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Bit Error Rate of Underlay Decode-and-Forward

Cognitive Networks with Best Relay Selection

Khuong Ho-Van, Paschalis C. Sofotasios, George C. Alexandropoulos, and Steven Freear

Abstract: This paper provides an analytic performance evaluation

of the bit error rate (BER) of underlay decode-and-forward cogni-

tive networks with best relay selection over Rayleigh multipath fad-

ing channels. A generalized BER expression valid for arbitrary op-

erational parameters is firstly presented in the form of a single in-

tegral, which is then employed for determining the diversity order

and coding gain for different best relay selection scenarios. Fur-

thermore, a novel and highly accurate closed-form approximate

BER expression is derived for the specific case where relays are lo-

cated relatively close to each other. The presented results are rather

convenient to handle both analytically and numerically, while they

are shown to be in good agreement with results from respective

computer simulations. In addition, it is shown that as in the case of

conventional relaying networks, the behaviour of underlay relaying

cognitive networks with best relay selection depends significantly

on the number of involved relays.

Index Terms: Bit error rate, cognitive radios, cooperative relaying,

underlay communication, relay selection, Rayleigh fading.

I. INTRODUCTION

An extensive survey on frequency spectrum utilization carried

out by the Federal Communications Commission has reported a

severe spectrum under-utilization [1]. However, this is in con-

trast with the currently witnessed spectrum scarcity due to the

highly increasing spectrum demand for emerging wireless com-

munication services. Fortunately, it has been shown that this

issue can be effectively resolved with the aid of cognitive radio

(CR) technology which allows secondary users (SUs) to co-exist

with primary users (PUs) on the frequency bands inherently al-

located to the latters [2]. As a result, the corresponding spectrum

utilization efficiency can be substantially improved.

Ensuring the avoidance of undesired interference on PUs is

the most critical task and challenge in CR technology. To this
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end, the involved SUs can typically operate in three different

modes: interweave; overlay; and underlay [3]. Due to the advan-

tageous feature of low implementation complexity, the under-

lay mode has recently attracted a notable deal of attention, e.g.
[3–17] and the references therein. In this mode, SUs must adap-

tively control their transmit power in order for the induced in-

terference to be strictly maintained within levels that can be tol-

erated by PUs. This ultimately leads to the drastically shortened

transmission range of SUs, which can be compensated in turn

with the aid of cooperative relaying techniques [18]. Indeed, by

taking advantage of intermediate users −so called relays− lo-

cated between the source and the destination to relay source in-

formation, underlay relaying cognitive networks can overcome

the aforementioned drawback thanks to the resulting short range

communication with low path-loss effects. The relays can op-

erate according to various cooperative relaying schemes such

as the decode-and-forward (DF) and amplify-and-forward (AF)

[19]. In the former scheme, the relays decode the received sig-

nal and then re-encode the decoded information before relaying

it to the destination. In the latter scheme, the relays just am-

plify the received signal and forward it to the destination. It is

recalled here that cooperative relaying with selection of a single

relay among a set of possible candidates requires less system

resources, such as bandwidth and power, than multi-relay as-

sisted transmission while maintaining the same diversity order

[3, 20–23].

Outage probability (OP) of underlay DF cognitive networks

with relay selection has been extensively studied in several re-

search works, such as [3–12]. Specifically, the authors in [3],

[5–12] assume single-carrier transmission, while [4] considers

multi-carrier transmission. Furthermore, in order to guarantee

certain quality of service for PUs, the authors in [3], [5], [6],

[11], [12] investigate both interference power and maximum

transmit power constraints, while [7], [9], [10] study only the in-

terference power constraint. The OP constraint at PUs was con-

sidered in [8], while several relay selection methods have been

proposed in [3, 6–8, 11, 24–26]. For instance, in the method of

[3, 24], the selected relay is the one that maximizes the end-to-

end signal-to-noise ratio (SNR). The authors in [6–8, 25] select

the relay among all possible candidates (i.e., all relays are as-

sumed to successfully decode source information) that results in

the largest SNR at the destination while the authors in [26] opt

for the relay among all possible candidates (i.e., relays are as-

sumed to satisfy the interference power constraint) that results in

either the largest or smallest SNR at the destination, or the mini-

mum level of interference to PUs. In [11], the N -th best relay se-

lection method is proposed. However, in spite of the potential of

underlay DF cognitive networks, only few works have addressed

the BER analysis of these systems [26–30]. Nevertheless, the
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works in [27–30] have not investigated the impact of relay se-

lection, which will be shown to be a particularly cumbersome

task, even in deriving an approximate BER expression. It is also

noted that the work in [26] studies the effect of relay selection on

the BER performance but with a simplified system model, where

the relays are assumed geographically close, the source does not

interfere with the PU and only interference power constraint is

considered. It is recalled here that the OP analysis can provide

an insight into the information-theoretic performance limit and

motivate practical code designs to reach it. However, there is

no systematic tool that determines when this limit is reached,

but instead the BER analysis provides the realistic measure of

system performance for a target spectral efficiency, i.e. signal’s

modulation level. This renders the theoretical and practical im-

portance of the BER analysis more significant.

