, 62], contingent payments [12], micro-
payment channels [122, 9], and other kinds of fair computations [4, 56].
Despite this apparent richness, the fact is that Bitcoin contracts cannot
express most of the use cases that are mainstream in other blockchain
platforms (e.g., decentralised finance). There are several factors that limit
the expressiveness of Bitcoin contracts. Among them, the crucial one
is the script language used to express the redeeming conditions within
transactions. This language only features a limited set of logic, arithmetic,
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and cryptographic operators, but it does not have loops, and it cannot
access parts of the spent and of the redeeming transaction.

Several extensions of the Bitcoin script language have been proposed,
with the aim to improve the expressiveness of Bitcoin contracts, while
adhering to the UTXO model. Among these extensions, covenants are
a class of script operators that allow a transaction to constrain how its
funds can be used by the redeeming transactions. Covenants may also be
recursive, by requiring the script of the redeeming transaction to contain
the same covenant of the spent one. As noted by [66], recursive covenants
would allow to implement Bitcoin contracts that execute state machines,
by appending transactions to trigger state transitions.

Although the first proposals of covenants date back at least to
2013 [114], and that they are supported by Bitcoin fork “Bitcoin
Cash” [110], their inclusion into Bitcoin is still uncertain, mainly because
of the extremely cautious approach to implement changes to Bitcoin [102].
Still, the emerging of Bitcoin layer-2 protocols, like e.g. the Lightning Net-
work [122], has revived the interest in covenants, as witnessed by a recent
Bitcoin Improvement Proposal (BIP 119 [123, 70]), and by the incorpo-
ration of covenants in Liquid’s extensions to Bitcoin Script [117].

We propose a variant of covenants, named neighbourhood covenants,
which can inspect not only the redeeming transaction, but also the sib-
lings and the parent of the spent one. This extension preserves the basic
UTXO design of Bitcoin, adding only a few opcodes to its script language,
which is kept efficient, loop-free, and non Turing-complete. Still, neigh-
bourhood covenants significantly increase the expressiveness of Bitcoin as
a smart contracts platform, allowing to execute arbitrary smart contracts
by appending a chain of transactions to the blockchain. Technically, we
prove that neighbourhood covenants make Bitcoin Turing-complete.

Although this expressiveness result is of theoretical interest, in itself
it does not enable an efficient implementation of tokens. To recover
efficiency, we implement our new use cases using scripts which exploit
covenants.

4.1 Neighbourhood covenants

To extend Bitcoin with neighbourhood covenants, we amend the model
of pure Bitcoin in the previous Chapter as follows:

• in transactions, we add a field to outputs, making them records of
the form {arg : a, scr : e, val : v}, where a is a sequence of values;
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• in scripts, we add operators to access all the outputs of the redeem-
ing transaction, and a relevant subset of those of the sibling and
parent transactions (by contrast, pure Bitcoin scripts can only ac-
cess the redeeming transaction, and only as a whole, to verify it
against a signature);

• in scripts, we add operators for covenants.

We now formalize our Bitcoin extension. We use o to refer to the
following transaction outputs:

o ::= rtxo(e) output of the redeeming tx
| stxo(e) output of a sibling tx
| ptxo(e) output of a parent tx

More precisely, consider the case where a transaction output (T′, j) is
redeemed by a transaction T, through its i-th input. When used within
the script of (T′, j): rtxo(n) refers to the n-th output of T; stxo(n) refers
to the output redeemed by the n-th input of T; ptxo(n) refers to the
output redeemed by the n-th input of T′. In Figure 4.1, we exemplify
these outputs in relation to the transaction Tc. The semantics of o is
defined in the first line of Figure 4.2; its result is a pair (T, n).

We extend scripts as follows, where f ∈ {arg, val}:

e ::= · · · | o.f field of a tx output
| verscr(e, o) basic covenant
| verrec(o) recursive covenant
| inidx index of redeeming tx input
| outidx index of redeemed tx output
| inlen(o) number of inputs
| outlen(o) number of outputs
| txid(o) hash of (tx,output)

The script o.f gives access to the field f of a transaction output o (where
f is either arg or val). The basic covenant verscr(e, o) checks that the script
in the transaction output o is syntactically equal to e (note that e is not
evaluated). The “recursive” covenant verrec(o) checks that the script in o
is syntactically equal to the script which is currently being evaluated. We
call it recursive because it is a covenant that enforce another one equal to
itself. The operators inidx and outidx evaluate, respectively, to the index
of the redeeming input and redeemed output. We call current transaction
output (ctxo) the transaction output which includes the script which is
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Tp
in: · · ·
out(1): {arg : np, · · · } // ptxo(1)

T′p
in: · · ·
out(1): {· · · } // ptxo(2)

Tc
in: (Tp, 1) (T′p, 1)
out(1): {

arg: nc
scr: ctxo.arg = nc

and ptxo(1).arg = np
and rtxo(3).arg = nr
and stxo(2).arg = ns

}

Ts
in: · · ·
out(1): {arg : ns, · · · } // stxo(2)
out(2): {· · · } // not accessible

Tr
in: (Tc, 1) (Ts, 1)
out(1): · · · // rtxo(1)
out(2): · · · // rtxo(2)
out(3): {arg : nr, · · · } // rtxo(3)

Figure 4.1: Accessing transaction outputs through a script.

currently being evaluated, i.e.:

ctxo , stxo(inidx)

The scripts inlen(o) and outlen(o) evaluate, respectively, to the number
of inputs and to the number of outputs of the transaction containing o.
Finally, txid(o) evaluates to a unique identifier of the transaction output
o.

Example 4.1.1. Consider the transactions in Figure 4.1. The script in
Tc.out(1) checks that (i) the arg field of ctxo, i.e. the same output which
contains the script, equals to nc; (ii) the arg field of ptxo(1), i.e. the parent
transaction output redeemed by Tc.in(1), equals to np; (iii) the arg field of
rtxo(3), i.e. the third output of the redeeming transaction Tr, equals to nr;
(iv) the arg field of stxo(2), i.e. the sibling transaction output redeemed
by Tr.in(2), equals to ns. Note that, in general, any script used in Tc
can not access the parents of Tp and those of Ts — and in general all the
transactions which are farther than those shown in the figure. �

Figure 4.2 defines the semantics of extended scripts. As in Chapter 3,
the function J·K takes as parameters the redeeming transaction T and the
index i of the redeeming input. We denote with ≡ syntactic equality
between two scripts, i.e. e ≡ e′ is 1 when e and e′ are exactly the same,
0 otherwise.
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Jrtxo(e)KT,i = (T, JeKT,i) Jstxo(e)KT,i = T.in(JeKT,i)

Jptxo(e)KT,i = T′.in(JeKT,i) if T.in(i) = (T′, j) Jo.fKT,i = JoKT,i.f

Jverscr(e, o)KT,i = e ≡ JoKT,i.scr Jverrec(o)KT,i = T.in(i).scr ≡ JoKT,i.scr

Jtxid(o)KT,i = H(JoKT,i) JoutidxKT,i = j if T.in(i) = (T, j) JinidxKT,i = i

Joutlen(o)KT,i = |T′.out| Jinlen(o)KT,i = |T′.in| if JoKT,i = (T′, j)

Figure 4.2: Semantics of neighbourhood covenants (extending Figure 3.2).

Turing completeness Our neighbourhood covenants make Bitcoin
Turing-complete. To prove this, we describe how to simulate in the ex-
tended Bitcoin any counter machine [41], a well-known Turing-complete
computational model. A counter machine is a pair (n, s), where n ∈ N is
the number of integer registers of the machine, and s is a sequence of in-
structions. Instructions are the following: inc i increments register i, dec i
decrements it, zero i sets it to zero, if i 6= 0 goto j conditionally jumps to
instruction j when register i is not zero, halt terminates the machine.
The state of a counter machine (n, s) is a tuple (v1, . . . , vn, p) where each
vi represents the current value of register i, and p is the number of the
next instruction to execute (i.e., the program counter). To exploit the
currency transfer capabilities of Bitcoin, we slightly extend the counter
machine model, by requiring that the machine has an initial B balance
which, upon termination, is transferred to the user A if the content of the
first register is 0, or to B otherwise. This allows the machine to execute
programs that transfer bitcoins. We call this extended model UTXO-
counter machine.

Theorem 4.1.1. Neighbourhood covenants can simulate any UTXO-
counter machine. Hence, they are Turing-complete.

Proof. (sketch) We represent the state of the counter machine as a single
transaction having one output. We simulate an execution step by ap-
pending a new transaction, which redeems the output representing the
old state, and transfers its balance to a new output representing the new
state. This is done until the machine halts, at which point we transfer its
balance to the user determined by the final registers state. We remark
that this simulation is made possible by the use of unbounded integers in
our model, while Bitcoin only supports 32-bit integers.

We represent the machine state in the arg field of the transaction
output o, storing it as a sequence of integers. As a shorthand, we write
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o.ri for o.arg.i, and o.p for o.arg.(n+ 1). To simulate the execution steps
of the machine, we define the script eCM , which checks that the new
transaction T indeed represents the next state. More in detail, we first
check whether the instruction in s at position ctxo.p is halt, in which
case we require that T distributes the balance to users in the intended
manner, depending on the current state. When ctxo.p points to any other
instruction, we start by requiring that T has only one output, the same
balance, and the same script. We use a recursive covenant verrec on the
redeeming transaction to ensure the last part. Then, we check that the
new state in T.out(1).arg agrees with the counter machine semantics, by
cases on the instruction pointed to by o.p. If the instruction is inc i, then
we require rtxo(1).ri = ctxo.ri + 1, rtxo(1).rk = ctxo.rk for all k 6= i, and
rtxo(1).p = ctxo.p + 1. The dec i and zero i cases are analogous. For the
instruction if i 6= 0 goto j, we check the value of ctxo.ri: if nonzero, we
require that rtxo(1).p = j, otherwise that rtxo(1).p = ctxo.p + 1. In both
cases, we require that rtxo(1).rk = ctxo.rk for all k.

Users start the simulation by appending to the blockchain a transac-
tion T0 having one output with the desired value, the script eCM , and a
sequence of n+ 1 zeros as arg. After that, the balance is effectively locked
inside the transaction, and the only way to transfer it back to the users is
to simulate all the steps of the machine, until it halts. So, our simulated
execution is a form of secure multiparty computation [5, 75, 46].

Although, for simplicity, we use UTXO-counter machines just to trans-
fer funds to A or B upon termination, it would be easy to generalise the
computational model and simulation technique to encompass interactive
computations, which at run-time can receive inputs and perform currency
transfers. Doing so, we can execute arbitrary smart contracts, with the
same expressiveness of Turing-complete smart contracts platforms. In
principle, we could craft a smart contract which implements user-defined
tokens in an account-based fashion: this contract would record the bal-
ance of the tokens of all users, and execute token actions. However, in
practice this construction would be highly inefficient: performing a single
token transfer would require to append a large number of transactions,
and to pay the related fees.

4.2 Use cases
We illustrate the expressive power of our extension through a series of
use cases, which, at the best of our knowledge, cannot be expressed in
Bitcoin. We denote with UvB

A an unspent transaction output {arg : ε, scr :
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Ti
in: UviB

Ai

wit: · · ·
out: {arg : ε, scr : CF , val : viB}

TZ
in: (T1, 1) · · · (Tn, 1)
wit: sigZ(TZ) · · · sigZ(TZ)
out: {arg : ε, scr : versig(Z, rtxo(1).wit), val : v′B}

Figure 4.3: Transactions for the crowdfunding contract.

versig(A, rtx.wit), val : vB}, where ε denotes the empty sequence (we will
usually omit arg when empty).

4.2.1 Crowdfunding
Assume that a start-up Z wants to raise funds through a crowdfunding
campaign. The target of the campaign is to gather at least vB by time
t. The contributors want the guarantee that if this target is not reached,
then they will get back their funds after the expiration date. The start-up
wants to ensure that contributions cannot be retracted before time t, or
once vB have been gathered.

We implement this use case without covenants, but just constraining
the val field of the redeeming transaction. To fund the campaign, a con-
tributor Ai publishes the transaction Ti in Figure 4.3 (left), which uses
the following script:

CF =
(versig(Z, rtxo(1).wit) and rtxo(1).val ≥ v) or
absAfter t : versig(Ai, rtxo(1).wit)

This script is a disjunction between two conditions. The first condition
allows Z to redeem the bitcoins deposited in this output, provided that
the output at index 1 of the redeeming transaction pays at least vB (note
that this constraint, rendered as rtxo(1).val ≥ v, is not expressible in pure
Bitcoin). The second condition allows Ai to get back her contribution
after the expiration date t.

Once contributors have deposited enough funds (i.e., there are n trans-
actions T1, . . . ,Tn with v′ = v1 + · · · vn ≥ v), Z can get v′B by appending
TZ to the blockchain. Note that, compared to the assurance contract in
the Bitcoin wiki [86], ours offers more protection to the start-up. Indeed,
while in [86] any contributor can retract her funds at any time, this is not
possible here until time t.
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T0

in: U1B
A

wit: sigA(T0)
out: {arg : A, scr : NFT , val : 1B}

T1

in: (T0, 1)
wit: sigA(T1)
out: {arg : B, scr : NFT , val : 1B}

Figure 4.4: A creates a token with T0, and transfers it to B with T1.

T2

in: (TA , 1) (T′A , 1)
wit: sigA(T2) sigA(T2)
out(1): {arg : A, scr : NFT , val : 1B}
out(2): {arg : ε , scr : versig(A, rtxo(1).wit), val : 1B}

Figure 4.5: A exploits the flaw to destroy a token, redeeming its value.

4.2.2 Non-fungible tokens
A non-fungible token represents the ownership of a physical or logical as-
set, which can be transferred between users. Unlike fungible tokens (e.g.,
ERC-20 tokens in Ethereum [106]), where each token unit is interchange-
able with every other unit, non-fungible ones have unique identities. Fur-
ther, they do not support split and join operations, unlike fungible tokens.

We start by implementing a subtly flawed version of the non-fungible
token. Consider the transactions in Figure 4.4, which use the following
script:

NFT = versig(ctxo.arg, rtxo(1).wit) and verrec(1) and rtxo(1).val = 1

User A mints a token by depositing 1B in T0: to declare her ownership
over the token, she sets out(1).arg to her public key. To transfer the token
to B, A appends the transaction T1, setting its out(1).arg to B’s public
key.

To spend T0, the transaction T1 must satisfy the conditions specified
by the script NFT : (i) the wit field must contain the signature of the
current owner; (ii) the script at index 1 must be equal to that at the same
index in T0; (iii) the output at index 1 must have 1B value, to preserve
the integrity of the token. Once T1 is on the blockchain, B can transfer
the token to another user, by appending a transaction which redeems T1.

The script NFT has a design flaw, already spotted in [63]: we show
how A can exploit this flaw in Figure 4.5. Suppose we have two unspent
transactions: TA and T′A , both representing a token owned by A (in their
first and only output). The transaction T2 can spend both of them, since
it complies with all the validity conditions: indeed, NFT only constrains
the script in the first output of the redeeming transaction, while the other

Stefano Lande Formal Methods for Secure Bitcoin Smart Contracts



Extending Bitcoin with Neighborhood Covenants 51

outputs are only subject to the standard validity conditions (in particular,
that the sum of their values does not exceed the value in input). Actually,
T2 destroys one of the two tokens, and removes the covenant from the
other one.

To solve this issue, we can amend the NFT script as follows:

NFT ′ = versig(ctxo.argoutidx, rtxo(1).wit) and
verrec(inidx) and rtxo(inidx).val = 1

The amended script correctly handles the case of a transaction which
uses different outputs to store different tokens. NFT ′ uses ctxo.argoutidx,
instead of ctxo.arg1 in NFT , to ensure that, when redeeming a given
output, the signature of the owner of the token at that output is checked.
Further, NFT ′ uses verrec(inidx), instead of verrec(1) in NFT , to ensure
that the covenant is propagated exactly to the transaction output which
is redeeming that token (i.e., the one at index inidx). Notice that the
amendment would make T2 invalid: indeed, the script in T′A .out(1) would
evaluate to false:

JNFT ′KT2,2 = Jverrec(inidx)KT2,2 ∧ · · ·
= (T2, JinidxKT2,2).scr ≡ T2.in(2).scr ∧ · · ·
= (T2, 2).scr ≡ (T′A , 1).scr ∧ · · ·
= versig(A, rtxo(1).wit) ≡ NFT ′ ∧ · · ·
= false

An alternative patch, originally proposed in [63], is to add a unique
identifier id to each token, e.g. by amending the NFT script as follows:

NFT and id = id

This allows to mint distinguishable tokens. For instance, if the tokens in
TA and T′A are distinguishable, T2 cannot redeem both of them.

4.2.3 Vaults
Transaction outputs are usually secured by cryptographic keys (e.g.
through the script versig(pkA , rtx.wit)). Whoever knows the corresponding
private key (e.g., skA) can redeem such an output: in case of key theft, the
legitimate owner is left without defence. Vault transactions, introduced
in [63], are a technique to mitigate this issue, by allowing the legitimate
owner to abort the transfer.
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TV
in: U1B

A
wit: · · ·
out: {scr : V , val : 1B}

TS
in: TV
wit: sigA(TS)
out: {arg : B, scr : S , val : 1B}
T

in: TS
wit: sigB(T)
out: {scr : versig(B, rtxo(1).wit), val : 1B)
relLock: t

Figure 4.6: Transactions for the basic vault.

To create a vault, A deposits 1B in a transaction TV with the script
V :

V = versig(A, rtxo(1).wit) and verscr(1,S)
S =

(
relAfter t : versig(ctxo.arg, rtxo(1).wit)

)
or versig(Ar, rtxo(1).wit)

The transaction TV can be redeemed with the signature of A, but only
by a de-vaulting transaction like TS in Figure 4.6, which uses the script
S . The output of the de-vaulting transaction TS can be spent by the user
set in its arg field, but only after a certain time t (e.g., by the transaction
T in Figure 4.6). Before time t, A can cancel the transfer by spending TS
with her recovery key Ar.

A recursive vault The vault in Figure 4.6 has a potential issue, in
that the recovery key may also be subject to theft. Although this issue
is mitigated by hardware wallets (and by the infrequent need to interact
with the recovery key), the vault modelled above does not discourage any
attempt at stealing the key.

The issue can be solved by using a recursive covenant in the vault
script R:

if ctxo.arg.1 = 0 // current state: vault
then versig(A, rtxo(1).wit) and verrec(1) and
rtxo(1).arg.1 = 1 // next state: de-vaulting

else
(relAfter t : versig(ctxo.arg.2, rtxo(1).wit)) or // current state: de-vaulting

versig(Ar, rtxo(1).wit) and verrec(1) and
rtxo(1).arg.1 = 0 // next state: vault

In this version of the contract, the vault and de-vaulting transactions
(in Figure 4.7) have the same script. The first element of the arg sequence
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TV
in: U1B

A
wit: · · ·
out: {arg : 0, scr : R, val : 1B}

TS
in: TV
wit: sigA(TS)
out: {arg : 1B, scr : R, val : 1B}

TR
in: TS
wit: sigAr (TR)
out: {arg : 0, scr : R, val : 1B}

Figure 4.7: Transactions for the recursive vault.

encodes the contract state (0 models the vault state, and 1 the de-vaulting
state), while the second element is the user who can receive the bitcoin
deposited in the vault. The recovery key Ar can only be used to append
the re-vaulting transaction TR, locking again the bitcoin into the vault.

Note that key theft becomes ineffective: indeed, even if both keys are
stolen, the thief cannot take control of the bitcoin in the vault, as A can
keep re-vaulting.

4.2.4 A pyramid scheme
Ponzi schemes are financial frauds which lure users under the promise of
high profits, but which actually repay them only with the investments of
new users. A pyramid scheme is a Ponzi scheme where the scheme creator
recruits other investors, who in turn recruit other ones, and so on. Un-
like in Ethereum, where several Ponzi schemes have been implemented as
smart contracts [14, 34], the limited expressive power of Bitcoin contract
only allows for off-chain schemes [74].

We design the first “smart” pyramid scheme in Bitcoin using the trans-
actions in Figure 4.8, where:

P = verscr(1,X) and rtxo(1).arg = ctxo.arg and rtxo(1).val = 2
and verrec(2) and verrec(3)

X = versig(ctxo.arg, rtxo(1).wit)

To start the scheme, a user A0 deposits 1B in the transaction T0 (we
burn this bitcoin for uniformity, so that each user earns at most 1B from
the scheme). To make a profit, A0 must convince other two users, say
A1 and A2, to join the scheme. This requires the cooperation of A1 and
A2 to publish a transaction which redeems T0. The script P ensures that
this redeeming transaction has the form of T1 in Figure 4.8, i.e. out(1)
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T0

in: U1B
A0

wit: sigA0 (T0)
out: {arg : A0, scr : P, val : 0B}

T1

in: T0 U1B
A1

U1B
A2

wit: ⊥ sigA1 (T1) sigA2 (T1)
out(1): {arg : A0, scr : X , val : 2B}
out(2): {arg : A1, scr : P, val : 0B}
out(3): {arg : A2, scr : P, val : 0B}

Figure 4.8: Transactions for the pyramid scheme.

transfers 2B to A0, while the scripts in out(2) and out(3) ensure that the
same behaviour is recursively applied to A1 and A2.

