44 research outputs found

    Optimization of Coding of AR Sources for Transmission Across Channels with Loss

    Get PDF

    On Multiple Description Coding of Sources with Memory

    Full text link

    Novel LDPC coding and decoding strategies: design, analysis, and algorithms

    Get PDF
    In this digital era, modern communication systems play an essential part in nearly every aspect of life, with examples ranging from mobile networks and satellite communications to Internet and data transfer. Unfortunately, all communication systems in a practical setting are noisy, which indicates that we can either improve the physical characteristics of the channel or find a possible systematical solution, i.e. error control coding. The history of error control coding dates back to 1948 when Claude Shannon published his celebrated work β€œA Mathematical Theory of Communication”, which built a framework for channel coding, source coding and information theory. For the first time, we saw evidence for the existence of channel codes, which enable reliable communication as long as the information rate of the code does not surpass the so-called channel capacity. Nevertheless, in the following 60 years none of the codes have been proven closely to approach the theoretical bound until the arrival of turbo codes and the renaissance of LDPC codes. As a strong contender of turbo codes, the advantages of LDPC codes include parallel implementation of decoding algorithms and, more crucially, graphical construction of codes. However, there are also some drawbacks to LDPC codes, e.g. significant performance degradation due to the presence of short cycles or very high decoding latency. In this thesis, we will focus on the practical realisation of finite-length LDPC codes and devise algorithms to tackle those issues. Firstly, rate-compatible (RC) LDPC codes with short/moderate block lengths are investigated on the basis of optimising the graphical structure of the tanner graph (TG), in order to achieve a variety of code rates (0.1 < R < 0.9) by only using a single encoder-decoder pair. As is widely recognised in the literature, the presence of short cycles considerably reduces the overall performance of LDPC codes which significantly limits their application in communication systems. To reduce the impact of short cycles effectively for different code rates, algorithms for counting short cycles and a graph-related metric called Extrinsic Message Degree (EMD) are applied with the development of the proposed puncturing and extension techniques. A complete set of simulations are carried out to demonstrate that the proposed RC designs can largely minimise the performance loss caused by puncturing or extension. Secondly, at the decoding end, we study novel decoding strategies which compensate for the negative effect of short cycles by reweighting part of the extrinsic messages exchanged between the nodes of a TG. The proposed reweighted belief propagation (BP) algorithms aim to implement efficient decoding, i.e. accurate signal reconstruction and low decoding latency, for LDPC codes via various design methods. A variable factor appearance probability belief propagation (VFAP-BP) algorithm is proposed along with an improved version called a locally-optimized reweighted (LOW)-BP algorithm, both of which can be employed to enhance decoding performance significantly for regular and irregular LDPC codes. More importantly, the optimisation of reweighting parameters only takes place in an offline stage so that no additional computational complexity is required during the real-time decoding process. Lastly, two iterative detection and decoding (IDD) receivers are presented for multiple-input multiple-output (MIMO) systems operating in a spatial multiplexing configuration. QR decomposition (QRD)-type IDD receivers utilise the proposed multiple-feedback (MF)-QRD or variable-M (VM)-QRD detection algorithm with a standard BP decoding algorithm, while knowledge-aided (KA)-type receivers are equipped with a simple soft parallel interference cancellation (PIC) detector and the proposed reweighted BP decoders. In the uncoded scenario, the proposed MF-QRD and VM-QRD algorithms are shown to approach optimal performance, yet require a reduced computational complexity. In the LDPC-coded scenario, simulation results have illustrated that the proposed QRD-type IDD receivers can offer near-optimal performance after a small number of detection/decoding iterations and the proposed KA-type IDD receivers significantly outperform receivers using alternative decoding algorithms, while requiring similar decoding complexity

    Proceedings of the 35th WIC Symposium on Information Theory in the Benelux and the 4th joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, Eindhoven, the Netherlands May 12-13, 2014

