4 research outputs found

    Bisimulations for Fuzzy Transition Systems revisited

    Get PDF
    Bisimulation is a well-known behavioral equivalence for discrete event systems and has recently been adopted and developed in fuzzy systems. In this paper, we propose a new bisimulation, i.e., the group-by-group fuzzy bisimulation, for fuzzy transition systems. It relaxes the fully matching requirement of the bisimulation definition proposed by Cao et al. and can equate more pairs of states which are deemed to be equivalent intuitively, but which cannot be equated in previous definitions. We carry out a systematic investigation on this new notion of bisimulation. In particular, a fixed point characterization of the group-by-group fuzzy bisimilarity is given, based on which, we provide a polynomial-time algorithm to check whether two states in a fuzzy transition system are group-by-group fuzzy bisimilar. Moreover, a modal logic, which is an extension of the Hennessy-Milner logic, is presented to completely characterize the group-by-group fuzzy bisimilarity

    Fuzzy automata as coalgebras

    Get PDF
    The coalgebraic method is of great significance to research in process algebra, modal logic, object-oriented design and component-based software engineering. In recent years, fuzzy control has been widely used in many fields, such as handwriting recognition and the control of robots or air conditioners. It is then an interesting topic to analyze the behavior of fuzzy automata from a coalgebraic point of view. This paper models different types of fuzzy automata as coalgebras with a monad structure capturing fuzzy behavior. Based on the coalgebraic models, we can define a notion of fuzzy language and consider several versions of bisimulation for fuzzy automata. A group of combinators is defined to compose fuzzy automata of two branches: state transition and output function. A case study illustrates the coalgebraic models proposed and their composition.This work has been supported by the Guangdong Science and Technology Department (Grant No. 2018B010107004) and the National Natural Science Foundation of China under grant No. 61772038, 61532019 and 61272160. L.S.B. was supported by the ERDF—European Regional Development Fund through the Operational Programme for Competitiveness and InternationalisationCOMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT, within project KLEE - POCI-01-0145-FEDER-030947

    Mathematics in Software Reliability and Quality Assurance

    Get PDF
    This monograph concerns the mathematical aspects of software reliability and quality assurance and consists of 11 technical papers in this emerging area. Included are the latest research results related to formal methods and design, automatic software testing, software verification and validation, coalgebra theory, automata theory, hybrid system and software reliability modeling and assessment
    corecore