Motivated by the above, the aim of the present work is to

evaluate analytically the BER performance of underlay DF cog-

nitive networks with the best relay selection scheme proposed

in [3], which is proven to be capacity optimal. The correspond-

ing analysis takes into account both the interference power con-

straint and the maximum transmit power constraint. For the sake

of computer simulation time and energy savings, it is imperative

to possess the BER performance. However, since deriving an

exact closed-form BER expression is extremely difficult, if not

impossible, in this paper we resort to the derivation of a tractable

closed-form approximation. It is extensively shown that the de-

rived expression is highly accurate and this is verified through

comparisons with results obtained from corresponding Monte

Carlo simulations. As a result, the proposed closed-form ap-

proximate BER expression facilitates in assessing effectively the

system behaviour and performance in key operational parame-

ters, without necessarily resorting to energy exhaustive and time

consuming simulations. It is additionally shown that, as in the

case of conventional relaying networks, the BER performance

of underlay relaying cognitive networks with best relay selec-

tion depends significantly on the number of employed relays.

The contributions of this paper are summarized as follows1:

• An exact BER analysis framework is proposed for underlay

DF cognitive networks with best relay selection under general

operational conditions, such as arbitrary number of relays, un-

equal fading powers among channels, both interference power

and maximum transmit power constraints. The derived BER ex-

pression is in the form of single integral, which can be easily

evaluated numerically.

• Under general operational conditions, we obtain the diver-

sity order and coding gain for underlay DF cognitive networks

with best relay selection. It is shown that this type of networks

achieves the full diversity order.

1It should be emphasized that the analysis presented in this paper is com-
pletely different and more complicated than [26] for the following reasons:
Firstly, the relay selection scheme considered in this paper is different from
that in [26]; the former is a capacity-optimal selection scheme while the latter
is not. Secondly, we consider both interference power and maximum trans-
mit power constraints whereas, [26] only considers the interference power con-
straint, which definitely renders the analysis presented hereinafter more complex
than [26]. Thirdly, our system model investigates both cases of arbitrarily and
closely located relays, while [26] only demonstrates the case of closely located
relays. Finally, our analysis is more thorough (including the analysis of the exact
and approximate BER as well as the diversity order and coding gain) than [26],
where only an approximate BER analysis is presented.
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Fig. 1. The considered underlay relaying cognitive network.

• In the specific case where relays are located relatively close

to each other, we propose a tight approximation for the corre-

sponding BER. This expression is given in closed form and ap-

pears to be particularly useful in analytically evaluating the BER

performance of underlay DF cognitive networks with best relay

selection.

The remainder of this paper is organized as follows: The sys-

tem model is described in Section II. The corresponding BER

analysis for underlay DF cognitive networks with best relay se-

lection is presented in Section III. Simulated and analytical re-

sults for the evaluation and validation of the presented BER ex-

pressions are provided in Section IV. Finally, useful remarks

and conclusions are included in Section V.

II. SYSTEM MODEL

We investigate an underlay relaying cognitive network as

depicted in Fig. 1. In the secondary network, the source S
transmits its information to the destination D with the help

of the best relay R∗, selected from the cluster of K relays

R = {R1, R2, ..., RK}. It is also assumed that the operation

of S and R∗ interferes with that of the PU PRx. Wireless chan-

nels are considered independent and frequency flat with fading

following the Rayleigh distribution. To this effect, the channel

coefficient between a transmitter t and a receiver r can be mod-

elled as2 ht,r ∼ CN (0, λ−1
t,r ) where t ∈ {S,R1, R2, ..., RK}

and r ∈ {R1, R2, ..., RK , D, PRx}.

