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Abstract

Bisimulation is a well-known behavioral equivalence for discrete event systems,
and has recently been adopted and developed in fuzzy systems. In this paper, we
propose a new bisimulation, i.e., the group-by-group fuzzy bisimulation, for fuzzy
transition systems. It relaxes the fully matching requirement of the bisimulation
definition proposed by Cao et al. [IEEE Transaction on Fuzzy Systems, 19:540–
552], and can equate more pairs of states which are deemed to be equivalent
intuitively, but which cannot be equated in previous definitions. We carry out a
systematic investigation on this new notion of bisimulation. In particular, a fixed
point characterization of the group-by-group fuzzy bisimilarity is given, based
on which, we provide a polynomial-time algorithm to check whether two states
in a fuzzy transition system are group-by-group fuzzy bisimilar. Moreover, a
modal logic, which is an extension of the Hennessy-Milner logic, is presented to
completely characterize the group-by-group fuzzy bisimilarity.

Keywords: Bisimulation, Fuzzy transition system, Modal logic, Logical
characterization

1. Introduction

Bisimulations are well-established forms of behavioural equivalences for dis-
crete event systems, and have become a central notion in, for instance, process
algebras, automata theory, etc. They are widely used in many areas of computer
science, in particular, in verification where they are crucial to reduce the state
space of the system under consideration.

Recently, bisimulations have been developed in fuzzy systems as well. For
example, Cao et al. [2, 4] considered bisimulations for fuzzy transition systems
(FTS) where both fuzzy transitions and nonderministic transitions co-exist.
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Figure 1: s and t are group-by-group fuzzy bisimilar

This model is further studied under fuzzy automata by Cao et al. [3] and Pan
et al. [15]. Ćirić et al. [5] investigated bisimulations for fuzzy automata. Qiu
and Deng [9], and Xing et al. [19] studied (bi)simulations for fuzzy discrete
event systems. Fan [10] discussed fuzzy bisimulations for Gödel logic. Wu et al.
[16, 17, 18] investigated algorithms and logical characterizations of bisimulati-
ons for FTS. For more information about fuzzy (bi)simulations, we also refer
the readers to [6, 7, 11]. In addition, model checking for fuzzy systems was also
studied [12, 13, 14].

A central question regarding any notion of bisimulation (or in general, any
equivalence) is its distinguishing power. Namely, to which extent it will distin-
guish a pair of states. As a simple example, we presented two FTS in Fig. 1.
Assuming that states si and ti are equal for i = 4, 5, 6 (i.e., they cannot be
distinguished in this case), and thus one can be easily convinced that si and ti
are also equal for i = 1, 2, 3, and si and tj are not equal for 1 ≤ i , j ≤ 3 since
they have different enabled actions. We are mainly interested in whether states
s and t can be related by the bisimulatiion under consideration. The bisimula-
tion proposed by Cao et al. [4] will distinguish them. To see this, the transition
s
a−→ 0.3

s1
+ 0.5

s2
cannot be matched by either t a−→ 0.5

t1
+ 0.3

t2
, or t a−→ 0.3

t1
+ 0.5

t3
, or

t
a−→ 0.5

t2
+ 0.3

t3
. However, arguably the two states should not be distinguished from

the following perspective. The transition of s a−→ 0.3
s1

+ 0.5
s2

can be respectively
matched by t a−→ 0.3

t1
+ 0.5

t3
(the central transition) when considering the group

of states enabling only action b, t a−→ 0.5
t2

+ 0.3
t3

(the rightmost transition) when
considering the group of states enabling only action c, and the t a−→ 0.5

t1
+ 0.3

t2
(the leftmost transition) when considering the group of states enabling action b
or c. The other transitions from s can be analyzed similarly. From this point
of view, s and t ought not be distinguished. Indeed, in [4] the bisimilar states
must stepwise behave the same along two fully matching resolutions, which in
this case unnecessary and should be relaxed.

The aim of this paper is to define a new bisimulation for an FTS, dubbed
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group-by-group fuzzy bisimulation. This bisimulation is different from the one
proposed by Cao et al. [4] in two aspects: (1) The bisimulation in [4] considers
each equivalence class of some equivalence relation R, while ours considers each
subset of equivalence classes; this is why it is called a group-by-group fuzzy
bisimulation, and (2) for a transition s a−→ µ, the bisimulation in [4] requires that
there exists a transition t a−→ ν such that µ and ν are equal at all equivalence
classes of some equivalence relation R, i.e., the definition requires fully matching.
In contrast, our definition requires that for each subset G of the equivalence
classes and a transition s a−→ µ, there exists a transition t a−→ ν such that µ and
ν are equal for the union of G. We note that for G1, ν1 exists such that µ and
ν1 are equal for the union of G1, but for different G2, it is possible that ν2 exists
such that µ and ν2 are equal for the union of G2. Loosely speaking, our new
bisimulation allows partially matching resolutions.

We perform a systematic study on this new bisimulation by giving its cha-
racterization in different machinery, as follows.

1. We use a fixed point method to characterize group-by-group fuzzy bisi-
mulation. This characterization shows that a group-by-group fuzzy bisi-
mulation is a post-fixed point of some suitable monotonic function over
a complete lattice, while a group-by-group fuzzy bisimilarity, the grea-
test group-by-group fuzzy bisimulation, is the greatest fixed point of this
monotonic function.