Overall, the contract ensures that, as long as new users join the scheme,
each one earns 1B. Of course, as in any Ponzi scheme, at a certain point
it will no longer be possible to find new users, so those at the leaves of
the transaction tree will just lose their investment.

4.2.5 King of the Ether Throne
King of the Ether Throne [111] is an Ethereum contract, which has been
popular for a while around 2016, until a bug caused its funds to be frozen.
The contract is initiated by a user, who pays an entry fee v0 to become
the “king”. Another user can usurp the throne by paying v1 = 1.5v0 fee
to the old king, and so on until new usurpers are available. Of course
this leads to an exponential growth of the fee needed to become king, so
subsequent versions of the contract introduced mechanisms to make the
current king die if not ousted within a certain time. Although the logic
to distribute money substantially differs from that in Section 4.2.4, this
is still an instance of Ponzi scheme, since investors are only paid with the
funds paid by later investors.

We implement the original version of the contract, fixing the multiplier
to 2 instead of 1.5, since Bitcoin scripts do not support multiplication. The
contract uses the transactions in Figure 4.9 for the first two kings, A0 and
A1, where:

K = verrec(1) and rtxo(2).arg = ctxo.arg and
rtxo(2).val ≥ ctxo.val + ctxo.val and verscr(2,X)

X = versig(ctxo.arg, rtxo(1).wit)

We use the arg field in out(1) to record the new king, and that in
out(2) for the old one. The clause rtxo(2).arg = ctxo.arg in K pre-
serves the old king in the redeeming transaction. The clause rtxo(2).val ≥
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T0

in: Uv0B
A0

wit: sigA0 (T0)
out(1): {arg : A0, scr : K , val : 0B}
out(2): {arg : A0, scr : versig(A0, rtxo(1).wit), val : v0B}

T1

in: (T0, 1) Uv1B
A1

wit: ⊥ sigA1 (T1)
out(1): {arg : A1, scr : K , val : 0B}
out(2): {arg : A0, scr : X , val : v1B}

Figure 4.9: Transactions for King of the Ether Throne.

ctxo.val+ctxo.val ensures that his compensation is twice the value he paid.
Finally, verscr guarantees that the old king can redeem his compensation
via out(2).

4.3 Using covenants in high-level contract
languages

As witnessed by the use cases in Section 4.2, crafting a contract at the level
of Bitcoin transactions can be complex and error-prone. To simplify this
task, the work described in [22] has introduced a high-level contract lan-
guage, called BitML, with a secure compiler to pure Bitcoin transactions.
BitML has primitives to withdraw funds from a contract, to split a con-
tract (and its funds) into subcontracts, to request the authorization from
a participant A before proceeding with a subcontract C (written A : C ),
to postpone the execution of C after a given time t (written after t : C ),
to reveal committed secrets, and to branch between two contracts (writ-
ten C +C ′). A recent paper [20] extends BitML with a new primitive that
allows participants to (consensually) renegotiate a contract, still keeping
the ability to compile to pure Bitcoin.

Despite the variety of use cases shown in [10, 15], BitML has known
expressiveness limits, given by the requirement to have pure Bitcoin as
its compilation target. For instance, BitML cannot specify recursive con-
tracts (just as pure Bitcoin cannot), unless all participants agree to per-
form the recursive call [20]. In this section we discuss how to improve
the expressiveness of BitML, assuming to use Bitcoin with covenants as
compilation target. We illustrate our point by a couple of examples, post-
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poning the formal treatment of this extended BitML and of its secure
compilation to future work.

Covenants allow us to extend BitML with the construct:

?x if b. X〈x〉

Intuitively, the prefix ?x if b can be fired whenever a participant provides
a sequence of arguments x and makes the predicate b true. Once the prefix
is fired, the contract proceeds as the continuation X〈x〉, which will reduce
according to the equation defining X.

Using this construct, we can model the “King of the Ether Throne”
contract of Section 4.2.5 (started by A with an investment of 1B) as
X〈A, 1〉, where:

X〈a, v〉 = ?b if val ≥ 2v. Y〈a, b, val〉
Y〈a, b, v〉 = split

(
0→ X〈b, v〉 | v → withdraw a

)
The contract X〈a, v〉 models a state where a is the current king, and v is
his investment. The guard val ≥ 2v becomes true when some participant
injects funds into the contract, making its value (val) greater than 2v. This
participant can choose the value for b, i.e. the new king. The contract
proceeds as Y〈a, b, val〉, which has two parallel branches. The first branch
makes val B available to the old king; the second branch has zero value,
and it reboots the game, recording the new king b and his investment.

A possible computation of A starting the scheme with 1B is the fol-
lowing, where we represent a contract C storing vB as a term 〈C , vB〉:

〈X〈A,−〉, 1B〉
−→ 〈Y〈A,B, 2〉, 2B〉 (B pays 2B fee)
−→ 〈X〈B, 2〉, 0B〉 | 〈withdraw A, 2B〉 (contract splits)
−→ 〈X〈B, 2〉, 0B〉 | 〈A, 2B〉 (A redeems 2B)
−→ 〈Y〈B,C, 4〉, 4B〉 | 〈A, 2B〉 (C pays 4B fee)
−→ 〈X〈C, 4〉, 0B〉 | 〈withdraw B, 4B〉 | 〈A, 2B〉 (contract splits)
−→ 〈X〈C, 4〉, 0B〉 | 〈B, 4B〉 | 〈A, 2B〉 (B redeems 4B)

Executing a step of the BitML contract corresponds, in Bitcoin, to
appending a transaction containing in out(1) the script in Figure 4.10.
The script implements a state machine, using arg.1 to record the current
state, and the other parts of arg for the old king, the new king, and v. The
verrec(1) at line 8 preserves the script in out(1). To pay the old king, we
use the verscr at line 20, which constrains the script in out(2) of the trans-
action corresponding to the BitML state 〈X〈b, v〉, 0B〉 | 〈withdraw a, vB〉.
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1 def arg .1 = q // state 0 = <X(A,-) ,1>
2 // state 1 = <Y(a,b,v),v>
3 // state 2 = <X(b,v) ,0> | <withdraw a,v>
4 def arg .2 = oldK // old King
5 def arg .3 = newK // new king
6 def arg .4 = v // paid fee
7

8 verrec (1) and // out (1) preserves covenant
9 if ctxo (1).q = 0 then // state 0

10 rtxo (1).q = 1 // state transition 0 -> 1
11 and rtxo (1). oldK = ctxo (1). newK // usurp the throne
12 and rtxo (1).val >= ctxo (1).val
13 + ctxo (1).val // fee at least doubled
14 and rtxo (1).v = rtxo (1).val // instantiate v
15 else if ctxo (1).q = 1 then // state 1
16 rtxo (1).q = 2 // state transition 1 -> 2
17 and rtxo (1). newK = ctxo (1). newK // preserve new king
18 and rtxo (1).v = ctxo (1).v // preserve v
19 and rtxo (1).val = 0 // reset value in out (1)

20 and rtxo (2). oldK = ctxo (1). oldK // set old king
21 and verscr (2,
22 versig ( ctxo (2).oldK ,rtx.wit)) // covenant to pay old king
23 and rtxo (2).val = ctxo (1).val // preserve value in out (2)
24 else if ctxo (1).q = 2 then // state 2
25 rtxo (1).q = 1 // state transition 2 -> 1
26 and rtxo (1). oldK = ctxo (1). newK // usurp the throne
27 and rtxo (1).val >= ctxo (1).v
28 + ctxo (1).v // fee at least doubled
29 and rtxo (1).v = rtxo (1).val // update v

Figure 4.10: Script for King of the Ether Throne, obtained by compiling
BitML.

We now apply our extended BitML to specify a more challenging use
case, i.e. a recursive coin-flipping game where two players A and B re-
peatedly flip coins, and the one who wins two consecutive flips takes the
pot. The precondition to stipulate the contract requires each player to
deposit 1B as a bet. The game first makes each player commit to a secret,
using a timed-commitment protocol [29]. The secrets are then revealed,
and the winner of a flip is determined as a function of the two secrets.
The game starts another flip if the current winner is different from that
of the previous flip, otherwise the pot is transferred to the winner.

We model the recursive coin-flipping game as the (extended) BitML
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contract XA〈C〉, where C 6= A,B, using the following defining equations:

XA〈w〉 = A : ?hA . XB〈w, hA〉 + afterRel t : withdraw B
XB〈w, hA〉 = B : ?hB . YA〈w, hA , hB〉 + afterRel t : withdraw A

YA〈w, hA , hB〉 = ?sA ifH(sA) = hA . YB〈w, sA , hB〉
+ afterRel t : withdraw B

YB〈w, sA , hB〉 = ?sB ifH(sB) = hB and 0 ≤ sB ≤ 1 . W〈w, sA , sB〉
+ afterRel t : withdraw A

W〈w, sA , sB〉 = if sA = sB and w = A : withdraw A // A won twice
+ if sA = sB and w 6= A : XA〈A〉 // A won last flip
+ if sA 6= sB and w = B : withdraw B // B won twice
+ if sA 6= sB and w 6= B : XA〈B〉 // B won last flip

The contract XA〈w〉 models a state where w is the last winner, and A
must commit to her secret. To do that, A must authorize an input hA ,
which represents the hash of her secret. If A does not commit within t,
then the pot can be redeemed by B as a compensation (here, the primi-
tive afterRel t : C models a relative timeout). Similarly, XB〈w〉 models
B’s turn to commit. In YA〈w, hA , hB〉, A must reveal her secret sA , or
otherwise lose her deposit. The contract YB〈w, sA , hB〉 is the same for B,
except that here we additionally check that B’s secret is either 0 or 1 (this
is needed to ensure fairness, as in the two-player lottery in [22]). The flip
winner is A if the secrets of A and B are equal, otherwise it is B. If the
winner is the same as the previous round, the winner can withdraw the
pot, otherwise the game restarts, recording the last winner.

This coin flipping game is fair, i.e. the expected payoff of a rational
player is always non-negative, notwithstanding the behaviour of the other
player.

4.4 Implementing neighbourhood covenants
To extend Bitcoin with neighborhood covenants, only small changes to the
script language are needed. Currently, scripts can only access the redeem-
ing transaction, and only for signature verification. To enable covenants,
scripts need to access the fields of the redeeming transaction, and those
of the parent and the sibling transaction outputs. First, the UTXO data
structure must be extended to record the parents of unspent outputs.
Full nodes could simply access these transactions from their identifiers.
Lightweight nodes, i.e. Bitcoin clients with limited resources that store the
UTXO instead of the whole blockchain, must also store parents beside the
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UTXO; when all the children of a transaction are spent, the parent can
be deleted.

To implement the covenants verrec and verscr, the Bitcoin script lan-
guage must be extended with new opcodes. A former covenant-enabling
opcode is the CheckOutputVerify of [63], which uses placeholders to repre-
sent variable parts of the script (e.g., versig(<pubKey >, rtx.wit)). However,
its implementation requires string substitutions at run-time to insert the
wanted values in the script before checking script equality. Instead, our
neighbourhood covenants can be implemented more efficiently. In our
covenants, we can use exactly the same script along a chain of transac-
tions, relying on the arg sequence to record state updates. The script
can access the state through the operator o.arg, which require suitable
opcodes. Since the script is fixed, nodes do not have to perform string
substitutions, and checking script equality can be efficiently performed by
comparing their hashes.

Adding the arg field to outputs does not require to alter the structure
of pure Bitcoin transactions. Indeed, the arg values can be stored at
the beginning of the script as push operations on the alternative stack,
and copied to the main stack when the script refers to them, using the
same technique used in [81]. When hashing the scripts for comparison, we
discard these arg values: this just requires to skip the prefix of the script
comprising all the push to the alternative stack.
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Chapter 5

Bitcoin Smart Contracts
as Endpoint Protocols

Albeit the primary usage of Bitcoin is to exchange currency, its blockchain
and consensus mechanism can also be exploited to securely execute some
forms of smart contracts. These are agreements among mutually distrust-
ing parties, which can be automatically enforced without resorting to a
trusted intermediary. Over the last few years a variety of smart contracts
for Bitcoin have been proposed, both by the academic community and by
that of developers. However, the heterogeneity in their treatment, the in-
formal (often incomplete or imprecise) descriptions, and the use of poorly
documented Bitcoin features, pose obstacles to the research. In this chap-
ter we present a comprehensive survey of smart contracts on Bitcoin, in a
uniform framework. Our treatment is based on a new formal specification
language for smart contracts, which also helps us to highlight some sub-
tleties in existing informal descriptions, making a step towards automatic
verification. We discuss some obstacles to the diffusion of smart contracts
on Bitcoin, and we identify the most promising open research challenges.

5.1 Modelling Bitcoin contracts
In this section we introduce a formal model of the behaviour of the par-
ticipants in a contract, building upon the model of Bitcoin transactions
in Chapter 3.

We start by formalising a simple language of expressions, which rep-
resent both the messages sent over the network, and the values used in
internal computations made by the participants. Hereafter, we assume a
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JνK = ν Jsigµ,ik (T)K = sigµ,ik (JTK)

Jversigk(E, T, i)K = verk(JEK, JTK, i)

JT{f(i) 7→ E}K = JTK{f(i) 7→ JEK} J(E,E′)K = (JEK, JE′K)

JE ◦ E′K = JEK ◦ JE′K for ◦ ∈ { and , or ,+ , . . . } Jnot EK = ¬JEK

JEK = JE1K · · · JEnK if E = E1 · · ·En

Figure 5.1: Semantics of contract expressions.

set Var of variables, and we define the set Val of values comprising con-
stants k ∈ Z, signatures σ, scripts λz.e, transactions T, and currency
values v.

Definition 5.1 (Contract expressions). We define contract expressions
through the following syntax:

E, T ::= ν value (ν ∈ Val)
| x variable (x ∈ Var)
| sigµ,ik (T) signature (µ signature modifier)
| versigk(E, T, i) (multi) signature verification
| T{f(i) 7→ E} transaction field update
| (E,E) pair
| E and E | E or E | not E logical expressions
| E + E | · · · arithmetic expressions

where E denotes a finite sequence of expressions (i.e., E = E1 · · ·En). We
define the function J·K from (variable-free) contract expressions to values
in Figure 5.1. As a notational shorthand, we omit the index i in sig (resp.
versig) when the signed (resp. verified) transactions have a single input.

Intuitively, when T evaluates to a transaction T, the expression
T{f(i) 7→ E} represents the transaction obtained from T by substitut-
ing the field f(i) with the sequence of values obtained by evaluating
E. For instance, T{wit(1) 7→ σ} denotes the transaction obtained from
T by replacing the witness at index 1 with the signature σ. Further,
sigµ,ik (T) evaluates to the signature of the transaction represented by T,
and versigk(E, T) represents the m-of-n multi-signature verification of the
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transaction represented by T. Both for the signing and verification, the
parameter i represents the index where the signature will be used. We
assume a simple type system that rules out ill-formed expressions, like
e.g. k{wit(1) 7→ T}.

We formalise the behaviour of a participant as an endpoint protocol,
i.e. a process where the participant can perform the following actions:
(i) send/receive messages to/from other participants; (ii) put a trans-
action on the ledger; (iii) wait until some transactions appear on the
blockchain; (iv) do some internal computation. Note that the last kind
of operation allows a participant to craft a transaction before putting it
on the blockchain, e.g. setting the wit field to her signature, and later on
adding the signature received from another participant.

Definition 5.2 (Endpoint protocols). Assume a set of participants
(named A, B, C, . . . ). We define prefixes π, and protocols P ,Q,R, . . .
as follows:

π ::= A !E send messages to A
| A ?x receive messages from A
| put T append transaction T to the blockchain
| ask T as x wait until all transactions in T are on the blockchain
| check E test condition

P ::=
∑
i∈I πi . P i guarded choice (I finite set)

| P | P parallel composition
| X(E) named process

We assume that each name X has a unique defining equation X(x) =
P where the free variables in P are included in x. We use the following
syntactic sugar:

• τ , check true, the internal action;

• 0 ,
∑
∅ P , the terminated protocol (as usual, we omit trailing 0s);

• if E then P else Q , check E .P + check not E .Q;

• π1.Q1 + P ,
∑
i∈I∪{1} πi.Qi, provided that P =

∑
i∈I πi.Qi and

1 6∈ I;

• let x = E in P , P {E/x}, i.e. P where x is replaced by E.

The behaviour of protocols is defined in terms of a LTS between sys-
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A[B !E. P +R |Q] | B[A ?x. P ′ +R′ |Q′] | S −→ A[P |Q] | B[P ′{JEK/x} |Q′] | S [Com]

JEK = true
A[check E .P +R |Q] | S −→ A[P |Q] | S

[Check]

JTK = T B B (T, t)
A[put T. P +R |Q] | S | (B, t) −→ A[P |Q] | S | (B(T, t), t)

[Put]

JT K = T1 · · ·Tn ∀i ∈ 1..n : matchB (Ti) = T′i 6= ⊥
A[ask T as x. P +R |Q] | S | (B, t) −→ A[P {T′

1···T
′
n/x} |Q] | S | (B, t)

[Ask]

X(x) = P A[P {JEK/x} |Q] | S −→ S ′

A[X(E) |Q] | S −→ S ′
[Def]

t′ > 0

S | (B, t)
t′
−→ S ′ | (B, t + t′)

[Delay]

Figure 5.2: Semantics of endpoint protocols.

tems, i.e. the parallel composition of the protocols of all participants, and
the blockchain.

Definition 5.3 (Semantics of protocols). A system S is a term of the
form A1[P 1] | · · · |An[Pn] |(B, t), where (i) all the Ai are distinct; (ii) there
exists a single component (B, t), representing the current state of the
blockchain B, and the current time t; (iii) systems are up-to commu-
tativity and associativity of |. We define the relation −→ between systems
in Figure 5.2, where matchB(T) is the set of all the transactions in B that
are equal to T, except for the witnesses. When writing S | S ′ we intend
that the conditions above are respected.

Intuitively, a guarded choice
∑
i πi.P i can behave as one of the

branches P i. A parallel composition P | Q executes concurrently P and
Q. All the rules (except the last two) specify how a protocol (π.P +Q) |R
evolves within a system. Rule [Com] models a message exchange between A
and B: participant A sends messages E, which are received by B on vari-
ables x. Communication is synchronous, i.e. A is blocked until B is ready
to receive. Rule [Check] allows the branch P of a sum to proceed if the
condition represented by E is true. Rule [Put] allows A to append a trans-
action to the blockchain, provided that the update is consistent. Rule [Ask]
allows the branch P of a sum to proceed only when the blockchain con-
tains some transactions T′1 · · ·T′n obtained by instantiating some ⊥ fields
in T (see Section 1.1). This form of pattern matching is crucial because
the value of some fields (e.g., wit), may not be known at the time the
protocol is written. When the ask prefix unblocks, the variables x in
P are bound to T′1 · · ·T′n, so making it possible to inspect their actual
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T
in: (TA , 1)
wit: ⊥
out: (λςς ′.versig(kAkB , ςς

′), 1B)

T′A
in: (T, 1)
wit: ⊥
out: (λς.versig(kA , ς), 1B)

T′B
in: (T, 1)
wit: ⊥
out: (λς.versig(kB , ς), 1B)

Figure 5.3: Transactions of the näıve escrow contract.

fields. Rule [Def] allows a named process X(E) to evolve as P , assuming
a defining equation X(x) = P . The variables x in P are substituted with
the results of the evaluation of E. Such defining equations can be used
to specify recursive behaviours. Finally, rule [Delay] allows time to pass.
To keep our presentation simple, we have not included time-constraining
operators in endpoint protocols. In case one needs a finer-grained control
of time, well-known techniques [64] exist to extend a process algebra like
ours with these operators.

Example 5.1.1 (Näıve escrow). A buyer A wants to buy an item from
the seller B, but they do not trust each other. So, they would like to use a
contract to ensure that B will get paid if and only if A gets her item. In a
näıve attempt to realise this, they use the transactions in Figure 5.3, where
we assume that (TA , 1) used in T.in, is a transaction output redeemable
by A through her key kA . The transaction T makes A deposit 1B, which
can be redeemed by a transaction carrying the signatures of both A and B.
The transactions T′A and T′B redeem T, transferring the money to A or
B, respectively.

The protocols of A and B are, respectively, PA and QB :

PA = put T{wit 7→ sig∗∗kA
(T)}. P ′

P ′ = τ.B ! sig∗∗kA
(T′B) + τ.B ?x. put T′A{wit 7→ sig∗∗kA

(T′A)x}
QB = ask T.

