523 research outputs found

    MIMO無線伝送に適したスケーラブルビデオコーディングに関する研究

    Get PDF
    Because of the COVID-19 pandemic, a new normal has taken over. It affects the higher demand for using video traffic. H.264/SVC is the video compression standard with several advantages compared with the previous standard, such as a smaller storage space and scalability of video quality depending on network quality. The H.264/SVC bitstream includes one base layer (BL), the most important layer, and one or more enhancement layers (EL) which can be leveraged to optimize the video scalability depending on the network condition and user preferences. The method of transmission is powerful as the video coding method. The transmission of the good video quality will not be effective without a suitable transmission method. In this thesis, we study and research the H.264 scalable video coding transmission with IEEE 802.11ac standard MIMO wireless transmission. We focus on the suitable transmission method for H.264/SVC in a different environment. We divide the research focusing on two issues: 1. With the difference channel environment: The suitable H.264/SVC transmission technique in IEEE 802.11ac with the specific quantization parameter of video encoding was proposed. This aim is to compare three techniques in IEEE 802.11ac: STBC, SISO, and MIMO. In this focus, only the accuracy of the video was considered to measure the efficiency of the transmission technique. This part proposed to utilize STBC to improve the quality of H.264/SVC video transmission. We have shown the performance of H.264/SVC video transmission with three multiple antenna techniques. The results show that STBC is the best technique for H.264/SVC transmission under a low-quality channel environment. The best result shows that STBC in channel model D can improve the PSNR by 67 percent and 76 percent compared with SISO and MIMO, respectively, at low SNR of 20 dB. Due to STBC transmitting multiple copies of data, it can increase data reliability. We proved that STBC is the most suitable multiple antenna technique to improve the quality and realizability of video transmission in both PSNR and bit error rate (BER). 2. With the different transmission distance: H.264/SVC video transmission on MIMO with RSSI feedback was proposed. This aim to proposes the allocation of packetization in the transmission packet and the compromising of quantization parameter encoding both vary on the channel efficiency. This part proposed a MIMO transmission system for H.264 scalable video coding that does not require full CSI feedback. Instead of the CSI feedback, we have used the RSSI and table of encoding rules obtained via link simulation in MATLAB. The encoding rule takes the form of the encoding ratio between the base and enhancement layer, which was done by adjusting the quantization parameter. This proposed system has been shown to improve the PSNR by at least 16 dB and increase the effective distance of 6 meters above compared with the conventional method.九州工業大学博士学位論文 学位記番号:情工博甲第372号 学位授与年月日:令和4年12月27日1 Introduction|2 Video Transmission System Overview|3 H.264/SVC Video Transmission by IEEE 802.11ac Techniques|4 H.264/SVC Video Transmission on MIMO with RSSI Feedback|5 Conclusion and Future Work九州工業大学令和4年

    Joint call admission control and resource allocation for H.264 SVC transmission over OFDMA networks

    Get PDF

    A parallel H.264/SVC encoder for high definition video conferencing

    Get PDF
    In this paper we present a video encoder specially developed and configured for high definition (HD) video conferencing. This video encoder brings together the following three requirements: H.264/Scalable Video Coding (SVC), parallel encoding on multicore platforms, and parallel-friendly rate control. With the first requirement, a minimum quality of service to every end-user receiver over Internet Protocol networks is guaranteed. With the second one, real-time execution is accomplished and, for this purpose, slice-level parallelism, for the main encoding loop, and block-level parallelism, for the upsampling and interpolation filtering processes, are combined. With the third one, a proper HD video content delivery under certain bit rate and end-to-end delay constraints is ensured. The experimental results prove that the proposed H.264/SVC video encoder is able to operate in real time over a wide range of target bit rates at the expense of reasonable losses in rate-distortion efficiency due to the frame partitioning into slices
    corecore