    Get PDF
    Compressive sensing (CS) as an approach for data acquisition has recently received much attention. In CS, the signal recovery problem from the observed data requires the solution of a sparse vector from an underdetermined system of equations. The underlying sparse signal recovery problem is quite general with many applications and is the focus of this talk. The main emphasis will be on Bayesian approaches for sparse signal recovery. We will examine sparse priors such as the super-Gaussian and student-t priors and appropriate MAP estimation methods. In particular, re-weighted l2 and re-weighted l1 methods developed to solve the optimization problem will be discussed. The talk will also examine a hierarchical Bayesian framework and then study in detail an empirical Bayesian method, the Sparse Bayesian Learning (SBL) method. If time permits, we will also discuss Bayesian methods for sparse recovery problems with structure; Intra-vector correlation in the context of the block sparse model and inter-vector correlation in the context of the multiple measurement vector problem

    Analysis of low-density parity-check codes on impulsive noise channels

    Get PDF
    PhD ThesisCommunication channels can severely degrade a signal, not only due to fading effects but also interference in the form of impulsive noise. In conventional communication systems, the additive noise at the receiver is usually assumed to be Gaussian distributed. However, this assumption is not always valid and examples of non-Gaussian distributed noise include power line channels, underwater acoustic channels and manmade interference. When designing a communication system it is useful to know the theoretical performance in terms of bit-error probability (BEP) on these types of channels. However, the effect of impulses on the BEP performance has not been well studied, particularly when error correcting codes are employed. Today, advanced error-correcting codes with very long block lengths and iterative decoding algorithms, such as Low-Density Parity-Check (LDPC) codes and turbo codes, are popular due to their capacity-approaching performance. However, very long codes are not always desirable, particularly in communications systems where latency is a serious issue, such as in voice and video communication between multiple users. This thesis focuses on the analysis of short LDPC codes. Finite length analyses of LDPC codes have already been presented for the additive white Gaussian noise channel in the literature, but the analysis of short LDPC codes for channels that exhibit impulsive noise has not been investigated. The novel contributions in this thesis are presented in three sections. First, uncoded and LDPC-coded BEP performance on channels exhibiting impulsive noise modelled by symmetric -stable (S S) distributions are examined. Different sub-optimal receivers are compared and a new low-complexity receiver is proposed that achieves near-optimal performance. Density evolution is then used to derive the threshold signal-tonoise ratio (SNR) of LDPC codes that employ these receivers. In order to accurately predict the waterfall performance of short LDPC codes, a nite length analysis is proposed with the aid of the threshold SNRs of LDPC codes and the derived uncoded BEPs for impulsive noise channels. Second, to investigate the e ect of impulsive noise on wireless channels, the analytic BEP on generalized fading channels with S S noise is derived. However, it requires the evaluation of a double integral to obtain the analytic BEP, so to reduce the computational cost, the Cauchy- Gaussian mixture model and the asymptotic property of S S process are used to derive upper bounds of the exact BEP. Two closed-form expressions are derived to approximate the exact BEP on a Rayleigh fading channel with S S noise. Then density evolution of different receivers is derived for these channels to nd the asymptotic performance of LDPC codes. Finally, the waterfall performance of LDPC codes is again estimated for generalized fading channels with S S noise by utilizing the derived uncoded BEP and threshold SNRs. Finally, the addition of spatial diversity at the receiver is investigated. Spatial diversity is an effective method to mitigate the effects of fading and when used in conjunction with LDPC codes and can achieve excellent error-correcting performance. Hence, the performance of conventional linear diversity combining techniques are derived. Then the SNRs of these linear combiners are compared and the relationship of the noise power between different linear combiners is obtained. Nonlinear detectors have been shown to achieve better performance than linear combiners hence, optimal and sub-optimal detectors are also presented and compared. A non-linear detector based on the bi-parameter Cauchy-Gaussian mixture model is used and shows near-optimal performance with a significant reduction in complexity when compared with the optimal detector. Furthermore, we show how to apply density evolution of LDPC codes for different combining techniques on these channels and an estimation of the waterfall performance of LDPC codes is derived that reduces the gap between simulated and asymptotic performance. In conclusion, the work presented in this thesis provides a framework to evaluate the performance of communication systems in the presence of additive impulsive noise, with and without spatial diversity at the receiver. For the first time, bounds on the BEP performance of LDPC codes on channels with impulsive noise have been derived for optimal and sub-optimal receivers, allowing other researchers to predict the performance of LDPC codes in these type of environments without needing to run lengthy computer simulations

    Channel coding and reduced-complexity detection for magnetic recording.