(
τ.A ?x. put T′B{wit 7→ x sig∗∗kB

(T′B)} + τ.A ! sig∗∗kB
(T′A)

)
First, A adds her signature to T, and puts it on the blockchain. Then,
she internally chooses whether to unblock the deposit for B or to request
a refund. In the first case, A sends sig∗∗kA

(T′B) to B. In the second case,
she waits to receive the signature sig∗∗kB

(T′A) from B (saving it in the vari-
able x); afterwards, she puts T′A on the blockchain (after setting wit) to
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redeem the deposit. The seller B waits to see T on the blockchain. Then,
he chooses either to receive the signature sig∗∗kA

(T′B) from A (and then re-
deem the payment by putting T′B on the blockchain), or to refund A, by
sending his signature sig∗∗kB

(T′A).
This contract is not secure if either A or B are dishonest. On the

one hand, a dishonest A can prevent B from redeeming the deposit, even
if she had already received the item (to do that, it suffices not to send
her signature, taking the rightmost branch in P ′). On the other hand,
a dishonest B can just avoid to send the item and the signature (taking
the leftmost branch in QB): in this way, the deposit gets frozen. For
instance, let S = A[PA ] |B[QB ] | (B, t), where B contains TA unredeemed.
The scenario where A has never received the item, while B dishonestly
attempts to receive the payment, is modelled as follows:

S −→ A[P ′] | B[QB ] | (B(T, t), t)
−→ A[P ′] | B[τ.A ?x. put T′B{wit 7→ x sig∗∗kB

(T′B)} + τ.A ! sig∗∗kB
(T′A)] | · · ·

−→ A[B ?x. put T′A{wit 7→ sig∗∗kA
(T′A)x}] | B[A ?x. put T′B{wit 7→ x sig∗∗kB

(T′B)}] | · · ·

At this point the computation is stuck, because both A and B are
waiting a message from the other participant. We will show in Sec-
tion 5.2.3 how to design a secure escrow contract, with the intermediation
of a trusted arbiter.

5.2 Smart Contracts
We now present a comprehensive survey of smart contracts on Bitcoin,
comprising those published in the academic literature, and those found
online. To this aim we exploit the model of computation introduced in Sec-
tion 5.1. Remarkably, all the following contracts can be implemented by
only using so-called standard transactions [85], e.g. via the compilation
technique in [11]. This is crucial, because non-standard transactions are
currently discarded by the Bitcoin network.

5.2.1 Oracle
In many concrete scenarios one would like to make the execution of a con-
tract depend on some real-world events, e.g. results of football matches
for a betting contract, or feeds of flight delays for an insurance contract.
However, the evaluation of Bitcoin scripts can not depend on the environ-
ment, so in these scenarios one has to resort to a trusted third-party, or
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T
in: (TA , 1)
wit: sig∗∗kA

(T)
out: (λςς ′.versig(kBkO , ςς

′), vB)

T′B
in: (T, 1)
wit: ⊥
out: (λς.versig(kB , ς), vB)

Figure 5.4: Transactions of a contract relying on an oracle.

oracle [87, 90], who notifies real-world events by providing signatures on
certain transactions.

For example, assume that A wants to transfer vB to B only if a cer-
tain event, notified by an oracle O, happens. To do that, A puts on the
blockchain the transaction T in Figure 5.4, which can be redeemed by
a transactions carrying the signatures of both B and O. Further, A in-
structs the oracle to provide his signature to B upon the occurrence of
the expected event.

We model the behaviour of B as the following protocol:

PB = O ?x. put T′B{wit 7→ sig∗∗kB
(T′B)x}

Here, B waits to receive the signature sig∗∗kO
(T′B) from O, then he puts T′B

on the blockchain (after setting its wit) to redeem T. In practice, oracles
like the one needed in this contract are available as services in the Bitcoin
ecosystem, eg [119].

Notice that, in case the event certified by the oracle never happens,
the vB within T are frozen forever. To avoid this situation, one can add a
time constraint to the output script of T, e.g. as in the transaction Tbond
in Figure 5.10.

5.2.2 Crowdfunding
Assume that the curator C of a crowdfunding campaign wants to fund a
venture V by collecting vB from a set {Ai}i∈I of investors. The investors
want to be guaranteed that either the required amount vB is reached, or
they will be able to redeem their funds. To this purpose, C can employ
the following contract. She starts with a canonical transaction UvB

V (with
empty in field) which has a single output of vB to be redeemed by V.
Intuitively, each Ai can invest money in the campaign by “filling in” the
in field of the UvB

V with a transaction output under their control. To
do this, Ai sends to C a transaction output (Ti, ji), together with the
signature σi required to redeem it. We denote with val(Ti, ji) the value of
such output. Notice that, since the signature σi has been made on UvB

V ,
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the only valid output is the one of vB to be redeemed by V. Upon the
reception of the message from Ai, C updates UvB

V : the provided output is
appended to the in field, and the signature is added to the corresponding
wit field. If all the outputs (Ti, ji) are distinct (and not redeemed) and
the signatures are valid, when

∑
i val(Ti, ji) ≥ v the filled transaction

UvB
V can be put on the blockchain. If C collects v′ > vB, the difference

v′ − v goes to the miners as transaction fee.
The endpoint protocol of the curator is defined as X(UvB

V , 1, 0), where:

X(x, n, d) = if d < v then P else put x
P =

∑
i Ai ? (y, j, σ).X(x{in(n) 7→ (y, j)}{wit(n) 7→ σ}, n+ 1, d+ val(y, j))

while the protocol of each investor Ai is the following:

PAi
= C ! (Ti, ji, sig1∗,1

kAi
(UvB

V {in(1) 7→ (Ti, ji)}))

Note that the transactions sent by investors are not known a priori, so
they cannot just create the final transaction and sign it. Instead, to allow
C to complete the transaction UvB

V without invalidating the signatures,
they compute them using the modifier 1∗1. In this way, only a single input
is signed, and when verifying the corresponding signature, the others are
neglected.

5.2.3 Escrow
In Example 5.1.1 we have discussed a näıve escrow contract, which is
secure only if both the buyer A and the seller B are honest (so making
the contract pointless). Rather, one would like to guarantee that, even if
either A or B (or both) are dishonest, exactly one them will be able to
redeem the money: in case they disagree, a trusted participant C, who
plays the role of arbiter, will decide who gets the money (possibly splitting
the initial deposit in two parts) [84, 90].

The output script of the transaction T in Figure 5.5 is a 2-of-3
multi-signature schema. This means that T can be redeemed either
with the signatures A and B (in case they agree), or with the signature
of C (with key kC) and the signature of A or that of B (in case they
disagree). The transaction T′AB(z) in Figure 5.5 allows the arbiter to
issue a partial refund of zB to A, and of (1 − z)B to B. Instead, to
issue a full refund to either A or B, the arbiter signs, respectively, the
transactions T′A = U1BB

A {in(1) 7→ (T, 1)} or T′B = U1BB
B {in(1) 7→ (T, 1)}

(not shown in the figure). The protocols of A and B are similar to those
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T
in: (TA , 1)
wit: ⊥
out: (λςς ′.versig(kAkBkC , ςς

′), 1B)

T′AB(z)
in: (T, 1)
wit: ⊥
out: 1 7→ (λς.versig(kA , ς), zB), 2 7→ (λς.versig(kB , ς), (1− z)B)

Figure 5.5: Transactions of the escrow contract.

in Example 5.1.1, except for the part where they ask C for an arbitration:

PA = put T{wit 7→ sig∗∗kA
(T)}. (τ.B ! sig∗∗kA

(T′B) + τ.P ′)
P ′ =

(
B ?x. (put T′A{wit 7→ sig∗∗kA

(T′A)x}+ P ′′′)
)

+ P ′′′

P ′′′ = C ? (z, x).
(
check z = 1 . put T′A{wit 7→ sig∗∗kA

(T′A)x}
+ check 0 < z < 1 .

(
put T′AB(z){wit 7→ sig∗∗kA

(T′AB(z))x}+ τ.0
)

+ check z = 0 .0
)

In the summation within PA , participant A internally chooses whether
to send her signature to B (so allowing B to redeem 1B via T′B), or to
proceed with P ′. There, A waits to receive either B’s signature (which
allows A to redeem 1B by putting T′A on the blockchain), or a response
from the arbiter, in the process P ′′′. The three cases in the summation
of check in P ′′′ correspond, respectively, to the case where A gets a full
refund (z = 1), a partial refund (0 < z < 1), or no refund at all (z = 0).

The protocol for B is dual to that of A:

QB = ask T. (τ.A ! sig∗∗kB
(T′A) + τ.Q′)

Q′ =
(
A ?x. (put T′B{wit 7→ x sig∗∗kB

(T′B)}+Q′′)
)

+ Q′′

Q′′ = C ? (z, x).
(
check z = 0 . put T′B{wit 7→ sig∗∗kB

(T′B)x}
+ check 0 < z < 1 .

(
put T′AB(z){wit 7→ sig∗∗kB

(T′AB(z))x}+ τ.0
)

+ check z = 1 .0
)

If an arbitration is requested, C internally decides (through the τ ac-
tions) who between A and B can redeem the deposit in T, by sending its
signature to one of the two participants, or decide for a partial refund of
z and 1− z bitcoins, respectively, to A and B, by sending its signature on
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T
in: 1 7→ (TA, 1)
wit: ⊥

out: 1 7→ (λς.versig(k1, ς), v1B)
2 7→ (λς.versig(k2, ς), v2B)

T′
in: 1 7→ (TA, 1), 2 7→ (TB , 1)
wit: 1 7→ sig1∗1

kA
, 2 7→ sig∗∗kB

out: 1 7→ (λς.versig(k1, ς), v1B)
2 7→ (λς.versig(k2, ς), v2B)

Figure 5.6: Transactions of the Bitcoin mixing contract.

T′AB to both participants:

RC = ask T.
(
τ.A ! (1, sig∗∗kC

(T′A)) + τ.B ! (1, sig∗∗kC
(T′B)) + τ.RAB

)
RAB =

∑
0<z<1 τ.

(
A ! (z, sig∗∗kC

(T′AB(z))) | B ! (z, sig∗∗kC
(T′AB(z)))

)
Note that, in the unlikely case where both A and B choose to send their

signature to the other participant, the 1B deposit becomes “frozen”. In a
more concrete version of this contract, a participant could keep listening
for the signature, and attempt to redeem the deposit when (unexpectedly)
receiving it.

5.2.4 Mixing bitcoins
Assume two participants, A and B (with keys kA and kB , respectively),
who want to pay, respectively, v1B to C1 and v2B to C2 (with keys k1
and k2, respectively). Assume also that the blockchain B contains two
unspent transactions, TA and TB , such that:

TA .out = (λς.versig(kA , ς), v1B) TB .out = (λς.versig(kB , ς), v2B)

which can be redeemed by A and B, respectively.
To avoid de-anonymization, A mixes her bitcoins with those of B, using

the following protocol:

PA = B ! sig1∗1
kA

(T)

where the transaction T is displayed in Figure 5.6 (left). The transaction
T has one input (the only output of TA), and two outputs: one redeemable
with k1, and the other one with k2. Participant A sends her signature
(computed using the modifier 1∗1) to participant B. With the modifier
1∗1, the verification of such signature will consider all outputs, but only
the input with index 1. Therefore, B will be able to add inputs to T,
without invalidating A’s signature.

Stefano Lande Formal Methods for Secure Bitcoin Smart Contracts



Bitcoin Smart Contracts as Endpoint Protocols 71

TAB
in: (TA , vC)
wit: ⊥
out: (λςς ′.versig(kAkB , ςς

′), (vB + vC)B)

TBC
in: (TAB , 1)
wit: ⊥
out: 1 7→ (λς.versig(kB , ς), vBB), 2 7→ (λς.versig(kC , ς), vCB)

Figure 5.7: Transactions of the intermediated payment contract.

Note that T tries to redeem v1B from TA .out(1), but it makes available
v1 + v2 > v1 bitcoins through its outputs. Hence, T is not a consistent
update of B, since it violates condition (3) of Definition 3.14. However,
since A has signed T with the modifier 1∗1, B can add another input
without breaking her signature (but he cannot steal her bitcoins, since all
the outputs are signed).

The protocol of B is the following:

QB = A ?x. put T{in(2) 7→ (TB , 1)}{wit(1) 7→ x}{wit(2) 7→ sig∗∗kB
({in(2) 7→ (TB , 1)})}

Here, B completes the transaction T, adding an input, A’s signature
(in x), and his signature on T (signing all inputs and all outputs, so that
the transaction cannot be changed anymore). This modified transaction,
displayed in Figure 5.6 (right), is a consistent update of B, hence B can
put it on the blockchain.

This contract works as an anonymity schema because it falsifies the
premise of the multi-input address clustering heuristic, firstly introduced
by [61]. It assumes that all the inputs of a transaction are signed using
keys controlled by the same user, which is not true in T′.

5.2.5 Intermediated payment

Assume that A wants to send an indirect payment of vCB to C, routing
it through an intermediary B who retains a fee of vB < vC bitcoins. Since
A does not trust B, she wants to use a contract to guarantee that: (i) if
B is honest, then vCB are transferred to C; (ii) if B is not honest, then
A does not lose money. The contract uses the transactions in Figure 5.7:
TAB transfers (vB + vC)B from A to B, and TBC splits the amount to B
(vBB) and to C (vCB). We assume that (TA , 1) is a transaction output
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redeemable by A. The behaviour of A is as follows:

PA = (B ?x. if versigkB
(x,TBC) then P ′ else 0) + τ

P ′ = put TAB{wit 7→ sig∗∗kA
(TAB)}. put TBC{wit 7→ sig∗∗kA

(TBC)x}

Here, A receives from B his signature on TBC , which makes it possible
to pay C later on. The τ branch and the else branch ensure that A will
correctly terminate also if B is dishonest (i.e., B does not send anything,
or he sends an invalid signature). If A receives a valid signature, she puts
TAB on the blockchain, adding her signature to the wit field. Then, she
also appends TBC , adding to the wit field her signature and B’s one. Since
A takes care of publishing both transactions, the behaviour of B consists
just in sending his signature on TBC . Therefore, B’s protocol can just be
modelled as QB = A ! sig∗∗kB

(TBC).
This contract relies on SegWit. In Bitcoin without SegWit, the iden-

tifier of TAB is affected by the instantiation of the wit field. So, when TAB
is put on the blockchain, the input in TBC (which was computed before)
does not point to it.

5.2.6 Timed commitment
Assume that A wants to choose a secret s, and reveal it after some time
— while guaranteeing that the revealed value corresponds to the chosen
secret (or paying a penalty otherwise). This can be obtained through
a timed commitment [29], a protocol with applications e.g. in gambling
games [39, 71, 47], where the secret contains the player move, and the
delay in the revelation of the secret is intended to prevent other players
from altering the outcome of the game. Here we formalise the version of
the timed commitment protocol presented in [4].

Intuitively, A starts by exposing the hash of the secret, i.e. h = H(s),
and at the same time depositing some amount vB in a transaction. The
participant B has the guarantee that after t time units, he will either know
the secret s, or he will be able to redeem vB.

The transactions of the protocol are shown in Figure 5.8, where we as-
sume that (TA , 1) is a transaction output redeemable by A. The behaviour
of A is modelled as the following protocol:

PA = put Tcom{wit 7→ sig∗∗kA
(Tcom)}.B ! sig∗∗kA

(Tpay). P ′

P ′ = τ . put Topen{wit 7→ s sig∗∗kA
(Topen) ⊥} + τ

Participant A starts by putting the transaction Tcom on the blockchain.
Note that within this transaction A is committing the hash of the chosen
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Tcom
in: (TA , 1)
wit: ⊥

out: (λxςς ′.(versig(kA , ς) and H(x) = h)
or versig(kAkB , ςς

′), vB)

Topen
in: (Tcom , 1)
wit: ⊥
out: (λς.versig(kA , ς), vB)

Tpay
in: (Tcom , 1)
wit: ⊥
out: (λς.versig(kB , ς), vB)
relLock: t

Figure 5.8: Transactions of the timed commitment.

secret: indeed, h is encoded within the output script Tcom.out. Then,
A sends to B her signature on Tpay. Note that this transaction can be
redeemed by B only when t time units have passed since Tcom has been
published on the blockchain, because of the relative timelock declared
in Tpay.relLock. After sending her signature on Tpay, A internally chooses
whether to reveal the secret, or do nothing (via the τ actions). In the
first case, A must put the transaction Topen on the blockchain. Since it
redeems Tcom, she needs to write in Topen.wit both the secret s and her
signature, so making the former public.

A possible behaviour of the receiver B is the following:

QB =
(
A ?x. if versigkA

(x,Tpay) then Q else 0
)

+ τ

Q = put Tpay{wit 7→ ⊥ x sig∗∗kB
(Tpay)}+ ask Topen as o.Q′(getsecret(o))

In this protocol, B first receives from A (and saves in x) her signature
on the transaction Tpay. Then, B checks if the signature is valid: if not, he
aborts the protocol. Even if the signature is valid, B cannot put Tpay on
the blockchain and redeem the deposit immediately, since the transaction
has a timelock t. Note that B cannot change the timelock: indeed, doing
so would invalidate A’s signature on Tpay. If, after t time units, A has
not published Topen yet, B can proceed to put Tpay on the blockchain,
writing A’s and his own signatures in the witness. Otherwise, B retrieves
Topen from the blockchain, from which he can obtain the secret, and use
it in Q′.

A variant of this contract, which implements the timeout in Tcom.out,
and does not require the signature exchange, is used in Section 5.2.8.

Timed commitment without signature exchange The timed com-
mitment protocol in Section 5.2.6 has a major drawback: A could put the
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Tcom
in: (TA , 1)
wit: ⊥

out: (λxς.(versig(kA , ς) and H(x) = h)
or relAfter t : versig(kB , ς), vB)

Topen
in: (Tcom, 1)
wit: ⊥
out: (λς.versig(kA , ς), vB)

Tpay
in: (Tcom, 1)
wit: ⊥
out: (λς.versig(kB , ς), vB)
relLock: t

Figure 5.9: Transactions of the timed commitment without signature exchange.

transaction Tcom on the blockchain, and then avoid to send sig∗∗kA
(Tpay).

It this way, even if she started the contract, she could maintain the secret
hidden without losing the deposit. We now present a variant of the proto-
col which addresses this problem. The new transactions are in Figure 5.9.

The new version of Tcom can be redeemed by B using only his own
signature. In order to enforce A to reveal the secret before t time units
have passed, the output script of Tcom uses the expression relAfter t :
versig(kB , ς). This has the effect of verifying the signature in the witness of
the redeeming transaction (i.e., Tpay) only if such transaction has relLock
greater or equal than t.

The participants’ protocols are similar to those in Section 5.2.6, except
for the signature exchange, which is no longer necessary.

PA = put Tcom{wit 7→ sig∗∗kA
(Tcom)}.

(
τ . (put Topen{wit 7→ s sig∗∗kA

(Topen)}) + τ
)

QB = ask Tcom.
(
put Tpay{wit 7→ ⊥ sig∗∗kB

(Tpay)}+ τ
)

5.2.7 Micropayment channels
Assume that A wants to make a series of micropayments to B, e.g. a
small fraction of B every few minutes. Doing so with one transaction
per payment would result in conspicuous fees [82], so A and B use a
micropayment channel contract [108]. A starts by depositing kB; then,
she signs a transaction that pays vB to B and (k − v)B back to herself,
and she sends that transaction to B. Participant B can choose to publish
that transaction immediately and redeem its payment, or to wait in case
A sends another transaction with increased value. A can stop sending
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Tbond
in: (TA , 1)
wit: ⊥
out: (λςς ′.versig(kAkB , ςς

′) or
relAfter t : versig(kA , ς), kB)

Tpay(v)
in: (Tbond , 1)
wit: ⊥

out: 1 7→ (λς.versig(kA , ς), (k − v)B)
2 7→ (λς.versig(kC , ς), vB)

Tref
in: (Tbond , 1)
wit: ⊥
out: (λς.versig(kA , ς), vB)
relLock: t

Figure 5.10: Transactions of the micropayment channel contract.

signatures at any time. If B redeems, then A can get back the remaining
amount. If B does not cooperate, A can redeem all the amount after a
timeout.

The protocol of A is the following (the transactions are in Figure 5.10).
A publishes the transaction Tbond , depositing kB that can be spent with
her signature and that of B, or with her signature alone, after time t. A
can redeem the deposit by publishing the transaction Tref . To pay for the
service, A sends to B the amount v she is paying, and her signature on
Tpay(v). Then, she can decide to increase v and recur, or to terminate.

PA = put Tbond{wit 7→ sig∗∗kA
(Tbond)}. (P (1) | put Tref {wit 7→ sig∗∗kA

(Tref )})
P (v) = B ! (v, sig∗∗kA

(Tpay(v))). (τ + τ.P (v + 1))

The participant B waits for Tbond to appear on the blockchain, then
receives the first value v and A’s signature σ. Then, B checks if σ
is valid, otherwise he aborts the protocol. At this point, B waits for
another pair (v′, σ′), or, after a timeout, he redeems vB using Tpay(v).

QB = ask Tbond .A ? (v, σ). if versigkA
(σ,Tpay(v)) then P ′(v, σ) else τ

P ′(v, σ) = τ.P pay(v, σ) +
A ? (v′, σ′). if v′ > v and versigkA

(σ′,Tpay(v′)) then P ′(v′, σ′) else P ′(v, σ)
P pay(v, σ) = put Tpay(v){wit 7→ σ sig∗∗kB

(Tpay(v))}

Note that QB should redeem Tpay before the timeout expires, which
is not modelled in QB . This could be obtained by enriching the calculus
with time-constraining operators.
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5.2.8 Fair lotteries

A multiparty lottery is a protocol where N players put their bets in a
pot, and a winner — uniformly chosen among the players — redeems
the whole pot. Various contracts for multiparty lotteries on Bitcoin have
been proposed in [4, 5, 80, 26, 23, 62]. These contracts enjoy a fairness
property, which roughly guarantees that: (i) each honest player will have
(on average) a non-negative payoff, even in the presence of adversaries;
(ii) when all the players are honest, the protocol behaves as an ideal
lottery: one player wins the whole pot (with probability 1/N), while all
the others lose their bets (with probability N−1/N).

