6 research outputs found

    Bit error rate of underlay decode-and-forward cognitive networks with best relay selection

    Full text link

    Solutions to Integrals Involving the Marcum Q-Function and Applications

    Full text link
    Novel analytic solutions are derived for integrals that involve the generalized Marcum Q-function, exponential functions and arbitrary powers. Simple closed-form expressions are also derived for the specific cases of the generic integrals. The offered expressions are both convenient and versatile, which is particularly useful in applications relating to natural sciences and engineering, including wireless cpmmunications and signal processing. To this end, they are employed in the derivation of the channel capacity for fixed rate and channel inversion in the case of correlated multipath fading and switched diversity.Comment: 15 Pages, 2 Figure

    On the Error Probability of Cognitive RF-FSO Relay Networks over Rayleigh/EW Fading Channels with Primary-Secondary Interference

    Get PDF
    Free space optical (FSO) communication has emerged to provide line of sight connectivity and higher throughput over unlicensed optical spectrums. Cognitive radio (CR), on the other hand, can utilize the radio frequency (RF) spectrum and allow a secondary user (SU) to share the same spectrum with the primary user (PU) as long as the SU does not impose interference on the PU. Owing to the potential of these emerging technologies, to provide full spectrum efficiency, this paper focuses on the mixed CR RF-FSO transmission scheme, where RF communication is employed at one hop followed by the FSO transmission on the other hop in a dual-hop decode-and-forward (DF) configuration. To quantify the performance of the propose

    Bit Error Rate of Underlay Decode-and-Forward Cognitive Networks with Best Relay Selection

    Get PDF
    This paper provides an analytic performance evaluation of the bit error rate (BER) of underlay decode-and-forward cognitive networks with best relay selection over Rayleigh multipath fading channels. A generalized BER expression valid for arbitrary operational parameters is firstly presented in the form of a single integral, which is then employed for determining the diversity order and coding gain for different best relay selection scenarios. Furthermore, a novel and highly accurate closed-form approximate BER expression is derived for the specific case where relays are located relatively close to each other. The presented results are rather convenient to handle both analytically and numerically, while they are shown to be in good agreement with results from respective computer simulations. In addition, it is shown that as in the case of conventional relaying networks, the behaviour of underlay relaying cognitive networks with best relay selection depends significantly on the number of involved relays
    corecore