    Get PDF
    As an application, a modified EEPR4 (MEEPR4) channel with a 3-candidate LVA is shown to exhibit a 2 dB LVA gain. In addition, an error detection code is designed to increase the minimum distance by more than 2 dB with a high code rate. The CSGT generated RS trellis for the MMEPR4 channel has half the number of states. The performances of both the VA and the LVA on the RS MEEPR4 trellis have negligible loss. Lastly, the Fettweis branch metric shifting method is used with the CSGT to further reduce the complexity of the MEEPR4ML system.This work presents a high performance coding system and a novel reduced-complexity implementation technique to improve the performance of read channel chips in data storage systems. In particular, the coding system combines the list Viterbi algorithm (LVA) and a high rate error detection code. The novel reduced-state (RS) technique called complement states grouping technique (CSGT) reduces the implementation complexity of both the VA and the LVA with a negligible performance loss.First, we develop a reduced-state technique that generates an RS trellis by grouping all pairs of complement states whose state-distance satisfies a predetermined criterion. While the traditional RS techniques often cause unacceptable performance loss for partial response channels with binary inputs, this technique reduces the number of states by a factor of about two with a negligible loss for such channels. Second, a coding system combining an LVA with an error detection code is proposed for magnetic recording channels. The error detection code can provide a substantial coding gain with a high code rate. The LVA is used to provide a candidate list to achieve the coding gain in a suboptimal way. Third, we develop a method to estimate the performance of the LVA; the method takes into account factors such as noise correlation and multiplicity of error events. Fourth, it is shown that the LVA can be realized using a pipelined implementation and the computation complexity increases only linearly with the number of LVA candidates

    Autoregressive models for text independent speaker identification in noisy environments

    Get PDF
    The closed-set speaker identification problem is defined as the search within a set of persons for the speaker of a certain utterance. It is reported that the Gaussian mixture model (GMM) classifier achieves very high classification accuracies (in the range 95% - 100%) when both the training and testing utterances are recorded in sound proof studio, i.e., there is neither additive noise nor spectral distortion to the speech signals. However, in real life applications, speech is usually corrupted by noise and band-limitation. Moreover, there is a mismatch between the recording conditions of the training and testing environments. As a result, the classification accuracy of GMM-based systems deteriorates significantly. In this thesis, we propose a two-step procedure for improving the speaker identification performance under noisy environment. In the first step, we introduce a new classifier: vector autoregressive Gaussian mixture (VARGM) model. Unlike the GMM, the new classifier models correlations between successive feature vectors. We also integrate the proposed method into the framework of the universal background model (UBM). In addition, we develop the learning procedure according to the maximum likelihood (ML) criterion. Based on a thorough experimental evaluation, the proposed method achieves an improvement of 3 to 5% in the identification accuracy. In the second step, we propose a new compensation technique based on the generalized maximum likelihood (GML) decision rule. In particular, we assume a general form for the distribution of the noise-corrupted utterances, which contains two types of parameters: clean speech-related parameters and noise-related parameters. While the clean speech related parameters are estimated during the training phase, the noise related parameters are estimated from the corrupted speech in the testing phase. We applied the proposed method to utterances of 50 speakers selected from the TIMIT database, artificially corrupted by convolutive and additive noise. The signal to noise ratio (SNR) varies from 0 to 20 dB. Simulation results reveal that the proposed method achieves good robustness against variation in the SNR. For utterances corrupted by covolutive noise, the improvement in the classification accuracy ranges from 70% for SNR = 0 dB to around 4% for SNR = 10dB, compared to the standard ML decision rule. For utterances corrupted by additive noise, the improvement in the classification accuracy ranges from 1% to 10% for SNRs ranging from 0 to 20 dB. The proposed VARGM classifier is also applied to the speech emotion classification problem. In particular, we use the Berlin emotional speech database to validate the classification performance of the proposed VARGM classifier. The proposed technique provides a classification accuracy of 76% versus 71% for the hidden Markov model, 67% for the k-nearest neighbors, 55% for feed-forward neural networks. The model gives also better discrimination between high-arousal emotions (joy, anger, fear), low arousal emotions (sadness, boredom), and neutral emotions than the HMM. Another interesting application of the VARGM model is the blind equalization of multi input multiple output (MIMO) communication channels. Based on VARGM modeling of MIMO channels, we propose a four-step equalization procedure. First, the received data vectors are fitted into a VARGM model using the expectation maximization (EM) algorithm. The constructed VARGM model is then used to filter the received data. A Baysian decision rule is then applied to identify the transmitted symbols up to a permutation and phase ambiguities, which are finally resolved using a small training sequence. Moreover, we propose a fast and easily implementable model order selection technique. The new equalization algorithm is compared to the whitening method and found to provide less symbol error probability. The proposed technique is also applied to frequency-flat slow fading channels and found to provide a more accurate estimate of the channel response than that provided by the blind de-convolution exploiting channel encoding (BDCC) method and at a higher information rate