Here we illustrate the lottery in [4], for N = 2. Consider two players
A and B who want to bet 1B each. Their protocol is composed of two
phases. The first phase is a timed commitment (as in Section 5.2.6): each
player chooses a secret (sA and sB) and commits its hash (hA = H(sA)
and hB = H(sB)). In doing that, both players put a deposit of 2B on the
ledger, which is used to compensate the other player in case one chooses
not to reveal the secret later on. In the second phase, the two bets are
put on the ledger. After that, the players reveal their secrets, and redeem
their deposits. Then, the secrets are used to compute the winner of the
lottery in a fair manner. Finally, the winner redeems the bets.

The transactions needed for this lottery are displayed in Figure 5.11
(we only show A’s transactions, as those of B are similar). The transac-
tions for the commitment phase (Tcom,Topen,Tpay) are similar to those
in Section 5.2.6: they only differ in the script of Tcom.out, which now also
checks that the length of the secret is either 128 or 129. This check forces
the players to choose their secret so that it has one of these lengths, and
reveal it (using Topen) before the absLock deadline, since otherwise they
will lose their deposits (enabling Tpay).

The bets are put using Tlottery, whose output script computes the
winner using the secrets, which can then be revealed. For this, the secret
lengths are compared: if equal, A wins, otherwise B wins. In this way, the
lottery is equivalent to a coin toss. Note that, if a malicious player chooses
a secret having another length than 128 or 129, the Tlottery transaction will
become stuck, but its opponent will be compensated using the deposit.

The endpoint protocol PA of player A follows (the one for B is similar):
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TAcom(hA)
in: (TAdep, 1)
wit: ⊥

out:
(λxς.(versig(kA , ς) and H(x) = hA

and (|x| = 128 or |x| = 129))
or absAfter t : versig(kB , ς), 2B)

Tlottery(hA , hB)
in: 1 7→ (TAbet , 1), 2 7→ (TBbet , 1)
wit: ⊥

out:
(λςxy.H(x) = hA and H(y) = hB and
(|x| = 128 or |x| = 129) and (|y| = 128 or |y| = 129)
and if |x| = |y| then versig(kA , ς) else versig(kB , ς), 2B)

TAopen(hA)
in: (TAcom(hA), 1)
wit: ⊥
out: (λς.versig(kA , ς), 2B)

TApay(hA)
in: (TAcom(hA), 1)
wit: ⊥
out: (λς.versig(kB , ς), 2B)
absLock: t

TAwin(hA , hB)
in: (Tlottery(hA , hB), 1)
wit: ⊥
out: (λς.versig(kA , ς), 2B)

Figure 5.11: Transactions of the fair lottery with deposit.

PA = put TAcom{wit 7→ sig∗∗kA
(TAcom)}.

(
ask TBcom as y. P ′ + τ.P open

)
P ′ = let hB = gethash(y) in if hB 6= hA then P pay | P ′′′ else P pay | P open
P ′′′ = B ?x. P ′′ + τ.P open

P ′′ = let σ = sig∗∗,1kA
(Tlottery(hA , hB)) in(

put Tlottery(hA , hB){wit(1) 7→ σ}{wit(2) 7→ x}. (P open | Pwin)
)

+ τ.P open

P pay = put TBpay{wit 7→ ⊥ sig∗∗kA
(TBpay)}

P open = put TAopen{wit 7→ sA sig∗∗kA
(TAopen)}

Pwin = ask TBopen as z. P ′win
P ′win = put TAwin(hA , hB){wit 7→ sig∗∗kA

(TAwin(hA , hB)) sA getsecret(z)}

Player A starts by putting TAcom on the blockchain, then she waits
for B doing the same. If B does not cooperate, A can safely abort the
protocol taking its τ.P open branch, so redeeming her deposit with TAopen
(as usual, here with τ we are modelling a timeout). If B commits his
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secret, A executes P ′, extracting the hash hB of B’s secret, and checking
whether it is distinct from hA . If the hashes are found to be equal, A
aborts the protocol using P open. Otherwise, A runs P ′′′ | P pay. The
P pay component attempts to redeem B’s deposit, as soon as the absLock
deadline of TBpay expires, forcing B to timely reveal his secret. Instead,
P ′′′ proceeds with the lottery, asking B for his signature of Tlottery. If B
does not sign, A aborts using P open. Then, A runs P ′′, finally putting
the bets (Tlottery) on the ledger. If this is not possible (e.g., because one
of the Tbet is already spent), A aborts using P open. After Tlottery is on
the ledger, A reveals her secret and redeems her deposit with P open. In
parallel, with Pwin she waits for the secret of B to be revealed, and then
attempts to redeem the pot (TAwin).

The fairness of this lottery has been established in [4]. This protocol
can be generalised to N > 2 players [4, 5] but in this case the deposit grows
quadratically with N . The works [62, 23] have proposed fair multiparty
lotteries that require, respectively, zero and constant (≥ 0) deposit. More
precisely, [62] devises two variants of the protocol: the first one only relies
on SegWit, but requires each player to statically sign O(2N ) transactions;
the second variant reduces the number of signatures to O(N2), at the
cost of introducing a custom opcode. Also the protocol in [23] assumes
an extension of Bitcoin, i.e. the malleability of in fields, to obtain an ideal
fair lottery with O(N) signatures per player (see Section 7.3).

5.2.9 Contingent payments
Assume a participant A who wants to pay vB to receive a value s which
makes a public predicate p true, where p(s) can be verified efficiently. A
seller B who knows such s is willing to reveal it to A, but only under the
guarantee that he will be paid vB. Similarly, the buyer wants to pay only
if guaranteed to obtain s.

A näıve attempt to implement this contract in Bitcoin is the following:
A creates a transaction T such that T.out(ς, x) evaluates to true if and
only if p(x) holds and ς is a signature of B. Hence, B can redeem vB
from T by revealing s. In practice, though, this approach is arguably
useful, since it requires coding p in the Bitcoin scripting language, whose
expressiveness is quite limited.

More general contingent payment contracts can be obtained by exploit-
ing zero-knowledge proofs [12, 115, 38]. In this setting, the seller generates
a fresh key k, and sends to the buyer the encryption es = Ek(s), together
with the hash hk = H(k), and a zero-knowledge proof guaranteeing that
such messages have the intended form. After verifying this proof, A is sure
that B knows a preimage k′ of hk (by collision resistance, k′ = k) such
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Tcp(h)
in: (TA , 1)
wit: ⊥

out: (λxς.(versig(kB , ς) and H(x) = h)
or relAfter t : versig(kA , ς), vB)

Topen(h)
in: (Tcp(h), 1)
wit: ⊥
out: (λς.versig(kB , ς), vB)

Trefund(h)
in: (Tcp(h), 1)
wit: ⊥
out: (λς.versig(kA , ς), vB)
relLock: t

Figure 5.12: Transactions of the contingent payment.

that Dk′(es) satisfies the predicate p, and so she can buy the preimage k
of hk with the näıve protocol, so obtaining the solution s by decrypting es
with k.

The transactions implementing this contract are displayed
in Figure 5.12. The relAfter : clause in Tcp allows A
to redeem vB if no solution is provided by the deadline t.
The behaviour of the buyer A can be modelled as follows:

PA = B ? (es, hk, z). P + τ

P = if verify(es, hk, z) then put Tcp(hk){wit 7→ sig∗∗kA
(Tcp(hk))}. P ′ else 0

P ′ = ask Topen(hk) as x. P ′′′(Dgetk(x)(es)) +
put Trefund(hk){wit 7→ ⊥ sig∗∗kA

(Trefund(hk))})

For simplicity, here we model the zero-knowledge proof as a single
message. More concretely, it should be modelled as a sub-protocol. Upon
receiving es, hk and the proof zthe buyer verifies z. If the verification
succeeds, A puts Tcp(hk) on the blockchain. Then, she waits for Topen,
from which she can retrieve the key k, and so use the solution Dgetk(x)(es)
in P ′′′. In this way, B can redeem vB. If B does not put Topen, after t
time units A can get her deposit back through Trefund . The protocol of B
is simple, so it is omitted.
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Chapter 6

A Toolchain for
Developing BitML
Contracts

In the last five years much outstanding research has been devoted to
showing how to exploit Bitcoin to execute smart contracts — computer
protocols which allow for exchanging cryptocurrency according to com-
plex pre-agreed rules [4, 3, 1, 5, 12, 23, 26, 56, 57, 55, 58, 62]. Despite
the wide variety of use cases witnessed by these works, no tool support
has been provided yet to facilitate the development of multi-transaction
Bitcoin contracts. Today, this task requires to devise complex protocols
which, besides using the standard cryptographic primitives, (e.g., encryp-
tion, hash functions, signatures), can read and append transactions on the
Bitcoin blockchain. Creating a new protocol requires a significant effort
to establish its correctness and security: this is an error-prone task, usu-
ally performed manually, with the risk of overlooking some corner cases.
Crafting the transactions used by these protocols is burdensome as well,
since it requires to struggle with low-level, poorly documented features of
Bitcoin, like e.g. its stack-based scripting language.

We consider BitML, which features a computationally sound embed-
ding into Bitcoin [22], and a sound and complete verification technique of
relevant trace properties [24]. BitML can express many of the smart con-
tracts appeared in the literature [15, 9], and execute them by appending
suitable transactions to the Bitcoin blockchain. The computational sound-
ness of the embedding guarantees that security properties at the level of
the BitML semantics are preserved at the level of Bitcoin transactions,
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even in the presence of adversaries. Still, BitML lives in a theoretical
limbo, as no tool support exists yet to develop contracts and deploy them
on the Bitcoin blockchain.

We develop a toolchain for writing and verifying BitML contracts,
and for deploying them on Bitcoin. More specifically, the toolchain is
composed of:

1. A BitML embedding in Racket [42], which allows for programming
BitML contracts within the DrRacket IDE.

2. A security analyser which can check arbitrary LTL properties of
BitML contracts. In particular, the analysis can decide liquidity,
a landmark property of smart contracts requiring that the funds
within a contract do not remain frozen forever.

3. A compiler from BitML contracts to standard Bitcoin transactions.
The computational soundness result in [22] ensures that attacks to
compiled contracts are also observable at the BitML level. There-
fore, the properties verified by our security analyzer also hold for
compiled contracts.

The architecture of our toolchain is displayed in Figure 6.1. The de-
velopment workflow is the following: (a) write the BitML contract, and
specify the required properties. Optionally, specify some constraints on
the participants’ strategies, e.g. to partially define the behaviour of the
honest participants; (b) verify that the contract satisfies the required prop-
erties through the security analyser; (c) compile the contract to Bitcoin
transactions; (d) execute the contract, by appending these transactions
to the Bitcoin blockchain according to the chosen strategy. The first two
steps are performed within the DrRacket IDE, while the third one requires
participants to use the Balzac tool to compute signatures and compile
Balzac transactions into Bitcoin transactions. We remark that the last
step can be performed on the Bitcoin main network, without requiring
any extensions or customizations.

The toolchain also supports an extension of BitML that enables re-
cursion and renegotiation of contracts [16]. In this variant, the security
analyser implements a different semantics, and can only check the liquidity
of a contract.

We provide a collection of BitML contracts [93], which we use as a
benchmark to evaluate our toolchain. This collection contains some of the
most complex contracts ever developed for Bitcoin, e.g. financial services,
auctions, timed commitments, lotteries, and a variety of other gambling
games. We use our benchmarks to discuss the expressiveness and the
limitations of Bitcoin as a smart contracts platform.
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BitML
on DrRacket

Properties +
Strategies

Contract Abstract BitML
semantics

Model
checker

Query
result

BitML to
Balzac

Balzac to
Bitcoin

Bitcoin
transactions

Security Analyzer

Compiler

Figure 6.1: Toolchain architecture.

All the components of our toolchain are open-source [92, 96, 81], as
well as the contracts in our benchmark. This Chapter is accompanied by
a brief video that introduces the features of the toolchain (Demo Video
URL: https://bit.ly/2MxOBsT).

6.1 Designing BitML contracts

BitML contracts allow two or more participants to exchange their bit-
coins (B) according to a given logic. A contract consists of two parts:
a precondition, describing requirements that participants must fulfil to
stipulate the contract, and a process, which specifies the execution logic
of the contract. Here, rather than providing the syntax and semantics
of BitML (see [22] for a formalization), we illustrate it through a simple
but paradigmatic example, the mutual timed commitment contract [4].
This contract involves two participants (named below A and B ) each
one choosing a secret and depositing a certain amount of cryptocurrency
(say, 1B). The goal of the contract is to ensure that each participant will
either learn the other participant’s secret, or otherwise receive the other
participant’s deposit as a compensation. The contract gives some time to
the participants to reveal their secrets. If a participant reveals her secret
in time, then she can get her deposit back; otherwise, after the time is up,
the other participant can withdraw that deposit.

In our tool, we can specify this contract as follows:
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( participant "A" "029c... cced") ; A's public key
( participant "B" "022c... af30") ; B's public key

( contract
(pre

( deposit "A" 1 "1a34 ...6 f38@0 ") ; tx output id (1 BTC)
( secret "A" a "628f... de71") ; hash of A's secret
( deposit "B" 1 "19 e7 ...85 ff@2") ; tx output id (1 BTC)
( secret "B" b "9d48 ... bb35")) ; hash of B's secret

( choice
( reveal (a) ( choice

( reveal (b) ( split
(1 -> ( withdraw "A"))
(1 -> ( withdraw "B"))))

( after 100050 ( withdraw "A"))))
( after 100000 ( withdraw "B")))

The first two lines create aliases for the participant names, specifying
their public keys. The contract preconditions are in the pre part: each
participant must specify the identifier of a transaction output, and the
hash of the chosen secret. The transaction output must be unspent, must
contain the required 1B, and must be redeemable using the participant’s
private key. The hash is used during the contract execution: when the
participant provides a value, claiming that it is the chosen secret, the hash
of this value is required to be equal to the one in the precondition.

The contract logic is specified after the preconditions. The top-level
choice defines two alternative branches of the contract. The first branch

can only be taken if A reveals her secret (named a ); when this happens,
the contract continues with the innermost choice . The second branch
can only be taken after a timeout, specified as the block at height 100000,
and it allows B to redeem all the funds deposited within the contract
(i.e., 2B) by executing withdraw "B" . So, to avoid losing her deposit,
A is incentivized to reveal her secret in time. Similarly, the innermost
choice is used to incentivize B to reveal his secret before the block at

height 100050. If B reveals, then the split subcontract is executed:
this divides the balance of the contract in two parts of 1B each, allowing
the participants to withdraw their deposits back.

The language is defined exploiting the Racket macro system, which
is used to rewrite BitML syntactic constructs to Racket code. This ap-
proach benefits from the Racket language ecosystem, and allows us to
write BitML contracts in the DrRacket IDE. Indeed, our toolchain inte-
grates within the DrRacket IDE the contract editor, the security analyzer
and the BitML compiler. The implementation of BitML in Racket ex-
tends the idealized version of BitML in [22] to make the language usable
in practice. For instance, it introduces special deposits of type fee ,
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which are automatically spread over all the transactions obtained by the
compiler. We also implement static checks for a number of errors that
could prevent the correct execution of contracts, e.g. committing secrets
with the same hash, double spending a transaction output, etc.

6.2 Verifying BitML contracts
The tool verifies various forms of liquidity, requiring that no funds (or
funds up-to a certain amount) are frozen forever within a contract. Fur-
ther, the tool can verify arbitrary LTL formulae, where state predicates
can specify, e.g., the funds owned by participants, the provided autho-
rizations, and the revealed secrets. By default, the tool verifies the re-
quired property against all possible behaviours of each participant: for
instance, if a contract contains reveal a , the verifier considers both the
case where the secret is revealed and the one where it is not. Authoriza-
tions are handled similarly, by considering both cases. However, in most
cases, a participant wishes to verify a contract with respect to a given
behaviour for herself, making no assumptions on the other participants’
behaviour (unless some other participants are considered trusted, in which
case it would make sense to fix a behaviour also for them). For instance,
a participant A may want to give her authorization to perform a given
branch only after participant B has revealed his secret. The tool allows
for constraining the behaviour of participants, specifying the conditions
upon which secrets are revealed and authorizations are provided. Actions
which can be performed by everyone, like withdraw and split , cannot
be constrained.

For instance, we can verify that the mutual timed commitment con-
tract is liquid whatever strategies are chosen by participants. The query
check-liquid correctly answers true, since:

• if A does not reveal, then anyone (after the block at height 100000)
can perform withdraw "B" , which transfers the whole contract
balance to B ;

• if A reveals but B does not reveal, then anyone (after the block
at height 100050) can perform withdraw "A" , which transfers the
whole contract balance to A ;

• if both A and B reveal, then anyone can perform split , which
transfers the balance in equal parts to A and B .

Note that if we remove the after branch at line 16, the con-
tract is no longer liquid. However, it becomes liquid when A ’s strat-
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egy is to reveal the secret. We can verify that this holds through
the query check-liquid (strategy "A" (do-reveal a)) . Liquidity
is lost again if A chooses to reveal only after B has revealed, i.e. when
her strategy is "A" (do-reveal a) if ("B" (do-reveal b)) .

Besides liquidity, we can check specific LTL properties of contracts
through the command check-query . E.g., in the mutual timed commit-
ment we can verify that, after A reveals, she will eventually get back at
least her 1B deposit. In LTL, this property is formalised as the following
formula, where 108 satoshi = 1B:

[](a revealed => <>A has-deposit>= 100000000 satoshi)

We also verify that if A reveals the secret, then eventually either B
reveals, or A will get B ’s deposit, too. The LTL query is the following:

[](a revealed =>
<>(b revealed \/ A has-deposit>= 200000000 satoshi))

Our verification technique is based on model-checking the state space
of BitML contracts. Since this state space is infinite, before running the
model-checker we reduce it to a finite-state one, by exploiting the abstrac-
tion in [24]. This abstraction resolves the three sources of infiniteness of
the concrete semantics of BitML: the passing of time, the advertisemen-
t/stipulation of contracts, and the off-contract bitcoin transfers. To obtain
a finite-state system, the abstraction: (i) quotients time in a finite num-
ber of time intervals, (ii) disables the advertisement of new contracts, and
(iii) limits the off-contract operations to those for transferring funds to
contracts and for destroying them. This abstraction is shown in [24] to
enjoy a strict correspondence with the concrete BitML semantics: namely,
each concrete step of the contract under analysis is mimicked by an ab-
stract step, and vice versa.

Our tool implements the abstract BitML semantics in Maude, a model-
checking framework based on rewriting logic [36]. Maude is particularly
convenient for this purpose: we use its equational logic to express struc-
tural equivalence between BitML terms, and its conditional rewriting rules
to encode the abstract semantics of BitML. In this way, we naturally ob-
tain an executable abstract semantics of BitML. Once a BitML contract
in translated in Maude, we use the Maude LTL model-checker [40] to ver-
ify the required security properties, under the strategies specified by the
user. The various forms of liquidity are also translated to correspond-
ing LTL formulae. The computational soundness of the BitML compiler
guarantees that the properties verified by the model checker are preserved
when executing the contract on Bitcoin.
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6.3 Compiling BitML to Bitcoin
Our compiler operates in two phases: first, it translates BitML contracts
into Balzac [81], an abstraction layer over Bitcoin transactions based on
the formal model of [11]; then, it translates Balzac transactions into stan-
dard Bitcoin transactions.

The compiler from BitML to Balzac implements the algorithm in [22],
extending it with transaction fees. In particular, the compiler guaran-
tees that each transaction contains enough fees to be publishable in the
blockchain.

The compiler from Balzac to Bitcoin produces standard Bitcoin trans-
actions [85]: this is crucial since non-standard ones are discarded by
the Bitcoin network. To this purpose, Balzac produces standard out-
put scripts of the form “Pay to Public Key Hash” (P2PKH) or “Pay to
Script Hash” (P2SH). P2PKH is used for encoding signature verification
(e.g., to redeem the deposit obtained by a withdraw ), while P2SH is
used for complex redeeming conditions (e.g., to check that the revealed
secret matches the committed hash). Since Bitcoin requires that all the
values pushed by standard scripts fit within 520 bytes, our compiler checks
that this constraint is satisfied for each generated script. Balzac outputs
serialized raw transactions, which can be directly broadcast to the Bitcoin
network.

6.4 Evaluation
To evaluate our toolchain, we use a benchmark of representative use cases,
including financial contracts [68, 28], auctions, lotteries [5, 62] and gam-
bling games [91]. For each contract in the benchmark, we display in
Table 6.1 the number N of involved participants, the number T of trans-
actions obtained by the compiler, and the verification time V for checking
liquidity. For uniformity, in the performance evaluation we focus on liq-
uidity (other queries to verify the functional correctness of the contracts
in Table 6.1 are on the repository). We carry out our experiments on a
PC equipped with a hexa-core Intel Core i7-7800X CPU @ 3.50GHz, and
64GB of RAM. The participants’ strategies are constrained only as needed
to ensure liquidity: in most cases, we do not put any constraints at all. For
the contracts which involve predicates on secrets (e.g., all the lotteries), in
principle one would need to check liquidity against all the possible choices
of secrets. To make verification feasible, since each contract only checks
a finite set of predicates, we partition the infinite choices of secrets into a
finite set of regions, and sample one choice from each region. In this way,
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Contract N T V
Mutual timed commitment 2 15 83ms
Mutual timed commitment 3 34 103ms
Mutual timed commitment 4 75 454ms
Mutual timed commitment 5 164 13s

Escrow (early fees) 3 12 8s
Escrow (late fees) 3 11 3.4s

Zero Coupon Bond 3 8 86ms
Coupon Bond 3 18 1.3s

Future(C) 3 5 + TC 80ms + VC

Option(C,D) 3 14 + TC + TD 90ms + VC + VD

Lottery (O(N2) collateral) 2 15 427ms
Lottery (0 collateral) 2 8 142ms
Lottery (0 collateral) 4 587 67h
Rock-Paper-Scissors 2 23 781ms

Morra game 2 40 674ms
Shell game 2 23 27s

Auction (2 turns) 2 42 3.3s

Table 6.1: Benchmarks for the BitML toolchain.

the liquidity check is performed a finite number of times, ensuring that
the verifier explores every reachable state of the contract. For instance,
in the 4-players lottery we explore 34 regions, which explains the 67 hours
needed to verify its liquidity. Another feature which significantly affects
the verification time is the fact that we are considering all the possible
strategies of all the participants.