As illustrated in Fig. 1, cooperative relaying operates in two

phases; in the first phase, S broadcasts a sequence of q mod-

ulated symbols xS = {xS(1), xS(2), ..., xS(q)} with symbol

energy PS = E{|xS(u)|2}, u = 1, 2, ..., q, where E{·} de-

notes statistical expectation. Subsequently, the best relay R∗
demodulates this symbol sequence while the other relays re-

main idle, and the demodulated symbols are re-modulated as

xR∗
= [xR∗

(1), xR∗
(2), ..., xR∗

(q)] with symbol energy PR∗
,

before forwarded to D in the second phase. For notation sim-

plicity and without loss of generality, the time index q is here-

inafter ignored. To this end, the received signal at the relays and

2h ∼ CN (a, p) denotes a circular symmetric complex Gaussian random vari-
able with mean a and variance p.
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the destination can be modelled as

yt,r = ht,rxt + nt,r (1)

where nt,r ∼ CN (0, N0) is the additive white Gaussian

noise (AWGN) at user r, while t ∈ {S,R∗} and r ∈
{R1, R2, ..., RK , D}.

It is recalled that operating in the underlay mode as in [3], the

SU t (i.e. both S and R∗) is required to set its transmit power

as Pt = min(Ī/|ht,PRx
|2, P̄ ) for maximizing the transmission

range while meeting both the interference power constraint, i.e.
Pt ≤ Ī/|ht,PRx

|2, and the maximum transmit power constraint,

i.e. Pt ≤ P̄ . The notation Ī represents the maximum interfer-

ence power that PU can tolerate and P̄ is the maximum transmit

power designed for the corresponding SU. It is also noted that Ī
implicitly stands for the interference limit from SU and excludes

any interference from other PUs [3]. Likewise, the primary net-

work is implicitly assumed to operate reliably for interference

levels caused by SUs up to Ī , regardless of the interference al-

ready existing in this network. In other words, PU-to-PU inter-

ference is not necessarily accounted when setting Pt. With this

transmit power setting, (1) renders the following instantaneous

SNR expression:

γt,r =
Pt|ht,r|2

N0
= min

(
Ī

|ht,PRx
|2 , P̄

) |ht,r|2
N0

. (2)

By letting ηt,r = min(Ī/|ht,PRx
|2, P̄ )|ht,r|2, the cumulative

density function (cdf) of ηt,r, denoted as Fηt,r (x), is given by

[3, eq. (8)]. To this effect and since γt,r = ηt,r/N0, the cdf of

γt,r is Fγt,r (x) = Pr {γt,r ≤ x} which can be expressed as

Fγt,r
(x) = Pr

{
ηt,r
N0

≤ x

}

= Fηt,r
(N0x)

= 1 +

(

e−
λt,rΛt,rI

P

1 +
Λt,rI

x

− 1

)

e−
λt,rx

P

(3)

where Λt,r = λt,PRx
/λt,r, I = Ī/N0 and P = P̄ /N0, while

Pr{X} is the probability of the event X .

According to the proactive DF relaying principle in [3], the

best relay R∗ is the one having the largest end-to-end SNR.

Thus, the end-to-end SNR can be mathematically expressed as

γe2e = max
Rk∈R

(min (γS,Rk
, γRk,D)) . (4)

Hence, since γS,Rk
and γRk,D are statistically independent,

it follows that the corresponding cdf of γe2e is given by

Fγe2e (x) = Pr {γe2e < x}, which yields

Fγe2e (x) =
K∏

k=1

Pr {min (γS,Rk
, γRk,D) < x}

=
K∏

k=1

(1− Pr {min (γS,Rk
, γRk,D) ≥ x})

=

K∏

k=1

(1− Pr {γS,Rk
≥ x}Pr {γRk,D ≥ x})

=
K∏

k=1

{

1−
[

1− FγS,Rk
(x)
] [

1− FγRk,D
(x)
]}

(5)

Therefore, by substituting (3) in (5), one obtains (6) at the top of

the next page. Importantly, the above expression is particularly

useful in the subsequent error probability analysis.

III. BIT ERROR RATE ANALYSIS

Let Be|γe2e
(x) be the BER conditioned on γe2e, which de-

pends on the employed modulation scheme. The average BER

for the underlay DF cognitive network with the best relay selec-

tion scheme described in Section II can be obtained as

Be =

∫ ∞

0

Be|γe2e
(x) fγe2e (x) dx (7)

where fγe2e(x) is the probability density function (pdf) of γe2e.

The following BER analysis framework is valid for3

M−ary Quadrature Amplitude Modulation (M−QAM) with

arbitrary values of modulation order M = 2h. For

square M−QAM with h even and rectangular M−QAM

with h odd, Be|γe2e
(x) is given by 2Θ

(√
M,m,M ;x

)

and

Θ(G, u,M ;x) + Θ (J, u,M ;x) in [37, eq. (16)] and [37, eq.