    Scalable download protocols

    Get PDF
    Scalable on-demand content delivery systems, designed to effectively handle increasing request rates, typically use service aggregation or content replication techniques. Service aggregation relies on one-to-many communication techniques, such as multicast, to efficiently deliver content from a single sender to multiple receivers. With replication, multiple geographically distributed replicas of the service or content share the load of processing client requests and enable delivery from a nearby server.Previous scalable protocols for downloading large, popular files from a single server include batching and cyclic multicast. Analytic lower bounds developed in this thesis show that neither of these protocols consistently yields performance close to optimal. New hybrid protocols are proposed that achieve within 20% of the optimal delay in homogeneous systems, as well as within 25% of the optimal maximum client delay in all heterogeneous scenarios considered.In systems utilizing both service aggregation and replication, well-designed policies determining which replica serves each request must balance the objectives of achieving high locality of service, and high efficiency of service aggregation. By comparing classes of policies, using both analysis and simulations, this thesis shows that there are significant performance advantages in using current system state information (rather than only proximities and average loads) and in deferring selection decisions when possible. Most of these performance gains can be achieved using only β€œlocal” (rather than global) request information.Finally, this thesis proposes adaptations of already proposed peer-assisted download techniques to support a streaming (rather than download) service, enabling playback to begin well before the entire media file is received. These protocols split each file into pieces, which can be downloaded from multiple sources, including other clients downloading the same file. Using simulations, a candidate protocol is presented and evaluated. The protocol includes both a piece selection technique that effectively mediates the conflict between achieving high piece diversity and the in-order requirements of media file playback, as well as a simple on-line rule for deciding when playback can safely commence

    Technologies of information transmission and processing

    Get PDF
    Π‘Π±ΠΎΡ€Π½ΠΈΠΊ содСрТит ΡΡ‚Π°Ρ‚ΡŒΠΈ, Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… посвящСна Π½Π°ΡƒΡ‡Π½ΠΎ-тСорСтичСским Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ°ΠΌ Π² области сСтСй Ρ‚Π΅Π»Π΅ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΉ, ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ бСзопасности, Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. ΠŸΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½ для Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… сотрудников Π² области ΠΈΠ½Ρ„ΠΎΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΉ, ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»Π΅ΠΉ, аспирантов, магистрантов ΠΈ студСнтов тСхничСских Π²ΡƒΠ·ΠΎΠ²

    Multimedia

    Get PDF
    The nowadays ubiquitous and effortless digital data capture and processing capabilities offered by the majority of devices, lead to an unprecedented penetration of multimedia content in our everyday life. To make the most of this phenomenon, the rapidly increasing volume and usage of digitised content requires constant re-evaluation and adaptation of multimedia methodologies, in order to meet the relentless change of requirements from both the user and system perspectives. Advances in Multimedia provides readers with an overview of the ever-growing field of multimedia by bringing together various research studies and surveys from different subfields that point out such important aspects. Some of the main topics that this book deals with include: multimedia management in peer-to-peer structures & wireless networks, security characteristics in multimedia, semantic gap bridging for multimedia content and novel multimedia applications
    corecore