We also evaluate the same set of benchmark contract with the variant
of the analyser that supports recursion. The verification time for all the
benchmarks is in the order of milliseconds on a consumer-grade laptop.
This is due to the fact that the semantics is more abstract (e.g. it does
not consider secrets values) and does not support LTL queries or other
variant of liquidity other than the plain one.

The only work against which we can compare the performance of our
tool is [3], which models Bitcoin contracts in Uppaal, a model-checking
framework based on Timed Automata. The most complex contract mod-
elled in [3] is the mutual timed commitment with 2 participants: this
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requires ∼ 30s to be verified in Uppaal, while our tool verifies the same
property in < 100ms. This speedup is due to the higher abstraction level
of BitML over [3], which operates at the (lower) level of Bitcoin transac-
tions.

One of the main difficulties that we have encountered in developing
contracts is that some complex BitML specifications can not be compiled
to Bitcoin, because Bitcoin has a 520-byte limit on the size of each value
pushed to the evaluation stack [76]. In some cases, we managed to mas-
sage the BitML contract so to make its compilation respect the 520-byte
constraint. For instance, a common pattern that easily violates the 520-
byte constraint is the following:

( choice ( revealif (b) (pred (p0)) (C0))
( revealif (b) (pred (p1)) (C1))
( after T (C2)))

The choice is compiled into a transaction whose redeem script en-
codes the disjunction of three logical conditions, corresponding to the three
branches of the choice . Depending on the predicates p0 and p1 , and
on the number of participants in the contract, this script may violate the
520-byte constraint. A workaround is to rewrite the pattern above into
the following one:

( choice ( revealif (b) (pred (p0)) (C0))
( after T (tau ( choice

( revealif (b) (pred (p1)) (C1))
( after T1 (C2))))))

In this case the compilation includes two transactions, correspond-
ing to the two choice s. The scripts of these transactions encode the
disjunction of two logical conditions, corresponding to the two branches
of the choice s. Using this workaround we have managed to compile
the 4-players lottery into standard transactions, at the price of increasing
the number of transactions (587 for the standard version vs. 138 for the
nonstandard one). Similar techniques (e.g. simplification of predicates)
allowed us to compile all the contracts in Table 6.1 into standard Bitcoin
transactions.

In general, the 520-byte constraint intrinsically limits the expressive-
ness of Bitcoin contracts: for instance, since public keys are 33 bytes long,
a contract which needs to simultaneously verify 15 signatures can not be
implemented using standard transactions.
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6.5 BitML toolchain tutorial
The following Section describes how to exploit the toolchain to design,
compile and verify BitML contracts. We proceed in an incremental fash-
ion: each step introduces a new feature through a small, self-enclosed
use-case. Some lines have been shortened due to space constraints, refer
to [94] for the full examples.

6.5.1 Developing BitML contracts in a nutshell
BitML contracts allow two or more participants to exchange their bitcoins
according to complex pre-agreed rules.

The first step in designing a BitML contract is to declare the involved
participants. For instance, we can declare three participants "A", "B" and
"C" as follows:

( participant "A" "029 c5f6 ...095 f547799a6289fbc90c70209c1cced ")
( participant "B" " 0316589... a876e4f7315fa20a07114d5fb8866553 ")
( participant "C" "03 c7e15 ...928 d986b26fe0dc2533f304c19268a2f ")

(debug -mode)

Each participant is associated to a public key: for instance, "A" has
the public key "029c...cced". The command (debug-mode) is needed
to generate auxiliary keys which are used by the BitML compiler, instead
of declaring them as you are supposed to when executing a contract in a
real life scenario.

Simple payments Assume that "A" simply wants to donate 1B to "B".
To this purpose, "A" must first declare that she owns a transaction output
with 1B. We can define this transaction output as follows:

( define (txA) "tx :0200000000... c6bdb51600@1 ")

In the definition above, "0200000000...c6bdb51600" are the bytes of
the serialized transaction, and the trailing "@1" is the index of the output.

The contract advertised by "A" is the following:

( contract
(pre ( deposit "A" 1 (ref (txA))))
( withdraw "B"))
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The contract precondition (pre (deposit "A"1 (ref (txA)))) de-
clares that "A" agrees to transfer the 1B referenced by the transaction
output txA under the control of the contract. The actual contract is (
withdraw "B"): this just transfers the funds deposited into the contract
to "B".

In the previous contract, the initial deposit has been provided by a
transaction output; more in general, a contract can gather money from
more than one transaction. For instance, assume that another participant
"C" wants to contribute 1B to the donation. The contract precondition
is modified as follows:

( contract
(pre ( deposit "A" 1 (ref (txA)))

( deposit "C" 1 "tx :0200000...3 b6cdef8ac00000000@0 "))
( withdraw "B"))

Procrastinating payments Assume now that "A" wants to donate 1B
to "B", but only after a certain time t. For instance, the 1B could be a
birthday present to be withdrawn only after the birthday date; or the
amount of a rent to the landlord, to be paid only after the 1st of the
month. We represent the time t as a block height. For instance, we set
t to 500000 (note that the block at this height was actually mined on
2017-12-18).

To craft this contract we use the primitive after height contract,
which locks the contract until the block at the given height is appended
to the blockchain. We also reuse the transaction output txA from the
previous example:

( define (t) 500000)

( contract
(pre ( deposit "A" 1 (ref (txA))))
( after (ref (t)) ( withdraw "B")))

This contract ensures that only after the block at height t has been
appended to the blockchain, "B" will be able to redeem 1B from the
contract, by performing the action (withdraw "B").

The following contract allows "A" to recover her deposit if "B" has not
withdrawn within a given deadline t1 > t:

( define (t) 500000)
( define (t1) 510000)

( contract
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(pre ( deposit "A" 1 (ref (txA))))

( choice
( after (ref (t)) ( withdraw "B"))
( after (ref (t1)) ( withdraw "A"))))

The contract allows two (mutually exclusive) behaviours: either "A" or
"B" can withdraw 1B. Before the deadline t no one can withdraw; after t
(but before t1) only "B" can withdraw, while after the t1 both withdraw
actions are enabled, so the first one who performs their withdraw will get
the money.

Authorizing payments Assume that "A" is willing to pay 1B to "
A", but only if an "Oracle" gives his authorization. We can use the
authorization primitive auth Participant Contract as follows:

( contract
(pre ( deposit "A" 1 (ref (txA))))
( auth " Oracle " ( withdraw "B")))

This contract ensures that (withdraw "B") is performed whenever
"Oracle" authorizes it.

We can play with authorizations and summations to construct more
complex contracts. For instance, assume we want to design an escrow
contract, which allows "A" to buy an item from "B", authorizing the
payment only after she gets the item. Further, "B" can authorize a full
refund to "A", in case there is some problem with the item. A näıve
attempt to model this contract is the following:

( define (Naive - escrow )
( choice

( auth "A" ( withdraw "B"))
( auth "B" ( withdraw "A"))))

If both participants are honest, everything goes smoothly: when "A
" receives the item, she authorizes the payment to "B", otherwise "B"
authorizes the refund. The problem with this contract is that, if neither
"A" nor "B" give the authorization, the money in the contract is frozen.
To cope with this issue, we can refine the escrow contract, by introducing
a trusted arbiter "O" which resolves the dispute:
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( define (Oracle - escrow )
( choice

( auth "A" ( withdraw "B")) ; same as
( auth "B" ( withdraw "A")) ; Naive - escrow
( auth "O" ( withdraw "A"))
( auth "O" ( withdraw "B"))))

( contract
(pre ( deposit "A" 1 (ref (txA))))
(ref (Oracle - escrow )))

The last two branches are used if neither "A" nor "B" give their au-
thorizations: in this case, the arbiter chooses whether to authorize "A" or
"B" to redeem the deposit.

Splitting deposits In all the previous examples, the deposit within the
contract is transferred to a single participant. More in general, deposits
can be split in many parts, to be transferred to different participants. For
instance, assume that "A" wants her 1B deposit to be transferred in equal
parts to "B1" and to "B2". We can model this behaviour as follows:

( define (Pay - split )
( split

(0.5 -> ( withdraw "B1"))
(0.5 -> ( withdraw "B2"))))

The split construct splits the contract in two or more parallel subcon-
tracts, each with its own balance. Of course, the choice of their balances
must be less than or equal to the deposit of the whole contract.

We can use split together with the other primitives presented so far to
craft more complex contracts. For instance, assume that "A" wants to pay
0.9B to "B", routing the payment through an intermediary "I" who can
choose whether to authorize it (in this case retaining a 0.1B fee), or not.
Since "A" does not trust "I", she wants to use a contract to guarantee
that: (i) if "I" authorizes the payment then 0.9B are transferred to "B";
(ii) otherwise, "A" does not lose money.

We can model this behaviour as follows:

( contract
(pre ( deposit "A" 1 (ref (txA))))
( choice

( auth "I" ( split (0.1 -> ( withdraw "I"))
(0.9 -> ( withdraw "B"))))

( after (ref (d)) ( withdraw "A"))))

The first branch can only be taken if "I" authorizes the payment: in
this case, "I" gets his fee, and "B" gets his payment. Instead, if "I" denies
his authorization, then "A" can redeem her deposit after block height d.
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Volatile deposits So far, we have seen participants using persistent
deposits, that are assimilated by the contract upon stipulation. Besides
these, participants can also use volatile deposits, which are not assimilated
upon stipulation. For instance:

(pre ( deposit "A" 1 (ref (txA1)))
(vol - deposit "A" x 1 (ref (txA2))))

gives "A" the possibility of contributing 1B during the contract ex-
ecution. However, "A" can choose instead to spend her volatile deposit
outside the contract. The variable x is a handle to the volatile deposit,
which can be used as follows:

( define (Pay ?)
(put (x) ( withdraw "B")))

Since x is not paid upfront, there is no guarantee that x will be avail-
able when the contract demands it, as "A" can spend it for other purposes.

Volatile deposits can be exploited within more complex contracts, to
handle situations where a participant wants to add some funds to the
contract. For instance, assume a scenario where "A1" and "A2" want to
give "B" 2B as a present, paying 1B each. However, "A2" is not sure
a priori she will be able to pay, because she may need her 1B for more
urgent purposes: in this case, "A1" is willing to pay an extra bitcoin. We
can model this scenario as follows: "A1" puts 2B as a persistent deposit,
while "A2" makes available a volatile deposit x of 1B:

( contract
(pre ( deposit "A1" 2 (ref (txA1)))

(vol - deposit "A2" x 1 (ref (txA2))))
( choice

(put (x) ( split (2 -> ( withdraw "B"))
(1 -> ( withdraw "A1"))))

( after 700000 ( withdraw "B"))))

In the first branch, "A2" puts 1B in the contract, and the balance is
split between "B" (who takes 2B, as expected), and "A1" (who takes her
extra deposit back). The second branch is enabled after d, and it deals
with the case where "A2" has not put her deposit by such deadline. In
this case, "B" can redeem 2B, while "A2" loses the extra deposit. Note
that, in both cases, "B" will receive 2B.
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Revealing secrets A useful feature of Bitcoin smart contracts is the
possibility for a participant to choose a secret, and unblock some action
only when the secret is revealed. Further, different actions can be enabled
according to the length of the secret. Secrets must be declared in the
contract precondition, as follows:

(pre ( secret "A" a " f9292914bfd27c426a23465fc122322abbdb63b7 ")

where "A" is the participant who owns the secret, a is its name, and
"f9292914bfd27c426a23465fc122322abbdb63b7" is its hash160 hash.
We never denote the value of the secret itself. A basic contract which
exploits this feature is the following:

( define ( PaySecret )
( revealif (a) (pred (> a 1)) ( withdraw "A")))

This contract asks "A" to commit to a secret of length greater than one,
as stated in the predicate (pred (> a 1)). After revealing a, it allows
"A" to redeem 1 B upon revealing the secret. Until then, the deposit is
frozen.

To reveal a secret without imposing a predicate use (reveal). e.g.:
(reveal (a)(withdraw "A"))

Note that we never refer to the value itself of the secret, rather we use
its length. After compiling to Bitcoin, the actual length of the secret will
be increased by η, where η is a security parameter, large enough to avoid
brute-force preimage attack.

6.5.2 Verifying contracts with the BitML toolchain
Other than compiling contracts to transactions, the BitML toolchain al-
lows to verify them before their execution.

A desirable property of smart contracts is liquidity, which requires
that the contract balance is always eventually transferred to some partici-
pant. In a non-liquid contract, funds can be frozen forever, unavailable to
anyone, hence effectively destroyed. There are many possible flavours of
liquidity, depending e.g. on which participants are assumed to be honest,
and on which are their strategies.

The toolchain can also verify arbitrary security proprieties, expressed
as LTL queries.

Stefano Lande Formal Methods for Secure Bitcoin Smart Contracts



96 A Toolchain for Developing BitML Contracts

Liquidity In the following contract, "A" and "B" contribute 1 B each for
a donation of 2 B to either "C" or "D". We want to check if the contract is
liquid or not, without supplying any strategy, i.e. without knowing which
branch "A" and "B" will authorize.

This flavour of liquidity is called strategy-less. Intuitively, it corre-
sponds to check if the contract is liquid for any possible strategy of any
participants, whether they are honest or not.

To check the liquidity of the following contract, we add (check-liquid
) at its end.

( participant "A" "0339 bd7fade9167e09681 ...2 bde1d57247fbe1 ")
( participant "B" "034 a7192e922118173906 ... da4f85701a5f809 ")
( participant "C" "034 f5ca30056b9dd89132 ... fea9c3467631e6b ")
( participant "D" "037 b60c121050e1fa6e7d ... da1c63f0e2a157e ")

(debug -mode)

( contract
(pre

( deposit "A" 1 "txid :2 e647d8566f00a08d27 ... b2965e35@1 ")
( deposit "A" 1 "txid :625 bc69c467b33e2abj ... bc710168@0 "))

( choice
( auth "A" "B" ( withdraw "C"))
( auth "A" "B" ( withdraw "D")))

(check - liquid ))

During the compilation of the contract, the tool-chain checks if it is
liquid. The result is printed before the transactions in a comment-box.

/* ==========================================================
Model checking result for (check - liquid )

Result : false
counterexample ({[0 | nil | 'xconf U empty | empty ] < ( A, B) :

withdraw C + (A, B) : withdraw D, 100000000 satoshi > 'xconf ,
'C- LockAuthControl } {{A lock withdraw C in 'xconf }[0 | nil | '

xconf U empty | empty ] < Lock ((A, B) : withdraw C) + (
A, B) : withdraw D, 100000000 satoshi >

'xconf ,'Rifl} {{A lock withdraw D in 'xconf }[0 | nil | 'xconf
U empty | empty ] < Lock ((A, B) : withdraw C) + Lock ((A
, B) : withdraw D), 100000000 satoshi > 'xconf ,'
Finalize }, {[0 | nil | 'xconf U empty | empty ] < Lock ((A,

B) : withdraw C) + Lock ((A, B) : withdraw D),
100000000 satoshi > 'xconf , solution })

Model checking time: 143.0 ms
============================================================== */

The output indicates that the contract is not liquid. In fact, In order to
unlock the funds, "A" and "B" must agree on the recipient of the donation,
by giving their authorization on the same branch. This contract would be
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liquid only by assuming the cooperation between "A" and "B": indeed, "A
" alone cannot guarantee that the 2 B will eventually be donated, as "B"
can choose a different recipient, or even refuse to give any authorization.

A possible way to modify the contract to handle this situations by
adding a timeout branch with (after 700000 (split (1 -> (withdraw
"A"))(1 -> (withdraw "B")))). The new branch locks the contract

until the block number 700000 is appended to the blockchain, modelling
a delay. After the corresponding time passes, it unlocks and returns their
deposits to "A" and "B".

( participant "A" "0339 bd7fade9167e09681 ...2 bde1d57247fbe1 ")
( participant "B" "034 a7192e922118173906 ... da4f85701a5f809 ")
( participant "C" "034 f5ca30056b9dd89132 ... fea9c3467631e6b ")
( participant "D" "037 b60c121050e1fa6e7d ... da1c63f0e2a157e ")

(debug -mode)

( contract
(pre

( deposit "A" 1 "txid :2 e647d8566f00a08d27 ... b2965e35@1 ")
( deposit "A" 1 "txid :625 bc69c467b33e2abj ... bc710168@0 "))

( choice
( auth "A" "B" ( withdraw "C"))
( auth "A" "B" ( withdraw "D")))
( after 700000 ( split (1 -> ( withdraw "A")) (1 -> ( withdraw "B"))))

)

(check - liquid ))

Now the contract is liquid, and the toolchain confirms it.

/* ==========================================================
Model checking result for (check - liquid )

Result : true
Model checking time: 322.0 ms
============================================================== */

Liquidity with strategies In the following contract, "A" can reveal
her secret and redeem its deposit. Otherwise, after a certain amount of
time the block number 700000 will be appended to the blockchain, "B"
can redeem "A"’s deposit, after providing his authorization to do so.

( participant "A" "0339 bd7fade9167e09681 ...2 bde1d57247fbe1 ")
( participant "B" "034 a7192e922118173906 ... da4f85701a5f809 ")
( participant "C" "034 f5ca30056b9dd89132 ... fea9c3467631e6b ")
( participant "D" "037 b60c121050e1fa6e7d ... da1c63f0e2a157e ")

(debug -mode)
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( contract
(pre

( deposit "A" 1 "txid :2 e647d8566f00a08d27 ... b2965e35@1 ")
( secret "A" a " f9292914bfd27c426a23465fc122322abbdb63b7 "))

( choice
( reveal (a) ( withdraw "A"))
( auth "B" ( after 700000 ( withdraw "B"))))

(check - liquid ))

Below, we check the strategy-less liquidity, detecting that the contract
is not liquid. This is because if neither "A" reveals her secret nor "B"
gives his authorization, the funds will be stuck forever.

/* ==========================================================
Model checking result for (check - liquid )

Result : false
Secrets : a:1

counterexample ({[0 | 700000 | 'xconf U empty | B, A] < B : after
700000 : withdraw B + put empty reveal a if True . withdraw A,

100000000 satoshi > 'xconf | {A : a # 1},'C- LockAuthRev } {{A
lock - reveal a}[0 | 700000 | 'xconf U empty | B, A] Lock ({A : a

# 1}) | < B : after 700000 : withdraw B + put empty reveal a
if True . withdraw A, 100000000 satoshi > 'xconf ,'Rifl} {{B
lock after 700000 : withdraw B in 'xconf }[0 | 700000 | 'xconf
U empty | B, A] Lock ({A : a # 1}) | < Lock(B : after 700000 :
withdraw B) + put empty reveal a if True . withdraw A, 100000000
satoshi > 'xconf ,'Rifl} {{ delta 700000}[700000 | nil | 'xconf
U empty | B, A] Lock ({A : a # 1}) | < Lock(B : after 700000 :
withdraw B) + put empty reveal a if True . withdraw A,
100000000 satoshi > 'xconf ,' Finalize }, {[700000 | nil | 'xconf

U empty | B, A] Lock ({A : a # 1}) | < Lock(B : after 700000 :
withdraw B) + put empty reveal a if True . withdraw A,

100000000 satoshi > 'xconf , solution })
Model checking time: 104.0 ms
============================================================== */

The BitML toolchain allows us to specify the intended behaviour of a
participant, called strategy. The security propriety is verified with respect
to the specified strategies.

We check if the contract is liquid if the strategy of "A" consists in
revealing her secret, expressed by (strategy "A"(do-reveal a))) as
parameter of (check-liquid Strategy ...).

We also check the liquidity if "A" authorizes the second branch of the
contract, with the strategy (strategy "B"(do-auth (auth "B"(after
700000 (withdraw "B"))))).
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( participant "A" "0339 bd7fade9167e09681 ...2 bde1d57247fbe1 ")
( participant "B" "034 a7192e922118173906 ... da4f85701a5f809 ")
( participant "C" "034 f5ca30056b9dd89132 ... fea9c3467631e6b ")
( participant "D" "037 b60c121050e1fa6e7d ... da1c63f0e2a157e ")

(debug -mode)

( contract
(pre

( deposit "A" 1 "txid :2 e647d8566f00a08d27 ... b2965e35@1 ")
( secret "A" a " f9292914bfd27c426a23465fc122322abbdb63b7 "))

( choice
( reveal (a) ( withdraw "A"))
( auth "B" ( after 700000 ( withdraw "B"))))

(check - liquid
( strategy "A" (do - reveal a)))

(check - liquid
( strategy "B" (do - auth ( auth "B" ( after 700000 ( withdraw "B"))))))

)

For both strategies, the contract is liquid.