(22)], respectively. There, Θ(s, v,M ;x) is given by (8) (top of

the next page) with m = 3/(M − 1), u = 6/(G2 + J2 − 2),
G = 2(h−1)/2 and J = 2(h+1)/2. Furthermore, the notations ⌊.⌋
and Q(.) are the floor function and the one dimensional Gaus-

sian Q−function [38], respectively, which are both included

as standard built-in functions in popular mathematical software

packages such as MAPLE, MATLAB and MATHEMATICA.

Given Be|γe2e
(x) and fγe2e

(x), it immediately follows that

for M−QAM constellations, Be can be expressed as

Be =

{
Φ(G, u,M ;χ) + Φ (J, u,M ;χ) , h odd

2Φ
(√

M,m,M ;χ
)

, h even
(9)

where χ = {λS,Rk
, λRk,D,ΛS,Rk

,ΛRk,D, I, P} includes

the set of system operational parameters and the function

Φ(s, v,M ;χ) is given by (10) at the top of the next page. It

is noted that in (10), the function ζ (β;χ) is expressed as

ζ (β;χ) =

∫ ∞

0

Q
(√

βx
)

fγe2e
(x) dx. (11)

A. Exact Analysis

By integrating (11) once by parts and then performing the

necessary change of variables and substituting (6) into the result,

one obtains the following compact integral representation:

ζ (β;χ) =

√
β

2
√
2π

∞∫

0

Fγe2e(x)√
xe

βx
2

dx+
(

Q
(√

βx
)

Fγe2e
(x)
)∣
∣
∣

∞

0

(12)

=
1√
2π

∫ ∞

0

Fγe2e

(
t2

β

)

e−
t2

2 dt

3The BER of other modulation schemes such as M−ary Phase Shift Keying
(M−PSK) can be analyzed in a similar manner.
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Fγe2e (x) =

K∏

k=1

{

1−
(

1− e−λS,Rk
ΛS,Rk

I/P

1 + ΛS,Rk
I/x

)(

1− e−λRk,DΛRk,DI/P

ΛRk,DI/x+ 1

)

e−(λS,Rk
+λRk,D)x/P

}

(6)

Θ(s, v,M ;x) ,
2

slog2M

log2s∑

g=1

∑(1−2−g)s−1

i=0
(−1)

⌊

i2g−1

s

⌋

Q

(√

(2i+ 1)
2
vx

)(

2g−1 −
⌊
i2g−1

s
+

1

2

⌋)

(8)

Φ(s, v,M ;χ) ,

∫ ∞

0

Θ(s, v,M ;x) fγe2e (x) dx =
2

slog2M

log2s∑

g=1

∑(1−2−g)s−1

i=0

(−1)

⌊

i2g−1

s

⌋

ζ
(

[2i+ 1]
2
v;χ

)

(

2g−1 −
⌊
i2g−1

s + 1
2

⌋)−1 (10)

ζ (β;χ) =
1√
2π

∫ ∞

0

K∏

k=1






1−

(

1− t2e
−λS,Rk

ΛS,Rk
I/P

t2+βΛS,Rk
I

)(

1− t2e
−λRk,DΛRk,DI/P

t2+βΛRk,DI

)

e
(λS,Rk

+λRk,D)t2
βP






e−

t2

2 dt (13)

which can be equivalently expressed according to (13) at the top

of this page. Unfortunately, it is extremely difficult, if not im-

possible, to obtain a closed-form solution for the above integral

for arbitrary operational parameters K, λS,Rk
, λRk,D, ΛS,Rk

,

ΛRk,D, I and P . However, even though (13) is not expressed

in closed form, substituting (13) in (10) and then into (9) yields

an exact single integral-form BER expression that to the best of

the authors’ knowledge has not been reported in the open litera-

ture. Furthermore, the resulting expression can be rather useful

in analyzing the BER performance and its numerical evaluation

is not problematic due to singularities and convergence issues.

The latter holds due to the presence of the exponential term with

negative arguments in the numerator and the shifted arguments

in the denominator of (13).

B. Asymptotic Analysis

Deriving the diversity order and coding gain of the consid-

ered underlay DF cognitive networks with best relay selection

requires investigation of the BER in the high SNR regime. To

this end, we assume I = τP , where τ is a positive real constant,

and define the average SNR as γ = P according to [42]. Hence,

by performing the necessary change of variables, (13) can be

rewritten as in (14) (top of the next page). It is recalled here

that eα/x
x→∞≈ 1 + α

x where α is a constant. Therefore, by sub-

stituting accordingly in (14) and ignoring small-valued terms,

one obtains (15) at the top of the next page. Using the fact that

γ̄ → ∞, the t2 terms in the denominators of (15) can be omit-

ted. As such, the above expression can be further approximated

according to (16). Notably, the T integral in (16) can be solved

in closed form with the aid of [39, eq. (3.461.2)], namely as

T =
(2K − 1)!!