/* ==============================================================
Model checking result for (check - liquid ( strategy A (do - reveal a)))

Result : true

/*===============================================================
Model checking result for (check - liquid ( strategy B (do -auth (auth B (

after 700000 ( withdraw B))))))

Result : true
Model checking time: 270.0 ms
================================================================ */

Quantitative liquidity The previous flavours of liquidity require that
no funds remain frozen within the contract. However, in some cases a par-
ticipant could accept the fact that a portion of the funds remain frozen,
especially when these funds would be ideally assigned to other partici-
pants.

In the following contract, "A" and "B" put 1B each. Each of them will
get their own B back if they reveal their secret.

( participant "A" "0339 bd7fade9167e ...5 bbb84211fd12bde1d57247fbe1 ")
( participant "B" "034 a7192e9221181 ...57 fc7f403094da4f85701a5f809 ")

(debug -mode)

( contract
(pre
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( deposit "A" 1 "txid :2 e647d8566f00a08 ...161 c2078963d8deb2965e35@1 "
)

( deposit "B" 1 "txid :0 f795bda36ac661f ...69 f5fb7ccc4c3d767db9f34@1 "
)

( secret "A" a " f9292914bfd27c426a23465fc122322abbdb63b7 ")
( secret "B" b "9804 ebb0fc4a8329981dd33aaff32b6cb579580a "))

( split
(1 -> ( reveal (a) ( withdraw "A")))
(1 -> ( reveal (b) ( withdraw "B"))))

( check "A" has -more -than 1
( strategy "A" (do - reveal a)))))

In this setting, "A" is interested in checking if she will get back her
bitcoin, assuming that she reveals her secret. We check it using (check
"A" has-more-than 1 (strategy "A"(do-reveal a))).

/* ==========================================================
Model checking result for ( check A has -more -than 1 ( strategy A (do -

reveal a)))

Result : true
Model checking time: 134.0 ms
============================================================== */

Custom LTL queries The following contract is a timed commitment,
where "A" wants to choose a secret a, and reveal it before the deadline d;
if "A" does not reveal the secret within d, "B" can redeem the 1 B deposit
as a compensation.

( participant "A" "029 c5f6f5ef0095f547799 ...289 fbc90c70209c1cced ")
( participant "B" "022 c3afb0b654d3c2b0e2f ...2 f86f7647fa7b817af30 ")

(debug -mode)

( define (d) 700000)

( contract
(pre

( deposit "A" 1 " txA@0 ")
( secret "A" a " f9292914bfd27c426a23465fc122322abbdb63b7 "))

( choice
( reveal (a) ( withdraw "A"))
( after (ref (d)) ( withdraw "B")))

(check - query
"[]<> (a revealed => A has -deposit >= 100000000 satoshi )")

(check - query
"[]<> (a revealed \\/ B has -deposit >= 100000000 satoshi )"))
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The toolchain allows us to check custom LTL properties, tailored
specifically for the contract being verified, using (check-query "query"
).

In the timed commitment contract, we want the following two prop-
erties to be satisfied.

• If "A" reveal her secret, she will get back her deposit. We check
this property with (check-query "[]<> (a revealed => A has-
deposit>= 100000000 satoshi)").

• Either "B" gets to know the secret, or he will get the bitcoin as
compensation. We check this property with (check-query "[]<>
(a revealed \\/ B has-deposit>= 100000000 satoshi)")).

Due to the internal representation of numbers in the model checker, all B
values have to be expressed in satoshi when checking custom LTL queries.

The result is true for both queries:

/* ==========================================================
Model checking result for (check - query [] (a revealed => <> A has -

deposit >= 100000000 satoshi ))

Result : true

/*==========================================================
Model checking result for (check - query []<> (a revealed \/ B has -

deposit >= 100000000 satoshi ))

Result : true
Model checking time: 408.0 ms
============================================================== */

The first LTL property has the same semantic as checking the quan-
titative liquidity of 1 B if the strategy of "A" is to reveal her secret,
or (check "A" has-more-than 1 (strategy "A"(do-reveal a))). In-
stead, the second LTL property cannot be expressed as a combination of
liquidity and strategies.

Other that revealed and has-deposit>=, you can express your LTL
properties with has-deposit, and has-deposit<=.
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Chapter 7

On-chain Fungible Tokens
on Bitcoin

One of the main applications of blockchain technologies is the exchange
of custom crypto-assets, called tokens. Token transfers currently involve
∼ 50% of the transactions on the Ethereum blockchain [107], and they
are at the basis of many protocols built on top of that platform [6, 44].
Broadly, tokens are classified as fungible or non-fungible. Fungible tokens
can be split into smaller units: different units of the same token can be
used interchangeably. Further, users can join units of the same fungible
token, and exchange them with other crypto-assets. Instead, non-fungible
tokens cannot be split or joined.

Historically, the first implementations of tokens were developed before
Ethereum, on top of Bitcoin. Some of them (e.g., [105]) used small bitcoin
fractions to represent the token value; some others (e.g., [118, 100, 103])
embedded the token value in other transaction fields [13], to cope with
the fluctuating bitcoin price. All these implementations have a common
drawback: the correctness of the token actions is not guaranteed by the
consensus protocol of the blockchain. In fact, the blockchain is used just
to notarize the actions that manipulate tokens, but not to check that these
actions are actually permitted. Typically, the owners of these tokens must
resort to off-chain mechanisms (e.g., trusted authorities) to have some
guarantees on the correct use of tokens, e.g. that they are not double-
spent, or that distinct tokens are not joined.

By contrast, modern blockchain platforms support on-chain to-
kens, whose correctness is guaranteed by the consensus protocol of the
blockchain. Some platforms (e.g., Algorand [79]) natively support to-
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kens, while some others (e.g., Ethereum) encode them as smart contracts.
Bitcoin, instead, does not support tokens natively, and its limited script
language is not expressive enough to implement them as smart contracts.
Since adding native tokens to Bitcoin appears to be out of reach, given
the resilience of the Bitcoin community to radical changes [102], the only
viable alternative is to devise a small, efficient extension of the script
language which increases the expressiveness of Bitcoin enough to support
tokens.

We implement a token contract as a single, succinct script which ex-
ploits neighbourhood covenants. We define a symbolic model of token
actions, and a computational model, where performing these actions cor-
responds to appending transactions to the Bitcoin blockchain.

7.1 Overview of the approach
In this section we summarize our approach: in particular, we sketch our
implementation of Bitcoin tokens, motivating the use of neighbourhood
covenants to guarantee their security.

Tokens We propose a symbolic model of fungible tokens. Since non-
fungible tokens are the special case of fungible ones where each token is
generated exactly in one unit, hereafter we consider the general case of
fungible tokens. The basic element of our model is the deposit, i.e. a term
of the form:

〈A, v : τ 〉x (v ∈ N)

which represents the fact that a user A owns v units of a token τ , where
τ may denote either user-defined tokens or bitcoins (B). The index x
uniquely identifies the term within a configuration, i.e. a composition of
deposits, e.g.:

〈A, 1 : τ 〉x | 〈A, 2 : τ 〉y | 〈B, 3 : B〉z
We define a few actions to mint and manipulate tokens. First, any user A
can mint v units of a new token, spending a deposit of 0 B. Performing
this action (say, with v = 10) is modelled as a state transition, whose
labels records the performed action:

〈A, 0 : B〉x0

gen−−→ 〈A, 10 : τ 〉x1 (7.1)

where the identifier x1 of the new deposit and the identifier τ of the
minted token are fresh. After performing the action, A owns a deposit of
ten units of the token τ . As said before, one of the peculiar properties of
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fungible tokens is that they can be split. When splitting her deposit in
two smaller deposits, A can choose the owner of one of the new deposits,
e.g.:

〈A, 10 : τ 〉x1

split−−−→ 〈A, 8 : τ 〉x2 | 〈B, 2 : τ 〉x3 (7.2)

A user can transfer the ownership of any of her deposits to another
user. For instance, A can give her deposit x2 to B:

〈A, 8 : τ 〉x2

give−−−→ 〈B, 8 : τ 〉x4 (7.3)

After that, B owns a total of 10 units of τ in two separate deposits, one
with 8 units, and the other one with 2 units. This reflects the UTXO na-
ture of Bitcoin: by contrast, in account-based blockchains like Ethereum,
B would have a single account storing 10 units of τ . Now, B can join his
two deposits, obtaining a single deposit with 10 units of τ . When per-
forming the join action, B can also choose the owner of the new deposit,
in this case transferring it back to A:

〈B, 8 : τ 〉x4 | 〈B, 2 : τ 〉x3

join−−→ 〈A, 10 : τ 〉x5 (7.4)

A crucial property of the join operation is that only deposits of the
same token can be joined together. Thus, two deposits of τ and τ ′ with
τ 6= τ ′ cannot be joined:

〈B, 8 : τ 〉x4 | 〈A, 2 : τ ′〉x6 6
join−−→

In this configuration, if both A and B agree, they can exchange the
ownership of their tokens:

〈B, 8 : τ 〉x4 | 〈A, 2 : τ ′〉x6

xchg−−−→ 〈A, 8 : τ 〉x7 | 〈B, 2 : τ ′〉x8

The xchg operation also supports the exchange between bitcoins and
other tokens, representing the trade of tokens. For instance, A can buy 2
units of τ ′ from B for 1B:

〈B, 2 : τ ′〉x8 | 〈A, 1 : B〉x9

xchg−−−→ 〈A, 2 : τ ′〉x10 | 〈B, 1 : B〉x11

Bitcoin Although Bitcoin does not support user-defined tokens, it im-
plements all the operations discussed above on its native crypto-currency.
Intuitively, each deposit corresponds to a transaction output, and per-
forming actions corresponds to appending a suitable transaction that re-
deems it.
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For instance, minting bitcoins is obtained through coinbase transac-
tions, which are used in Bitcoin to pay rewards to miners. We represent
a coinbase transaction as follows:

T7.1

in(1): ⊥
wit(1): ⊥
out(1): {scr : versig(pkA , rtx.wit), val : 10B}

In general, the in field points to a previous transaction on the
blockchain, that the current one is trying to spend. Here, the “undefined”
value ⊥ characterizes T7.1 as a coinbase, since it mints bitcoins without
spending any transaction. The out field is a record, where scr is a script,
and val is the amount of bitcoins that will be redeemed by a subsequent
transaction which points to T7.1 and satisfies its script. Here, the script
versig(pkA , rtx.wit) verifies a signature on the redeeming transaction (rtx,
excluding its wit field) against A’s public key pkA . This signature is re-
trieved from the wit field of rtx. Since A is the only user who can redeem
T7.1, we can say that T7.1 is the computational counterpart of the deposit
〈A, 10 : B〉x1 .

To perform the split action (7.2) on τ = B, we can spend T7.1 with a
transaction T7.2 with two outputs:

T7.2

in(1): (T7.1, 1)
wit(1): sigskA

(T1)
out(1): {scr : versig(pkA , rtx.wit), val : 8B}
out(2): {scr : versig(pkB , rtx.wit), val : 2B}

The first output, that we denote by (T7.2, 1), corresponds to the de-
posit 〈A, 8 : B〉x2 in (7.2). Instead, the output (T7.2, 2) corresponds to
〈B, 2 : B〉x3 . These outputs can be spent independently. For instance,
performing the give action in (7.3) corresponds to appending a transac-
tion which spends (T7.2, 1):

T7.3

in(1): (T7.2, 1)
wit(1): sigskA

(T7.3)
out(1): {scr : versig(pkB , rtx.wit), val : 8B}

At this point, we have two unspent outputs on the blockchain: (T7.2, 2)
and (T7.3, 1). We can perform the join action in (7.4) by spending both of
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them simultaneously with the following transaction, which has two inputs:

T7.4

in(1): (T7.2, 2) in(2): (T7.3, 1)
wit(1): sigskB

(T7.4) wit(2): sigskB
(T7.4)

out: {scr : versig(pkB , rtx.wit), val : 10B}

Implementing Bitcoin tokens with covenants Although the Bit-
coin script language is a bit more flexible than shown above, it does not
allow to implement on-chain tokens. One of the first techniques to embed
on-chain tokens in an extended version of Bitcoin was described in [63].
The technique relies on covenants, an extension of Bitcoin scripts which al-
lows transactions to constrain the scripts of the redeeming ones. Roughly,
a transaction output containing the script:

e and verrec(rtxo(n))

where e is an arbitrary script, can only be redeemed by a transaction
which makes e evaluate to true, and whose script in the n-th output is
syntactically equal to e and verrec(rtxo(n)). Using covenants, we can mint
a token by appending the transaction T below, where the extra field arg
is syntactic sugar for a sequence of values accessible by the script:

T
· · ·
out(1): {arg : pkA ,

scr : versig(ctxo.arg, rtx.wit) and // verify signature
rtxo(1).val = 1 and // preserve value
verrec(rtxo(1)), // preserve script

val : 1B}

The arg field identifies A as the owner of the token: to transfer the
ownership to B, A must spend T with a transaction T′, setting its arg
to B’s public key. For this to be possible, T′ must satisfy the conditions
specified in T’s script: (i) the wit field must contain the signature of the
current owner; (ii) the output at index 1 must have 1B value, to preserve
the value of the token; (iii) the script at index 1 in T′ must be equal
to that in T. Once T′ is on the blockchain, B can transfer the token to
another user, by appending a transaction which redeems T′.

Note that the transaction T above actually mints a non-fungible token,
which can be transferred from one user to another, but whose value cannot
be split (further, the token has a subtle flaw related to join actions: we will
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say more on this). The first step to turn the token into a fungible one is to
support the split action. We can achieve this by adding a second element
to the arg sequence, to represent the number of token units deposited in
the transaction output. Using the notation w.i to access the i-th element
of a sequence w (for 1 ≤ i ≤ |w|), we can implement a splittable token as
follows:

Tsplit
· · ·
out(1): {arg : pkA v,

scr : versig(ctxo.arg.1, rtx.wit) and
rtxo(1).arg.2 + rtxo(2).arg.2 = ctxo.arg.2 and
verrec(rtxo(1)) and verrec(rtxo(2)) and
outlen(rtx) = 2

val : · · · }

The last two lines of the script ensure that any transaction which
redeems Tsplit has exactly two outputs, each one with the same script
of Tsplit . The second line ensures that the split preserves the number of
token units (here, val is immaterial).

Now, let esplit be the script used in Tsplit . To extend the token with
the join action, first we need to add a third element to the arg sequence,
to encode the action performed by a transaction (say, G for gen, S for
split, and J for join). The extended script could have the following form:

e , if rtxo(1).arg.3 = S then esplit else ejoin

where ejoin implements the join functionality, i.e.: (i) verify the signature
on the redeeming transaction; (ii) check that the redeeming transaction
has exactly two inputs and one output; (iii) ensure that the token units
are preserved; (iv) ensure that the joined transactions represent units of
the same token.

For instance, consider the transactions in Figure 7.1, where T4 and
T3 represent, respectively, the deposits 〈B, 8 : τ 〉x4 and 〈B, 2 : τ 〉x3 . To
perform the join action in (7.4), we must spend T4 and T3 with the
transaction T5: this requires to satisfy the script e in T4 and T3. For
condition (iii), the script must ensure that the 10 token units redeemed by
T5 are the sum of the 8 units in T4 and the 2 units in T3. For condition
(iv), the script in T4 should check that it is the same as that in T3,
and viceversa. Hence, to implement conditions (iii)-(iv), the script in a
transaction output must be able to access the fields in its sibling, i.e. the
transaction output which is redeemed together (e.g., (T3, 1) is the sibling
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T4

· · ·
out(1):{arg :pkB 8S, scr : e, · · · }
out(2): · · ·

T3

· · ·
out(1):{arg : pkB 2S, scr : e, · · · }
out(2): · · ·

T5

in(1): (T4, 1) in(2): (T3, 1)
out(1): {arg : pkA 10 J, scr : e, val : · · · }

Figure 7.1: A transaction T5 attempting to join T4 and T3.

of (T4, 1) when appending T5). However, neither Bitcoin nor its extensions
with covenants [18, 63, 66, 70] allow scripts to access the siblings.

An insecure implementation of join To implement the join action,
we start by extending Bitcoin scripts with an operator to access the sibling
transaction outputs:

stxo(n) , output redeemed by the n-th input of rtx

Using this new operator, we can encode the conditions (iii) and (iv) in
ejoin as follows:

rtxo(1).arg.2 = stxo(1).arg.2 + stxo(2).arg.2 (iii)
verrec(stxo(1)) and verrec(stxo(2)) (iv)

Although this implementation of ejoin correctly encodes the condi-
tions, it introduces a security vulnerability: an adversary can join two
deposits of different tokens. The attack is exemplified in Figure 7.2. The
transactions TA and TM mint 10 units of different tokens, and transaction
T3 joins them into a single deposit of the same token. Ideally, to counter
this attack, ejoin should check not only the sibling, but also its ancestors
until the minting transaction, and verify that it corresponds to the mint-
ing ancestor of the current transaction output. Although this would be
possible by adding script operators that can go up the transaction graph
at an arbitrary depth, this would be highly inefficient from the point of
view of miners, who should record the whole transaction graph, instead
of just the set of unspent transactions (UTXO).

A secure implementation with neighbourhood covenants To ad-
dress this issue, we use an operator which can go up the transaction graph
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TA
· · ·
out(1): {arg :pkA 10G,

scr : e, val : · · · }

TM
· · ·
out(1): {arg :pkM 10G,

scr : e, val : · · · }

T1

in(1): (TA , 1)
out(1): {arg :pkA 8S,

scr : e, val : · · · }
out(2): · · ·

T2

in(1): (TM , 1)
out(1): {arg :pkA 7S,

scr : e, val : · · · }
out(2): · · ·

T3

in(1): (T1, 1) in(2): (T2, 1)
out(1): {arg :pkA 15 J, scr : e, val : · · · }

Figure 7.2: A join attack merging two different tokens.

only one level, introduced by neighborhood covenants in Chapter 4. By
exploiting this new covenant, we can thwart the join attack of Figure 7.2,
and eventually obtain a secure and efficient implementation of fungible
tokens. We now sketch the script eTOK which implements tokens. First,
we add a fourth element to the arg sequence, to record in each transac-
tion output the identifier of the token deposited in that output. As an
identifier, we use the hash of the parent of the minting transaction, which
we access through the script txid(ptxo(1)). When we evaluate the script
contained in the minting transaction (e.g., TA and TM in Figure 7.2), we
require that its arg field actually contains the token identifier:

egen , · · · and ctxo.arg.4 = txid(ptxo(1))

Then, in the sub-scripts corresponding to all other token actions, we check
that the redeeming transaction preserves the token identifier. E.g., in the
join sub-script, besides checking conditions (iii) and (iv) as shown before,
we add the condition:

ejoin , · · · and ctxo.arg.4 = rtxo(1).arg.4

In Figure 7.3 we show how this resolves the attack of Figure 7.2. In
order to append the malicious join transaction T3, we must satisfy the
script eTOK in both T1 and T2. These scripts check that the tokid in the
redeeming transaction T3 is equal to the identifiers of the two branches,
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TA
in(1): (T′A , 1)
out(1): {arg :pkA 10GH(T′A , 1),

scr : eTOK , val : · · · }

TM
in(1): (T′M , 1)
out(1): {arg :pkM 10GH(T′M , 1),

scr : eTOK , val : · · · }

T1

in(1): (TA , 1)
out(1): {arg : pkA 8S H(T′A , 1),

scr : eTOK , val : · · · }
out(2): · · ·

T2

in(1): (TM , 1)
out(1): {arg : pkA 7S H(T′M , 1),

scr : eTOK , val : · · · }
out(2): · · ·

T3

in(1): (T1, 1) in(2): (T2, 1)
out(1): {arg :pkA 15 J tokid, scr : eTOK , val : · · · }

Figure 7.3: Thwarting the join attack.

H(T′A , 1) and H(T′M , 1): by collision resistance of the hash function, this
is not possible.

The discussion above shows how to counter an attack which attempts
to join different tokens. However, the adversary could devise more inge-
nious attacks, e.g. forging units of an existing token. For instance, if TM
in Figure 7.3 were storing B, its owner could spend it to create a transac-
tion T2 with arbitrary scripts and arguments. In particular, T2 could use
eTOK and any token identifier in arg.4, e.g., H(T′A , 1), effectively forging
new units of a pre-existing token. Our full eTOK script exploits neigh-
bourhood covenants to prevent these kinds of attacks as well.

7.2 A symbolic model of tokens
Let A,B, . . . range over users, and let τ , τ ′ , . . . range over tokens, en-
compassing both user-defined ones and bitcoins (B). A term 〈A, v : τ 〉x
represents a deposit of v ∈ N units of the token τ owned by A (the index
x is an unique identifier of the deposit). A term A Bx α represents A’s
authorization to perform the action α on the deposit x. The possible
token actions are the following:

• gen(x, v) represents the act of spending a bitcoin deposit x to mint
v units of a new token. The owner of these units is the user who
owned the deposit x.
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• burn(x, y) represents the act of destroying a sequence of deposits x,
moving them to an unspendable deposit y.

• split(x, v,B) represents the act of splitting a deposit x (say, con-
taining v + v′ units of a token τ ) in two deposits of τ . The first
one of these deposits is owned by the same owner of x, and contains
v token units. The second one if owned by B, and contains the
remaining v′ units.

• join(x, y,C) represents the joining of two deposits x and y of the
same token, into a new deposit, owned by C.

• xchg(x, y) represents the act of atomically exchanging the owners of
the two deposits x and y (not both of bitcoins). In particular, when
one of the deposits stores B, this action represents buying/selling
tokens for bitcoins.

• give(x,B) represents a donation of the deposit x to B.

Users follow a common pattern to perform token actions: (i) first,
the involved users grant their authorization on the action; (ii) once all
the needed authorizations have been granted, the action can actually be
performed.

A configuration Γ is a compositions of deposits and authorizations. We
assume that configurations form a commutative monoid under the com-
position operator |, and we use 0 to denote the empty configuration. We
require that if 〈A, v : τ 〉x and 〈B, v′ : τ ′〉x′ both occur in Γ, then x 6= x′.
We define a transition semantics between configurations in Figure 7.4.
Transitions are decorated with labels, which describe the performed ac-
tions.

Rule [Gen] consumes a bitcoin deposit x owned by A to generate v units
of a new token τ , which are stored in a fresh deposit y. Note that A’s
authorization is required to perform the action. For simplicity, we assume
that minting tokens has no cost: it would be straightforward to adapt the
rule to require a minting fee. Rule [Burn] removes from the configuration
a single token deposit (when n = 1 and τ1 6= B), or atomically removes a
sequence of bitcoin deposits (when τ i = B for all i). Rule [Split] divides a
deposit x in two fresh deposits y and z, preserving the number of token
units. Rule [Join] allows A and B to merge two deposits of a token τ ,
preserving the amount of token units, and transferring the new deposit
to C. Rule [Xchg] allows A and B to swap two deposits, containing either
user-defined tokens or bitcoins. Finally, rule [Give] allows A to donate one
of her deposits to another user.

The transition relation −→ is non-deterministic, because of the fresh
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Γ = A Bx gen(x, v) | Γ′ v > 0 y, τ fresh

〈A, 0 : B〉x | Γ
gen(x,v)−−−−−→ 〈A, v : τ 〉y | Γ′

[Gen]

Γ =
(
‖ i∈1..n Ai Bxi burn(x1 · · ·xn, y)

)
| Γ′ n = 1 ∨ (n ≥ 1 ∧ ∀i : τ i = B)(

‖ i∈1..n〈Ai, vi : τ i〉xi

)
| Γ burn(x1···xn,y)−−−−−−−−−−→ Γ′

[Burn]

Γ = A Bx split(x, v,B) | Γ′ v, v′ ≥ 0 y, y′ fresh

〈A, (v + v′) : τ 〉x | Γ
split(x,v,B)−−−−−−−→ 〈A, v : τ 〉y | 〈B, v′ : τ 〉y′ | Γ′

[Split]

Γ = A Bx join(x, y,C) | B By join(x, y,C) | Γ′ z fresh

〈A, v : τ 〉x | 〈B, v′ : τ 〉y | Γ
join(x,y,C)−−−−−−−→ 〈C, (v + v′) : τ 〉z | Γ′

[Join]

Γ = A Bx xchg(x, y) | B By xchg(x, y) | Γ′ τ 6= B x′, y′ fresh

〈A, v : τ 〉x | 〈B, v′ : τ ′〉y | Γ
xchg(x,y)−−−−−−→ 〈A, v′ : τ ′〉x′ | 〈B, v : τ 〉y′ | Γ′

[Xchg]

Γ = A Bx give(x,B) | Γ′ y fresh

〈A, v : τ 〉x | Γ
give(x,B)−−−−−−→ 〈B, v : τ 〉y | Γ′

[Give]

Figure 7.4: Semantics of token actions.

names generated for deposits and tokens: however, given a transition
Γ α−→ Γ′ the label α is uniquely determined from Γ and Γ′. A symbolic
run S is a (possibly infinite) sequence Γ0Γ1 · · · , where Γ0 contains only
B deposits, and for all i ≥ 0 there exists some (unique) αi such that
Γi

αi−→ Γi+1. For all i ≥ 0, we denote with Si the i-th element of the run,
when this element exists. If S is finite, we denote its length as |S|, and
we write ΓS for its last configuration, i.e. S|S|−1.

Definition 7.1 (Token balance). We define the balance of a token τ 6= B
in a configuration Γ inductively as follows:

balτ (0) = 0 balτ (Γ | Γ′) = balτ (Γ) + balτ (Γ′)
balτ (〈A, v : τ 〉x) = v balτ (〈A, v : τ ′〉x) = 0 (τ ′ 6= τ )

The following theorem establishes a basic preservation property: the
balance of a token after a run is equal to the minted value minus the burnt
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value, defined as:

mintedτ (S) = v if ∃i : Si
gen(x,v)−−−−−→ Si+1, and

τ occurs in Si+1 but not in Si

burntτ (S) =
∑{

v

∣∣∣∣∣∃i : Si
burn(x,y)−−−−−−→ Si+1, and

Si = Γ | 〈A, v : τ 〉x

}

Lemma 7.2.1. Let S be a finite symbolic run. For all τ 6= B:

balτ (S) = mintedτ (S)− burntτ (S)

Proof. By induction on S, and by case analysis on each step. Inspecting
each symbolic semantics rule, we can see that each step preserves the
amount of token units, except for minting ([Gen]) and burning ([Burn]),
which are explicitly taken into account by the equation.

7.3 Implementing tokens in Bitcoin
In this section we show how to implement token actions in Bitcoin. To this
purpose, we define a computational model, which describes the interactions
of users who exchange messages and append transactions to the Bitcoin
blockchain. A computational run C is a sequence of bitstrings γ, each of
which encodes one of the following actions: (i) A → ∗ : m, denoting the
broadcast of a bitstring m; (ii) T, denoting the appending of a transaction
T to the blockchain. A computational run always starts from a coinbase
transaction T0. By extracting the transactions from a run C, we obtain a
blockchain BC .

We simulate each symbolic token action in Figure 7.4 by appending a
suitable transaction to the blockchain. We use the arg part of transaction
outputs to record the token data:

1. op is the action implemented by the transaction: 0 = gen, 1 = burn,
2 = split, 3 = join, 4 = xchg, 5 = give;

2. owner is the (public key of the) user who owns of the token units
controlled by the tx output;

3. tkval is the number of units controlled by the tx output;

4. tkid is the unique token identifier.

Symbolic authorization steps correspond to computational broadcasts of
signatures.
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We implement the token actions as a single script eTOK , which uses
a switch on the op value to jump to the first instruction of the requested
action. Since the script is quite complex, we present independently the
parts corresponding to each action, postponing the complete script to Ap-
pendix 7.4. All the transactions implementing token actions use exactly
the same script, which we preserve throughout executions by using recur-
sive covenants. To improve readability, we refer to the elements of the arg
sequence by name rather than by index, e.g. we write o.op rather than
o.arg.1.

Gen We implement the gen action by the following script:
1 if not verrec ( ptxo (1)) // ctxo is a gen
2 then ctxo . tkid = txid ( ptxo (1)) // token id
3 and ptxo (1).val = 0 // spent txo has 0 BTC
4 and outlen ( ctxo ) = 1 // gen has 1 out
5 and ctxo . tkval > 0 // positive token val
6 else ... // the other branches must preserve token id

Recall that gen produces a symbolic step of the form:

〈A, 0 : B〉x
gen(x,v)−−−−−→ 〈A, v : τ 〉y (v > 0)

To translate this symbolic action into a computational one, we must spend
a transaction output corresponding to 〈A, 0 : B〉x , and produce a fresh
output corresponding to 〈A, v : τ 〉y . Assuming that the deposit x corre-
sponds to an unspent transaction output (T′, 1) on the blockchain, this
requires to append a transaction T redeeming (T′, 1), and ensuring that:

1. the parent transaction output (T′, 1) is not a token deposit, but just
a plain B deposit (line 1);

2. tkid is the identifier of the parent tx output (line 2). This corre-
sponds to identifying the fresh name τ with the deposit name x of
the redeemed B deposit;

3. 0B are redeemed from the parent transaction (line 3);

4. T has exactly one output (line 4);

5. tkval is positive (line 5), corresponding to the constraint v > 0 in
the symbolic semantics.

Notice that the first time the script is evaluated is when redeeming T
(not when appending it). At that time, ctxo will evaluate to (T, 1), and
ptxo(1) to (T′, 1). The script ensures that, when T is redeemed, its tkid
will contain a unique identifier of the token. Crucially, the scripts which
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implement the other token actions will preserve this identifier in the tkid
parameter. This identifier is essential to guarantee the correctness of the
join and xchg actions.

Burn We implement the burn action by the script:
1 versig ( ctxo .owner ,rtx.wit) and // check owner
2 verscr (false , rtxo (1)) and // make rtx unspendable
3 inlen ( rtxo (1)) = 1 and // rtx has 1 in
4 outlen ( rtxo (1)) = 1 // rtx has 1 out

Recall that burn produces a symbolic step:(
‖ i∈1..n〈Ai, vi : τ i〉xi

) burn(x1···xn,y)−−−−−−−−−−→ 0

There are two cases, according to whether we are burning a single token
deposit, or one or more B deposits. In the first case, assuming that the
computational counterpart of x1 is the output (T′, 1), the corresponding
computational step is to append a transaction T redeeming (T′, 1). The
witness of T must carry a signature of the owner A, and its output script
is false, making it unspendable. In the second case, it suffices to append
a transaction T which redeems all the transaction outputs corresponding
to x1, . . . , xn, and has a false script.

Split We implement the split action by the script:
1 versig ( ctxo .owner ,rtx.wit) // check owner
2 and verrec ( rtxo (1)) // covenants on rtx
3 and verrec ( rtxo (2))
4 and inlen ( rtxo (1)) = 1 // rtx has 1 in
5 and outlen ( rtxo (1)) = 2 // rtx has 2 outs
6 and rtxo (1). tkval >= 0 // positive token value
7 and rtxo (2). tkval >= 0
8 and rtxo (1). owner = ctxo . owner // preserve owner
9 and rtxo (1). tkid = ctxo . tkid // preserve tkid

10 and rtxo (2). tkid = ctxo . tkid
11 and rtxo (1). tkval + rtxo (2). tkval = ctxo . tkval

Recall that split produces a symbolic step of the form:

〈A, (v + v′) : τ 〉x
split(x,v,B)−−−−−−−→ 〈A, v : τ 〉y | 〈B, v′ : τ 〉z

Assuming that x corresponds to an unspent transaction output (T′, 1),
performing this step in Bitcoin requires to append a transaction T redeem-
ing (T′, 1), and ensuring that:

1. the witness of T carries a signature of the owner (line 1);

2. T has only one input and two outputs, both containing the same
script of (T′, 1) (line 2-5);
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3. the tkval of T’outputs rtxo(1) and rtxo(2) are ≥ 0 (line 6-7), corre-
sponding to the precondition v, v′ ≥ 0 in [Split];

4. tkid of T’s outputs is the same of (T′, 1) (line 9-10);

5. the sum of token values tkval of the outputs of T′ is equal to the
token value of (T′, 1) (line-11).

Join We implement the join action by the script:
1 inlen ( rtxo (1)) = 2 // rtx has 2 ins
2 and outlen ( rtxo (1)) = 1 // rtx has 1 out
3 and verrec ( rtxo (1)) // coventant on rtx
4 and verrec ( stxo (2)) // covenants on both inputs
5 and verrec ( stxo (1))
6 and ctxo . tkid = rtxo (1). tkid // preserve token id
7 and versig ( ctxo .owner , rtx.wit) // check sig of owner
8 and rtxo (1). tkval = stxo (1). tkval + stxo (2). tkval

Recall that join produces a symbolic step of the form:

〈A, v : τ 〉x | 〈B, v′ : τ 〉y
join(x,y,C)−−−−−−−→ 〈C, (v + v′) : τ 〉z

Assume that x and y correspond to the unspent transaction outputs
(T′, 1) and (T′′, 1). To perform the corresponding computational step we
append a transaction T redeeming (T′, 1) and (T′′, 1), and ensuring that,
for both inputs:

1. T has two inputs and one output, containing the same script of
(T′, 1) and (T′′, 1) (line 1-5);

2. the token identifier tkid of the output of T′ (rtxo(1)) is the same of
(T′, 1) (line 6);

3. the witness of T carries a signature of the owner (line 7);

4. the sum of token values tkval of both inputs is equal to the token
value of (T, 1) (line 8).

Note that the script in (T′, 1) ensures that the one in (T′′, 1) is the
same, and vice-versa. In this way, we prevent joining tokens with bitcoins.
To also prevent joining tokens of different type, the script checks that the
tkid of the current transaction is the same as the one of the first output of
the redeeming transaction. This is done by both inputs. In other words,
stxo(1).tkid = rtxo(1).tkid and stxo(2).tkid = rtxo(1).tkid, implying that
stxo(1).tkid = stxo(2).tkid.

Exchange We implement the xchg action by the script:
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1 inlen ( rtxo (1)) = 2 // rtx has 2 ins
2 and outlen ( rtxo (1)) = 2 // rtx has 2 outs
3 and verrec ( stxo (1)) // covenant on input 1
4 and verrec ( rtxo (1)) // covenant on rtx (1)
5 and versig ( ctxo .owner , rtx.wit) // check owner
6 and rtxo (1). owner = stxo (2). owner // exchange owner
7 and rtxo (2). owner = stxo (1). owner
8 and rtxo (1). tkval = stxo (1). tkval // preserve value
9 and rtxo (1). tkid = stxo (1). tkid // preserve tkid

10 if verrec ( stxo (2)) then // exchange token / token
11 verrec ( rtxo (2)) // covenant on rtx (2)
12 and rtxo (2). tkval = stxo (2). tkval // preserve tkval
13 and rtxo (2). tkid = stxo (2). tkid // preserve tkid
14 else // exchange token /BTC
15 verscr ( versig ( ctxo .owner , rtx.wit), rtxo (2))
16 and rtxo (2).val = stxo (2).val // preserve BTC

Recall that the symbolic xchg step has the form:

〈A, v : τ 〉x | 〈B, v′ : τ ′〉y
xchg(x,y)−−−−−−→ 〈A, v′ : τ ′〉x′ | 〈B, v : τ 〉y′

where τ must be a token, while τ ′ is either a B or a token.
Assume that x and y correspond to the unspent transaction outputs

(T′, 1) and (T′′, 1). To perform the corresponding computational step we
append a transaction T redeeming (T′, 1) and (T′′, 1), and ensuring that,
for both inputs:

1. T has two inputs and two output (lines 1-2);

2. the first input and the first output of T must contain the same script
of (T′, 1) and (T′′, 1) (lines 3-4);

3. the witness of T carries a signature of the owner (line 5);

4. the owner in the first output of T (rtxo(1)) must be equal to the
owner in the second input (T′′, 1) (line 6);

5. dually, the owner in the second output of T (rtxo(2)) must be equal
to the owner in the first input (T′, 1) (line 7);

6. the token value and identifier of the first output of T (rtxo(1)) must
be equal to those of (T′, 1) (line 8-9).

Furthermore, if verrec(stxo(2)) is true, i.e. we are exchanging a token with
a token. In this case, we require that:

1. the second output of T must contain the same script of (T′, 1) and
(T′′, 1) (line 11);

2. the token value and identifier of the second output of T (rtxo(2))
must be equal to those of (T′′, 1) (line 12-13);
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When exchanging a token with a B deposit, we require:

1. the script of the second output of T (rtxo(2)) to be
versig(ctxo.owner, rtx.wit) (line 15);

2. the value of the second output of T to be equal to the value of (T′′, 1)
(line 16).

Give We implement the give action by the script:
1 inlen ( rtxo (1)) = 1 // rtx has 1 in
2 and outlen ( rtxo (1)) = 1 // rtx has 1 out
3 and versig ( ctxo .owner , rtx.wit) // check owner
4 and verrec ( rtxo (1)) // covenant on rtx (1)
5 and rtxo (1). tkid = ctxo . tkid // preserve tkid
6 and rtxo (1). tkval = ctxo . tkval // preserve value

Recall that give produces a symbolic step of the form:

〈A, v : τ 〉x
give(x,B)−−−−−−→ 〈B, v : τ 〉y

Assuming that x corresponds to an unspent transaction output (T′, 1),
performing this step in Bitcoin requires to append a transaction T re-
deeming (T′, 1), and ensuring that:

1. T has only one input and one output (lines 1-2);

2. the witness of T carries a signature of the owner (line 3);

3. the output of T (rtxo(1)) contains the same script of (T′, 1) (line 4);

4. the token value and identifier of the first output of T (rtxo(1)) is the
same of those of (T′, 1) (lines 5-6).

Efficiency of the implementation To estimate the efficiency of the
implementation, we consider the number of cryptographic operations, as
their execution cost is an order of magnitude greater than the other oper-
ations. In particular, performing verrec and verscr requires to compute the
hash of a script (once this is done, the cost of comparing two hashes is neg-
ligible). This cost can be reduced by incentivising nodes to cache scripts.
The most expensive token action is xchg, which, having two inputs, needs
to verify 2 signatures and execute at most 10 covenants operations, which
overall require to compute at most 6 script hashes. If nodes cache scripts,
the cost of the action is not dissimilar to the one required to append a
standard transaction with two inputs.

Note that, even though eTOK is a non-standard script, it could be
used in a standard P2SH transaction, as in [81], if it did not exceed the
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520-bytes limit. Taproot [121] would mitigate this issue: for scripts with
multiple disjoint branches, Taproot allows the witness of the redeeming
transaction to reveal just the needed branch. Therefore, the 520-bytes
limit would apply to branches instead of the whole script.
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Conclusions

In this thesis we defined new formal models to improve the security of
Bitcoin smart contracts, and developed the BitML toolchain.

In particular, we presented (i) a toolchain for developing BitML con-
tracts (ii) a formal model of Bitcoin which is the foundation for (iii) a new
process algebra for defining Bitcoin smart contracts (iv) a new extension
to Bitcoin which extends its expressiveness as a smart contract platform,
which has been exploited to implement (v) fungible tokens on Bitcoin,
complete with a symbolic model.

Main results and future works

A formal model of Bitcoin transactions
We have proposed a formal model for Bitcoin transactions. Our model
abstractly describes their essential aspects, at the same time enabling
formal reasoning, and providing a formal specification to some of Bitcoin’s
less documented features.

An alternative model of transactions in blockchain systems has been
proposed in [99]. Roughly, blockchains are represented as directed acyclic
graphs, where edges denote transfers of assets. This model is quite ab-
stract, so that it can be instantiated to different blockchains (e.g., Bitcoin,
Ethereum, and Hyperledger Fabric). Differently from ours, the model
in [99] does not capture some peculiar features of Bitcoin, like e.g. trans-
action signatures and signature modifiers, output scripts, multi-signature
verification, and Segregated Witnesses.

Our work provides the theoretical foundations to model Bitcoin smart
contracts, reducing the gap between cryptography and programming lan-
guages communities. A formal description of smart contracts enables their
automated verification and analysis, which are of crucial importance in
a context where design flaws may result in loss of money. For instance,
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our model has been exploited in [9] to present a comprehensive survey of
Bitcoin smart contracts.

Differences between our model and Bitcoin There are some differ-
ences between our model and the actual Bitcoin, which we outline below.

In Definition 3.3, we stipulate that the in field of a transaction points to
another transaction. Instead, in Bitcoin the in field contains the identifier
of the input transaction. More specifically, this identifier is defined as
H(µ(T)), where: (i) µ = {wit 7→ ⊥} since the activation of the SegWit
feature; (ii) µ = ⊥, beforehand. Consequently, the condition (T, i, t) v

 
(T′, j, t′) item (a) of Definition 3.11 would be translated in Bitcoin as:
T′.in(j) = (H(µ(T′′)), i), where H(µ(T′′)) = H(µ(T)). Intuitively, the in
field specifies the transaction (and the output index) to redeem. Since the
activation of SegWit, the computation of the transaction identifier does
not take in account the wit field.

The scripting language in Definition 3.1 is a bit more expressive than
Bitcoin’s. For instance, the script λx.H(x) < k is admissible in our model,
while it is not in Bitcoin. Indeed, the Bitcoin scripting language only
admits the comparison (via the OP LESSTHANOREQUAL opcode) on 32-bit
integers, while two arbitrary values can only be tested for equality (via the
OP EQUAL opcode). Similar restrictions apply to arithmetic operations.
It is straightforward to adapt our model to apply the same restrictions on
Bitcoin scripts. Indeed, our compiler already implements a simple type
system which rules away scripts not admissible in Bitcoin.

Definition 3.12 models blockchains as sequences of transactions, while
in Bitcoin they are sequences of blocks of transactions. In this way, we are
abstracting both from the cryptographic puzzle that miners have to solve
to append new blocks to the blockchain, and from the coinbase transac-
tions, which (like our initial transaction) do not redeem other transactions,
and mint new bitcoins (the block rewards). Coinbase transactions are also
used in Bitcoin to collect transaction fees, which are just discarded in our
model. Extending our model with coinbase transactions would falsify The-
orem 3.1.5, since the overall value in the blockchain would no longer be
decreasing. Definition 3.12 requires the timestamp of each transaction to
increase monotonically. Instead, in Bitcoin a timestamp is valid if it is
greater than the median timestamp of previous 11 blocks.