√
2π

2
. (17)

Substituting (17) into (16) yields

ζ (β;χ)
γ̄→∞≈

(
1

γ̄

)K J
2βK

(18)

where

J =

K∏

k=1

(
e
−λS,Rk

ΛS,Rk
τ

ΛS,Rk
τ + e

−λRk,DΛRk,Dτ

ΛRk,Dτ + λS,Rk
+ λRk,D

)

[(2K − 1)!!]−1
.

(19)

By inserting (18) in (10), one obtains (20) at the top of the next

page. To this effect and by performing the necessary change of

variables, the following compact representation for the BER of

M−QAM in the high-SNR regime is deduced

Be

γ̄→∞≈
{

Go/γ̄
K , h odd

Ge/γ̄
K , h even

(21)

where Go and Ge are given at the top of the next page.

It is recalled here in the high SNR regime, Be can be ex-

pressed in terms of the diversity order, Gd, and the coding gain,

Gc, as Be

γ̄→∞≈ (Gcγ̄)
−Gd according to [24]. As such, it is

straightforward to infer from (21) that underlay DF cognitive

networks with best relay selection achieve the full diversity or-

der of Gd = K offered by all available secondary relays; this

result coincides with [3, Lemma 2]. As discovered in [20], the

diversity order of cooperative networks with K relays and best

relay selection is K. Hence, as γ̄ → ∞, the considered cog-

nitive network becomes non-cognitive and the diversity order is

the same with [20]. Moreover, the coding gain is given by

Gc =

{

G−1/K
o , h odd

G−1/K
e , h even

(24)

C. Special Case: Closely Located Relays

We assume that all involved relays are located close to each-

other such that: i) the fading powers between S and all relays

are identical, i.e. λS,Rk
= λ1, ∀k = 1, 2, ...,K; ii) the fading

powers between D and all relays are equal, i.e. λRk,D = λ2,

∀k = 1, 2, ...,K; and iii) the fading powers between PU and

all relays are the same, i.e. λRk,PRx
= λ4, ∀k = 1, 2, ...,K.

For notation simplicity, although not necessary for the deriva-

tion that follows, we also denote λS,PRx
= λ3 and we assume
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ζ (β;χ) =

∞∫

0

K∏

k=1

{

1−
(

1− t2e−λS,Rk
ΛS,Rk

τ

t2 + βΛS,Rk
τ γ̄

)(

1− t2e−λRk,DΛRk,Dτ

t2 + βΛRk,Dτ γ̄

)

e−
(λS,Rk

+λRk,D)t2
βγ̄

}

e−
t2

2√
2π

dt (14)

ζ (β;χ)
γ̄→∞≈ 1√

2π

∞∫

0

K∏

k=1

(
t2e−λS,Rk

ΛS,Rk
τ

t2 + βΛS,Rk
τ γ̄

+
t2e−λRk,DΛRk,Dτ

t2 + βΛRk,Dτ γ̄
+

(λS,Rk
+ λRk,D) t2

βγ̄

)

e−
t2

2 dt (15)

ζ (β;χ)
γ̄→∞≈

(
1

γ̄

)K
1√
2π

K∏

k=1

(
e−λS,Rk

ΛS,Rk
τ

βΛS,Rk
τ

+
e−λRk,DΛRk,Dτ

βΛRk,Dτ
+

λS,Rk
+ λRk,D

β

) ∞∫

0

t2Ke−
t2

2 dt

︸ ︷︷ ︸

,T

(16)

Φ(s, v,M ;χ)
γ̄→∞≈

(
1

γ̄K

) J
vKslog2M

log2s∑

g=1

∑(1−2−g)s−1

i=0

(−1)

⌊

i2g−1

s

⌋

(2i+ 1)
2K

(

2g−1 −
⌊
i2g−1

s
+

1

2

⌋)

(20)

Go =

log2G∑

g=1

∑(1−2−g)G−1

i=0

J (−1)

⌊

i2g−1

G

⌋ (

2g−1 −
⌊
i2g−1

G + 1
2

⌋)

(2i+ 1)
2K

GuK log2M
+

log2J∑

g=1

∑(1−2−g)J−1

i=0

J (−1)

⌊

i2g−1

J

⌋ (

2g−1 −
⌊
i2g−1

J + 1
2

⌋)

(2i+ 1)
2K

JuK log2M

(22)

Ge =
2J√

MmK log2M

log2

√
M

∑

g=1

∑(1−2−g)
√
M−1

i=0

(−1)

⌊

i2g−1
√

M

⌋

(2i+ 1)
2K

(

2g−1 −
⌊
i2g−1

√
M

+
1

2

⌋)

(23)

the general case where λ1 ̸= λ2 ̸= λ3 ̸= λ4. The adopted as-

sumption on the geographical closeness of the relays is quite rea-

sonable, particularly in wireless sensor networks where neigh-

bouring sensor nodes form a cluster [36], and widely accepted

and recently exploited, e.g. see [9, 11, 24, 25, 31–35] and refer-

ences therein. Based on this assumption, (6) can be re-expressed

by the following simplified representation:

Fγe2e (x) =






1−

(

1− e−λ1Λ1I/P

Λ1I/x+1

)(

1− e−λ2Λ2I/P

Λ2I/x+1

)

e(λ1+λ2)x/P







K

(25)

where Λ1 = ΛS,Rk
= λS,PRx/λS,Rk

= λ3/λ1 and Λ2 =
ΛRk,D = λRk,PRx

/λRk,D = λ4/λ2. To this effect, by con-

secutively applying the binomial expansion [39, eq. (1. 111)] in

(25), one deduces (26) (top of the next page) where the binomial

coefficient is defined as Ca
K , K!

a!(K−a)! . Based on this, the pdf

of γe2e can be obtained by taking the first derivative of Fγe2e (x),
which yields (27). Therefore, by substituting (27) into (11), one

obtains the closed form expression as (28), at the top of the next

page, where σ = a (λ1 + λ2) /P and

Ψ(α, β, b, c; ε1, ε2) =

∞∫

0

e−αx Q
(√

βx
)

(x+ ε1)
b
(x+ ε2)

c
dx. (29)

Evidently, deriving a closed-form expression for Be is subject

to the analytical evaluation of (29). To the best of our knowl-

edge, an exact closed-form expression for (29) does not exist.

Therefore, we present hereinafter a simple and accurate closed-

form approximation for (29) which can be utilized in analyzing

the BER performance of the underlay DF cognitive networks

with best relay selection straightforwardly and without essen-

tially requiring time-consuming computer simulations. To this

end, we firstly insert erfc(z) , 2Q(
√
2z) into [40, eq. (14)] to

yield the approximation Q
(√

βx
)
≈ 1

4

(
1
3e

− β
2 x + e−

2β
3 x
)

. By

substituting accordingly in (29), one obtains

Ψ(α, β, b, c; ε1, ε2) =
1

12
T

(

α+
β

2
, b, c; ε1, ε2

)

+
1

4
T

(

α+
2β

3
, b, c; ε1, ε2

) (30)

where the function T(α, b, c; ε1, ε2) is defined as

T(α, b, c; ε1, ε2) =

∞∫

0

e−αx

(x+ ε1)
b
(x+ ε2)

c
dx. (31)

It is straightforward to infer that T (α, b, c; ε1, ε2) = 1/α when

b = c = 0. Otherwise, its exact closed-form expression is given

for different cases as follows.

• Case 1: ε1 = ε2.
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Fγe2e (x) =

K∑

a=0

a∑

n,m=0

n∑

b=0

m∑

c=0

Ca
KCn

aC
m
a Cb

nC
c
m(−1)

a+n+m+b+c

(Λ1I)
−b

(Λ2I)
−c

e(nλ1Λ1+mλ2Λ2)I/P

e−a(λ1+λ2)x/P

(x+ Λ1I)
b
(x+ Λ2I)

c
(26)

fγe2e (x) =
K∑

a=0

a∑

n,m=0

n∑

b=0

m∑

c=0

Ca
KCn

aC
m
a Cb

nC
c
m(−1)

a+n+m+b+c+1

(Λ1I)
−b

(Λ2I)
−c

e(nλ1Λ1+mλ2Λ2)I/P

a(λ1+λ2)
P

(x+Λ1I)
−b

(x+Λ2I)
c + b (x+Λ2I)

−c

(x+Λ1I)
b+1 + c (x+Λ1I)

−b

(x+Λ2I)
c+1

e
a(λ1+λ2)x

P

(27)

ζ (β;χ) =
K∑

a=0

a∑

n,m=0

n∑

b=0

m∑

c=0

σΨ(σ, β, b, c; Λ1I,Λ2I) + bΨ(σ, β, b+ 1, c; Λ1I,Λ2I) + cΨ(σ, β, b, c+ 1;Λ1I,Λ2I)

(−1)
a+n+m+b+c+1

(Ca
KCn

aC
m
a Cb

nC
c
m)

−1
(Λ1I)

−b
(Λ2I)

−c
e(nλ1Λ1+mλ2Λ2)I/P

(28)

For this special case, a closed-form expression for T(α, b, c; ε1, ε2)
is given by

T(α, b, c; ε1, ε2) = µ (α, b+ c; ε1) (32)

where

µ (α, d; ε) =

∞∫

0

e−αx

(x+ ε)
d
dx = eαε

∞∫

ε

e−αy

yd
dy

=
(−1)

d
Ei (−αε)

α1−de−αεΓ (d)
+

d−2∑

w=0

(−1)
w
αwεw−d+1

w+1∏

n=1
(d− n)

.