In Definitions 3.3 and 3.11, the absLock and relLock fields specify the
time when a transaction can be appended to the blockchain. In Bitcoin
transactions, besides the time we can also use the block height, i.e. the
distance between any given block and the genesis block. Setting the block
height to h implies that the transaction can be mined from the block h
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onward.

Related works Several works have proposed to use Bitcoin beyond
the sole purpose of exchanging currency, by exploiting the flexibility of its
scripting language. They propose to implement smart contracts, intended
as sets of protocols of the participants involved in them.

Smart contracts requiring external state, namely oracles [87] and es-
crows [84], can be easily implemented using multi-signature transactions.
Such implementations, however, rely on trusted third parties. The work
[4] showed that Bitcoin can be used to implement timed commitments
through deposit transactions. The commitments are then used to per-
form multiparty computations [1], such as calculating the winner of a
lottery. The main drawback of this approach is indeed the deposit, which
grows quadratically with the number of participants. More recently, [62]
and [23] have proposed lottery smart contracts that require, respectively,
zero and constant (≥ 0) deposit. However, [62] requires the computation
of an exponential number of signature w.r.t. the number of participants,
while [23] only a quadratic one. The work [12] proposed a contingent pay-
ment protocol that can be implemented relying only on standard Bitcoin
transaction. It allows to sell solutions for a class of NP problems (e.g.
the factorization of a number), the use of zero-knowledge proofs ensure
its correctness to the buyer.

Extending Bitcoin with Neighborhood Covenants
We have proposed a formalisation of neighborhood covenants, an exten-
sion of traditional Bitcoin covenants in literature. we have exploited our
formalisation to present a series of use cases which appear to be unfeasible
in pure Bitcoin. We have introduced high-level contract primitives that
exploit covenants to enable recursion, and allow contracts to receive new
funds and parameters at runtime.

The first proposals of covenants in Bitcoin date back at least to
2013 [114]. Nevertheless, their inclusion into the official Bitcoin proto-
col is still uncertain, mainly because of the extremely cautious approach
to implement changes to Bitcoin [102]. Still, the emerging of Bitcoin
layer-2 protocols, like e.g. the Lightning Network [122], has revived the
interest in covenants, as witnessed by a recent Bitcoin Improvement Pro-
posal (BIP 119 [123]). The work in [63] propose a new opcode CheckOut-
putVerify, to explicitly access and constraint the outputs of the redeeming
transaction. In contrast, [66] implements covenants exploiting the current
implementation of versig, which checks a signature on data that is build by
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implicitly accessing the redeeming transaction, to define a new operator
CheckSigFromStack. Both implementations can require the script of the re-
deeming transaction to contain the same covenant of the spent one, enable
recursive covenants. Another approach is to implement covenants without
adding new opcodes [70], which would require a change in the consensus
protocol, employing signatures to commit to transaction templates. The
drawback of the approach is the need to delete the cryptographic keys used
to sign the templates, which adds assumptions to the security model. As
noted by [66], recursive covenants would allow to implement Bitcoin con-
tracts that execute state machines, by appending transactions to trigger
state transitions. Ergo [35] implement contracts as state machines on a
UTXO blockchain using transaction trees. Differently from BitML [10],
where transactions of a contract are pre-signed by its users, Ergo can use
covenants to enforce the next transaction in the contract execution, en-
abling loops in the state transition. The work in [18] propose a formal
model of covenants, which can be implemented in Bitcoin with modifica-
tions similar to the ones in [63, 66]. It exploits the model to specify some
complex Bitcoin contracts, and discuss how to exploit covenants to design
high-level language primitives for Bitcoin contracts.

This added flexibility can be exploited to design expressive high-level
contract languages like Marlowe [68] and Plutus [30].

Known limitations Most of the scripts crafted in our use cases would
produce non-standard transactions, that are rejected by Bitcoin nodes.
To produce standard transactions from non-standard scripts, we can ex-
ploit P2SH [88]. This requires the transaction output to commit to the
hash of the script, while the actual script is revealed in the witness of
the redeeming transaction. Since, to check its hash, the script needs to be
pushed to the stack, and the maximum size of a stack element is 520 bytes,
longer scripts would be rejected. This clearly affects the expressiveness
of contracts, as already observed in [10]. In particular, since the size of
a script grows with the number of contract states (see e.g. Figure 4.10),
contracts with many states would easily violate the 520 bytes limit. The
introduction of Taproot [121] would mitigate this limit. For scripts with
multiple disjoint branches, Taproot allows the witness of the redeeming
transaction to reveal just the needed branch. Therefore, the 520 bytes
limit would apply to branches, instead of the whole script. Another ex-
pressiveness limit derives from the fact that covenants can only constrain
the scripts of the redeeming transaction. While this is enough to express
non-fungible tokens (see Section 4.2.2), fungible ones seem to require more
powerful mechanisms, because of the join operation. An alternative tech-
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nique to enhancing covenants is to implement fungible tokens natively [33,
32], or to enforce their logic through a sidechain [117].

Other extensions to Bitcoin. Indeed, the Bitcoin scripting language
features a very limited set of operations [89], and over the years many
useful (and apparently harmless) opcodes have been disabled without a
clear understanding of their alleged insecurity [101]. This is the case e.g.,
of bitwise logic operators, shift operators, integer multiplication, division
and modulus. For this reason some developers proposed to re-enable some
disabled opcodes [78], and some works in the literature proposed exten-
sions to the Bitcoin scripting language so to enhance the expressiveness
of smart contracts.

Secure cash distribution with penalties [57, 4, 26] is a cryptographic
primitive which allows a set of participants to make a deposit, and then
provide inputs to a function whose evaluation determines how the deposits
are distributed among the participants. This primitive guarantees that
dishonest participants (who, e.g., abort the protocol after learning the
value of the function) will pay a penalty to the honest participants. This
primitive does not seem to be directly implementable in Bitcoin, but it
becomes so by extending the scripting language with the opcode CHECK-
SIGFROMSTACK discussed above. Secure cash distribution with penalties can
be instantiated to a variety of smart contracts, e.g. lotteries [4] poker [57], and
contingent payments. The latter smart contract can also be obtained through
the opcode CHECKKEYPAIRVERIFY in [38], which checks if the two top ele-
ments of the stack are a valid key pair.

Another new opcode, called MULTIINPUT [62] consumes from the stack a
signature σ and a sequence of in values (T1, j1) · · · (Tn, jn), with the following
two effects: (i) it verifies the signature σ against the redeeming transaction T,
neglecting T.in; (ii) it requires T.in to be equal to some of the Ti. Exploiting
this opcode, [62] devise a fair N -party lottery which requires zero deposit, and
O(N2) off-chain signed transaction. The first one of these effects can be alter-
natively obtained by extending, instead of the scripting language, the signature
modifiers. More specifically, [23] introduces a new signature modifier, which can
set to ⊥ all the inputs of a transaction (i.e., no input is signed). In this way
they obtain a fair multi-party lottery with similar properties to the one in [62].

Another way to improve the expressiveness of smart contracts is to replace
the Bitcoin scripting language, e.g. with the one in [65]. This would also allow
to establish bounds on the computational resources needed to run scripts.

Unfortunately, none of the proposed extensions has been yet included in
the main branch of the Bitcoin Core client, and nothing suggests that they
will be considered in the near future. Indeed, the development of Bitcoin is
extremely conservative, as any change to its protocol requires an overwhelming
consensus of the miners. So far, new opcodes can only be empirically assessed
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through the Elements alpha project1, a testnet for experimenting new Bitcoin
features. A significant research challenge would be that of formally proving
that new opcodes do not introduce vulnerabilities, exploitable e.g. by Denial-of-
Service attacks. For instance, unconstrained uses of the opcode CAT may cause
an exponential space blow-up in the verification of transactions.

Verification Although designing contracts in the UTXO model seems to be
less error-prone than in the shared memory model, e.g. because of the absence
of reentrancy vulnerabilities (like the one exploited in the Ethereum DAO at-
tack [124]), Bitcoin contracts may still contain security flaws. Therefore, it is
important to devise verification techniques to detect security issues that may
lead to the theft or freezing of funds. Recursive covenants make this task harder
than in pure Bitcoin, since they can encode infinite-state transition systems, as
in most of our use cases. Hence, model-checking techniques based on the explo-
ration of the whole state space, like the one used in [3], cannot be applied.

High-level Bitcoin contracts The compiler of our extension of BitML is
just sketched in Section 4.3, and we leave as future work its formal definition,
as well as the extension of the computational soundness results of [22], ensuring
the correspondence between the symbolic semantics of BitML and the under-
lying computational level of Bitcoin. Continuing along this line of research, it
would be interesting to study new linguistic primitives that fully exploit the
expressiveness of Bitcoin covenants, and to extend accordingly the verification
technique of [24]. Note that our extension of the UTXO model is more restric-
tive than the one in [31], as the latter abstracts from the script language, just
assuming that scripts denote any pure functions [126]. This added flexibility can
be exploited to design expressive high-level contract languages like Marlowe [68]
and Plutus [30].

Bitcoin smart contracts as endpoint protocols
The formal model of smart contracts we have proposed in Chapter 5 is based
on the current mechanisms of Bitcoin; indeed, this makes it possible to trans-
late endpoint protocols into actual implementations interacting with the Bitcoin
blockchain. However, constraining smart contracts to perfectly adhere to Bit-
coin greatly reduces their expressiveness.

As witnessed in Section 5.2, designing secure smart contracts on Bitcoin
is an error-prone task, similarly to designing secure cryptographic protocols.
The reason lies in the fact that, to devise a secure contract, a designer has
to anticipate any possible (mis-)behaviour of the other participants. The side
effect is that endpoint protocols may be quite convoluted, as they must include
compensations at all the points where something can go wrong. Therefore, tools

1https://elementsproject.org/elements/opcodes/
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to automate the analysis and verification of smart contracts may be of great
help.

Recent works [2] propose to verify Bitcoin smart contracts by modelling the
behaviour of participants as timed automata, and then using UPPAAL [25] to
check properties against an attacker. This approach correctly captures the time
constraints within the contracts. The downside is that encoding this UPPAAL
model into an actual implementation with Bitcoin transactions is a complex
task. Indeed, a designer without a deep knowledge of Bitcoin technicalities
is likely to produce an UPPAAL model that can not be encoded in Bitcoin.
A relevant research challenge is to study specification languages for Bitcoin
contracts (like e.g. the one in Section 5.1), and techniques to automatically
encode them in a model that can be verified by a model checker.

Remarkably, the verification of security properties of smart contracts re-
quires to deal with non-trivial aspects, like temporal constraints and proba-
bilities. This is the case, e.g., for the verification of fairness of lotteries (like
e.g. the one discussed in Section 5.2.8); a further problem is that fairness must
hold against any adversarial strategy. It is not clear whether in this case it
is sufficient to consider a “most powerful” adversary, like e.g. in the symbolic
Dolev-Yao model. In case a contract is not secure against arbitrary (PTIME)
adversaries, one would like to verify that, at least, it is secure against ratio-
nal ones [45], which is a relevant research issue. Additional issues arise when
considering more concrete models of the Bitcoin blockchain, respect to the one
in Section 1.1. This would require to model forks, i.e. the possibility that a
recent transaction is removed from the blockchain. This could happen with
rational (but dishonest) miners [59].

DSLs for smart contracts. As witnessed in Section 5.2, modelling Bitcoin
smart contracts is complex and error-prone. A possible way to address this com-
plexity is to devise high-level domain-specific languages (DSLs) for contracts,
to be compiled in low-level protocols (e.g., the ones in Section 5.1). Indeed, the
recent proliferation of non-Turing complete DSLs for smart contracts [97, 43,
28] suggests that this is an emerging research direction.

A first proposal of an high-level language implemented on top of Bitcoin is
Typecoin [37]. This language allows to model the updates of a state machine as
affine logic propositions. Users can “run” this machine by putting transactions
on the Bitcoin blockchain. The security of the blockchain guarantees that only
the legit updates of the machine can be triggered by users. A downside of this
approach is that liveness is guaranteed only by assuming cooperation among the
participants, i.e., a dishonest participant can make the others unable to complete
an execution. Note instead that the smart contracts in Section 5.2 allow honest
participants to terminate, regardless of the behaviours of the environment. In
some cases, e.g. in the lottery in Section 5.2.8, abandoning the contract may
even result in penalties (i.e., loss of the deposit paid upfront to stipulate the
contract).
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A toolchain for BitML
While the business of smart contracts has flourished on platforms like Ethereum
and Cardano, it never caught on Bitcoin. One of the main reasons is that,
unlike the other platforms, Bitcoin has neither high-level contract languages,
nor related development and verification tools.

A downside of using platforms with expressive, Turing-complete languages,
is that they may expose contracts to a wider attack surface: indeed, a series of
language-induced vulnerabilities of Ethereum contracts [8] has caused losses of
hundreds of millions of USD [124, 120, 77].

Although our benchmarks witness a rich variety of contracts expressible in
BitML, there is room for improvement. BitML is not Bitcoin-complete, i.e.
some contracts executable in Bitcoin are not expressible in BitML. The main
sources of this incompleteness are three: (i) all the transactions obtained by
the compiler must be signed before stipulation by all the involved participants
(only the signatures for authorizations can be provided at run-time); (ii) all
transaction fields must be taken into account when computing signatures, while
partial signatures (e.g. those obtained through SIGHASH ANYONECANPAY and
SIGHASH SINGLE) are not used; (iii) off-chain interactions are limited to re-
vealing secrets and providing authorizations. The first constraint is required
to ensure that honest participants can always perform, at the Bitcoin level,
the moves enabled in the corresponding BitML contract, regardless of the be-
haviour of the others. In this respect, BitML follows the standard assump-
tion that participants are non-cooperative, i.e. at any moment after stipulation
they can stop interacting (unlike TypeCoin [37], which assumes cooperation,
allowing dishonest participants to make a contract deadlock). Yet, coopera-
tion can be incentivized, by punishing misbehaviour with penalties, like e.g. in
the timed commitment of Section 6.1. As a consequence of the design choices
above, contracts with a dynamically-defined set of players (e.g., crowdfunding),
or an unbounded number of iterations (e.g., micro-payment channels), are not
expressible in BitML.

The limitations of BitML (and of Bitcoin) could be overcome in various ways.
For instance, using Bitcoin “as-is”, it would be possible to relax constraint (iii)
above, so to allow e.g. zero-knowledge off-chain protocols. This would enable to
extend BitML with primitives to express contingent payments contracts, where
participants trade solutions of a class of NP problems [12, 115]. Similarly, by
relaxing constraint (i), we could extend BitML to enable dynamic stipulation
of subcontracts, requiring that all the involved participants provide their sig-
natures at run-time. This would allow to model e.g. micro-payment channels
in BitML. Together with the use of SIGHASH ANYONECANPAY (relaxing con-
straint (ii)), this would also allow for modelling crowdfunding contracts. As
before, this extension could be implemented without modifying Bitcoin.

Other extensions of BitML would require extensions of Bitcoin. For instance,
covenants [63, 66] would allow for implementing arbitrary finite-state machines.
Controlled input malleability would allow to efficiently implement tournaments
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in multi-player gambling games, like e.g. lotteries [23]. This can also be achieved
through a new opcode that checks if the redeeming transaction belongs to a
given set [62]. Contingent payments without zero-knowledge proofs can be
achieved by exploiting a new opcode that checks the validity of key pairs [38].
A new opcode which checks signatures for arbitrary messages would allow for
expressing general fair multiparty computations [57]. Further, fair and robust
multiparty computations can be achieved using more complex transactions [54].
A more radical approach would be to replace the Bitcoin scripting language
with a more expressive one, like e.g. Simplicity [65].

Compared with the tools for analysing Ethereum contracts [60, 73, 48, 50,
67, 49, 27, 69], whose precision is subject to the limitations derived by the
Turing-completeness of the underlying languages, our toolchain features a sound
and complete verification technique.

On-chain Fungible Tokens on Bitcoin
We have proposed a secure and efficient implementation of fungible tokens on
Bitcoin, exploiting neighbourhood covenants, a powerful yet simple extension of
the Bitcoin script language. We formalise fungible tokens, including a symbolic
model for fungible token, which can be applied to UTXO-based blockchains,
and we prove some correctness properties of the model.

To keep the presentation simple, we have limited the functionality of tokens
a bit, making split/join/exchange actions operate on just two deposits, and
omitting time constraints. Removing these restrictions would only affect the
size, but not the complexity, of our technical development. Further, it would
allow to use tokens as is within high-level languages for Bitcoin contracts, e.g.
BitML [22], simplifying the design of financial contracts which manage tokens
and bitcoins. For instance, we would express as follows a basic zero-coupon
bond [53] where an investor A pays upfront to a bank B 5 units of token τ , and
receives back 1B after a maturity date t:

split
(
5τ → withdraw B | 2B→ after t : withdraw A

)
A research question arising from our work is how to exploit neighbourhood

covenants in the design of high-level languages for Bitcoin contracts. Besides en-
hancing the expressiveness of these languages, neighbourhood covenants would
enable a simpler compilation technique, compared e.g. that used by BitML,
reducing the off-chain exchange of signatures.

Related work In Ethereum, similarly to our approach, tokens are imple-
mented on top of the platform using custom code, following the ERC-20 and
ERC-712 standards [106, 104]. Instead, the works in [33, 32] propose a gen-
eralisation of the EUTXO model [31] that natively supports custom tokens.
Similarly, the work in [127] proposes an UTXO model that natively support
tokens in the same way it supports the main cryptocurrency. In the model,
each token or currency have the same status: fees for a token transaction are
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paid directly with some units of the token itself, making the currencies mutually
independent.
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7.4 Supplementary material for Chapter 7
Full token script The full token script is the following:

1 if not verrec ( ptxo (1)) then // ctxo is a token generator
2 ctxo .op = 0 // gen action
3 and ctxo . tkid = txid ( ptxo (1)) // token id
4 and ptxo (1).val = 0 // spent txo has 0 BTC
5 and outlen ( ctxo ) = 1 // gen has 1 out
6 and ctxo . tkval > 0 // positive token value
7 else
8 if rtxo .op = 1 then /* ************** BURN ************* */
9 versig ( ctxo .owner ,rtx.wit) // check owner

10 and verscr (false , rtxo (1)) // make rtx unspendable
11 and inlen ( rtxo (1)) = 1 // rtx has 1 in
12 and outlen ( rtxo (1)) = 1 // rtx has 1 out
13 else if rtxo .op = 2 then /* ************* SPLIT ************** */
14 versig ( ctxo .owner ,rtx.wit) // check owner
15 and verrec ( rtxo (1)) // covenants on rtx
16 and verrec ( rtxo (2))
17 and inlen ( rtxo (1)) = 1 // rtx has 1 in
18 and outlen ( rtxo (1)) = 2 // rtx has 2 outs
19 and rtxo (1). tkval >= 0 // positive token value
20 and rtxo (2). tkval >= 0
21 and rtxo (1). owner = ctxo . owner // preserve owner
22 and rtxo (1). tkid = ctxo . tkid // preserve tkid
23 and rtxo (2). tkid = ctxo . tkid
24 and rtxo (1). tkval + rtxo (2). tkval = ctxo . tkval // preserve value
25 else if rtxo .op = 3 then /* ************* JOIN ************** */
26 inlen ( rtxo (1)) = 2 // rtx has 2 in
27 and outlen ( rtxo (1)) = 1 // rtx has 1 out
28 and verrec ( rtxo (1)) // coventant on rtx
29 and verrec ( stxo (2)) // covenants on both inputs
30 and verrec ( stxo (1))
31 and ctxo . tkid = rtxo (1). tkid // preserve token id
32 and versig ( ctxo .owner , rtx.wit) // check owner
33 and rtxo (1). tkval = stxo (1). tkval + stxo (2). tkval // preserve value
34 else if rtxo .op = 4 then /* ************* XCHG ************** */
35 inlen ( rtxo (1)) = 2 // rtx has 2 ins
36 and outlen ( rtxo (1)) = 2 // rtx has 2 outs
37 and versig ( ctxo .owner , rtx.wit) // check owner
38 and verrec ( stxo (1)) // covenant on input 1
39 and verrec ( rtxo (1)) // covenant on rtx (1)
40 and rtxo (1). owner = stxo (2). owner // swap owners
41 and rtxo (2). owner = stxo (1). owner
42 and rtxo (1). tkval = stxo (1). tkval // preserve value
43 and rtxo (1). tkid = stxo (1). tkid // preserve tkid
44 if verrec ( stxo (2)) then /* **** EXCHANGE TOKEN / TOKEN **** */
45 verrec ( rtxo (2)) // covenant on rtx (2)
46 and rtxo (2). tkval = stxo (2). tkval // preserve tkval
47 and rtxo (2). tkid = stxo (2). tkid // preserve tkid
48 else /* **** EXCHANGE TOKEN /BTC **** */
49 verscr ( versig ( ctxo .owner , rtx.wit), rtxo (2))
50 and rtxo (2).val = stxo (2).val // preserve BTC
51 else if rtxo .op = 5 then /* ************* GIVE ************** */
52 inlen ( rtxo (1)) = 1 // rtx has 1 in
53 and outlen ( rtxo (1)) = 1 // rtx has 1 out
54 and versig ( ctxo .owner , rtx.wit) // check owner
55 and verrec ( rtxo (1)) // covenant on rtx (1)
56 and rtxo (1). tkid = ctxo . tkid // preserve tkid
57 and rtxo (1). tkval = ctxo . tkval // preserve value
58 else false
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