(33)

In deriving (33), the last integral was obtained in closed form

with the aid of [39, eq. (358.4)] while Ei(x) = −∫∞−x
e−t

t dt de-

notes the exponential integral function [39, eq. (8.211)], which

is a built-in function in most mathematical software packages.

• Case 2: ε1 ̸= ε2.

Since b and c are positive integers, either b or c can be zero.

Therefore, the following subcases hold:

– Subcase A: b = 0 and c > 0. It follows straightforwardly

that

T(α, b, c; ε1, ε2) =

∞∫

0

e−αx

(x+ ε2)
c dx = µ (α, c; ε2) . (34)

– Subcase B: b > 0 and c = 0. In this subcase, we have

T(α, b, c; ε1, ε2) =

∞∫

0

e−αx

(x+ ε1)
b
dx = µ (α, b; ε1) . (35)

– Subcase C: b > 0 and c > 0. We firstly apply the partial

fractions identity for decomposing the following rational func-

tion as

1

(x+ ε1)
b
(x+ ε2)

c
=

b∑

d=1

Ad

(x+ ε1)
d
+

c∑

g=1

Bg

(x+ ε2)
g (36)

where

Ab−j+1 =

(−1)
j−1

j−2∏

l=0

(c+ l)

(j − 1)!(ε2 − ε1)
c+j−1

, j ∈ [1, b] (37)

and

Bc−j+1 =

(−1)
j−1

j−2∏

l=0

(b+ l)

(j − 1)!(ε1 − ε2)
b+j−1

, j ∈ [1, c]. (38)

To this effect, by substituting (36) into (31) one obtains,

T (α, b, c; ε1, ε2) =
b∑

d=1

Adµ (α, d; ε1) +
c∑

g=1

Bgµ (α, g; ε2).

(39)

By substituting (32) for Λ1 = Λ2 and (34), (35) or (39) for

Λ1 ̸= Λ2 in (30) and then in (28), a closed-form approximate

expression for ζ(β;χ) is obtained. Using this expression in (10)

and finally in (9), a closed-form approximate expression for the

average BER of M−QAM is deduced that will be shown in the

next section to be highly accurate for all tested cases. To the best

of the author’s knowledge, the presented closed-form approxi-

mation holding for closely spaced relays has not been reported

before in the open technical literature.

IV. NUMERICAL RESULTS

This section is devoted to the validation of the presented ana-

lytical results for the BER performance of the considered un-

derlay DF cognitive networks with best relay selection over

Rayleigh fading channels. Without loss of generality, two

typical modulation schemes are considered, namely, 2−QAM,

also known as Binary Phase Shift Keying (BPSK), for odd h,

and 4−QAM, also known as Quadrature Phase Shift Keying

(QPSK), for even h.

A. General Scenario: Arbitrarily Located Relays

This subsection illustrates numerically evaluated results for

the analytical expressions presented in Subsections III-A and

III-B. Towards this end, we select an arbitrary network topol-

ogy as shown in Fig. 2. The fading power for the t → r chan-

nel is λ−1
t,r = d−α

t,r according to [43], where α is the path-loss

exponent and dt,r is the distance between transmitter t and re-

ceiver r. In the sequel, α = 3 is considered for limiting case-

studies. Figure 3 demonstrates the BER performance of under-
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Fig. 2. Network topology for arbitrarily located relays.
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Fig. 3. BER performance versus the maximum transmit power-to-noise
variance ratio P for arbitrarily located relays in Fig. 2.

lay DF cognitive networks with best relay selection with respect

to the variation of the maximum transmit power-to-noise vari-

ance ratio P = P̄ /N0 for I = τP with τ = 0.5. Different

number of relays, K = {1, 3, 5}, corresponds to various relay

sets, {R1}, {R1, R2, R3}, {R1, R2, R3, R4, R5}, respectively.

It is observed that the exact analysis in (13) matches perfectly

with the Monte Carlo simulation while coinciding the asymp-

totic analysis in (18) at large values of P , validating the accuracy

of the derived expressions. Moreover, the performance is signif-

icantly improved as K increases. This comes from the fact that

the larger the K, the higher the diversity order achieved by the

system and thus, the smaller corresponding BER. Furthermore,

the results are rather reasonable in the sense that the system per-

formance is better with lower modulation levels.

B. Special Case: Closely Located Relays

We indicatively consider the special case of closely located

relays, as described in Subsection III-C. To this end, we con-

sider the following simulation parameters: λ1 = 1, λ2 = 2,

λ3 = 6, λ4 = 7, and I = Ī/N0 = 20 dB.
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10
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B
E

R

P (dB)
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K=3: Simulation
K=3: Analysis
K=5: Simulation
K=5: Analysis

2−QAM

4−QAM

Fig. 4. BER performance versus the maximum transmit power-to-noise
variance ratio P for closely located relays.

Figure 4 illustrates the BER behaviour of underlay DF cog-

nitive networks with best relay selection with respect to P for

different number of relays K. It is seen that the analytical re-

sults are in nearly excellent agreement with the corresponding

simulated results. This confirms that even though the proposed

expression given by (28) is an approximation, it is particularly

tight and accurate. Furthermore, the performance of these net-

works is significantly improved as P increases. This is quite

reasonable since P upper bounds the transmit power of SUs and

hence, the larger the P , the larger the transmit power, which ul-

timately reduces the corresponding BER. Nevertheless, like un-

derlay DF cognitive networks without relay selection (e.g. see

[44] and references therein), the BER performance of under-

lay DF cognitive networks with best relay selection saturates at

large values of P . As seen in Fig. 4, the performance satura-

tion phenomenon4 occurs for K = {1, 3}. This phenomenon

emerges from the fact that the transmit power of the SU is sub-

ject to both maximum transmit power and interference power

constraints. In other words, its transmit power is constrained by

the minimum value of the maximum transmit power P and the

maximum interference power I . As a result, for large values of

P , the corresponding transmit power is completely determined

by I , resulting in unchanged BER levels for any increase of P .

Furthermore, it is observed in Fig. 4 that, as in conventional

relaying networks, the number of relays K appears to have a

significant impact on the performance of underlay DF cognitive

networks with best relay selection. As seen in Fig. 4, increasing

K enhances considerably the BER performance, especially at

large values of P . Indicatively, for a target BER of 2 × 10−2

and the 2−QAM modulation, relay selection achieves the SNR

gains of about 8 dB and 9.5 dB, compared to scenarios with

no relay selection (single-relay case), for K = 3 and K = 5,

respectively. This SNR gain increases at lower BER targets;

4The same observation is also expected for K = 5. However, for K = 5,
the performance saturation occurs at very low BERs and hence, it is exhaustive
and time consuming to run Monte Carlo simulations at those very low BERs
to validate the analytical results. As a result, in Fig. 4 we have obtained BER
results till 10−5 and as shown the saturation phenomenon can not be observed
for K=5.
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Fig. 5. BER performance versus the number of relays, K.

for example, the SNR gain of relay selection with K = 5 over

K = 3 increases from 1.5 dB to 3.3 dB when the BER target

varies from 2×10−2 to 3×10−4, respectively. This owes to the

fact that the higher the K, the higher the corresponding diversity

order. Furthermore, the modulation level drastically impacts the

BER performance.

Figure 5 illustrates the BER performance of underlay DF cog-

nitive networks with best relay selection with respect to the

number of relays and P = 8 dB. It is shown that the analyti-

cal and simulated results are in good agreement, which verifies

the validity of the proposed expression in (28). Also, the re-

sults are reasonable since the BER reduces as modulation level

decreases and as the number of relays increases. We define

the performance improvement, PGM , with respect to the in-

crease in the number of relays from K1 to K2 for a certain

modulation level M as the ratio of the BER corresponding to

K1, Be(K1), to the BER corresponding to K2, Be(K2), i.e.
PGM = Be(K1)/Be(K2). It is shown that performance im-

provements with respect to the increase in the number of re-

lays is better achievable for lower modulation constellations.

For example, PG2 = 23.5149 for 2−QAM in contrary to

PG4 = 5.6469 for 4−QAM when K increases from 3 to 15.

V. CONCLUSION

This work was devoted to the analysis of the BER perfor-

mance of underlay DF cognitive networks with best relay se-

lection over Rayleigh fading channels for both the general case

of arbitrarily located relays and the special case of closely lo-

cated relays. For the former case, we present an exact single

integral-form BER expression and derived the diversity order

and coding gain for best relay selection scenarios while for the

latter case, we presented a tight closed-form approximation for

the corresponding BER. The algebraic representation of the pre-

sented results is relatively convenient to handle both analytically

and numerically and it was shown that the BER performance of

underlay DF cognitive networks with best relay selection is sig-

nificantly improved as the number of relays increases.
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