2. We give a polynomial time algorithm to computing group-by-group fuzzy
bisimilarity. Our algorithm follows the standard partition-refinement fra-
mework which is the cornerstone for the computation of almost all bisimu-
lations in conventional labeled transition systems, and their various proba-
bilistic and fuzzy extensions. In the current setting, while an exponential-
time algorithm can be obtained almost for free, designing a polynomial-
time algorithm turns out to be difficult simply because of the universal
quantification over all subsets of the state space (cf. Definition 3). As
a witness, for probabilistic systems considered in [1], a similar group-by-
group probabilistic bisimulation is proposed, but eludes a polynomial-time
algorithm1. In contrast, we show that in the fuzzy setting, a polynomial-
time algorithm does exist, owing to that, essentially, the operations of max
and min instead of addition and multiplication respectively are used.

3. We provide a logical characterization of a group-by-group fuzzy bisimila-
rity, which states that two states are group-by-group fuzzy bisimilar if and
only if they satisfy the same logical formulae.

These characterizations suggest the robustness of our new definition of bisi-
mulation of FTS. As mentioned, this work is inspired by the work in [1], where
a group-by-group probabilistic bisimulation is investigated in probabilistic sys-
tems. However, it is probably noteworthy that our work is different from that in
[1] in two aspects: (1) neither the fixed point characterization nor the algorithm

1We conjecture such a polynomial-time algorithm does not exist.
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was discussed in [1], and (2) [1] has given a logical characterization of group-
by-group probabilistic bisimilarity, but needs the condition of image-finiteness,
which is not needed in our characterization. Moreover, the methods of proving
logical characterization theorems are different; see Remark 2 for details.

The rest of this paper is structured as follows. We briefly review some basic
concepts used in this paper in Section 2. Section 3 introduces the notion of
a group-by-group fuzzy bisimulation. Some properties about it are discussed.
A fixed point characterization of the group-by-group fuzzy bisimilarity is given
in Section 4. In Section 5, we present a polynomial time algorithm for testing
the group-by-group fuzzy bisimilarity. In the subsequent section, we provide a
modal logic, which characterizes group-by-group fuzzy bisimilarity soundly and
completely. Finally, this paper is concluded in Section 7 with some future work.

2. Preliminaries

In this section, we briefly recall some notions used in this paper. We write
[n] for {1, · · · , n}. Given a set S and a binary relation R ⊆ S×S, we write sRt
if (s, t) ∈ R. An equivalence relation is a reflexive, symmetric, and transitive
relation. An equivalence relation R partitions a set S into equivalence classes.
For s ∈ S, we use [s]R to denote the (unique) equivalence class containing s.
We drop the subscript R if it is clear from the context. Let R(s) denote the set
{s′ | (s, s′) ∈ R}. A set U is said to be R-closed if R(s) ⊆ U for all s ∈ U . We
write R∗ for the transitive closure of R.

The following basic facts will be useful later. The proof is a fairly elementary
exercise and thus is omitted. In particular, the first item follows from [16,
Lemma 2.1].

Lemma 1. Let R,R1, R2 be equivalence relations on S. Then we have:

(i) Any R-closed set U is the union of some equivalence classes of R.
(ii) Let R1 ⊆ R2. Then U is R2-closed implies that it is also R1-closed.
(iii) The (R1 ∪R2)∗ is an equivalence relation.

The notions about fuzzy set are mainly borrowed from [4]. Let S be a set and
µ be a fuzzy set in S. The support of µ is the set supp(µ) = {s ∈ S | µ(s) > 0}.
We denote by F(S) the set of all fuzzy sets in S. When supp(µ) is finite, say
{s1, · · · , sn}, µ can be written in Zadeh’s notation as follows:

µ = µ(s1)
s1

+ µ(s2)
s2

+ · · ·+ µ(sn)
sn

.

For any µ ∈ F(S) and U ⊆ S, let µ(U) stand for sups∈U µ(s).

Definition 1. [4] An FTS is a tripleM = (S,A,→), where

• S is a set of states,

• A is a set of actions, and
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• → ⊆ S ×A×F(S) is the transition relation.

An FTS is image-finite if for each a ∈ A and s ∈ S, the set Ta(s) = {µ | s a−→
µ} is finite and for any µ ∈ Ta(s), the supp(µ) is also finite; an FTS is finitely
branching if for each s ∈ S, the set {(a, µ) | s a−→ µ, a ∈ A,µ ∈ F(S)} is finite.
Furthermore, this FTS is finitary if S is also finite. For readability, we usually
write s a−→ µ for (s, a, µ) ∈→.

3. New bisimulation

This section is devoted to the notions of a new bisimulation. We start with
the definition proposed by Cao et al. [4], which is a straightforward adaptation
of the classical bisimulation to FTSs.

Definition 2. Let (S,A,→) be an FTS. An equivalence relation R ⊆ S × S
is a (fuzzy) bisimulation if whenever sRt, then for any transition s a−→ µ, there
exists a transition t

a−→ ν such that µ([s]) = ν([s]) for all equivalence classes
[s] ∈ S/R.

Before presenting the new bisimulation, we highlight the differences of our
new definition (to be given in Definition 3) and Definition 2. The first difference
is that, for an action a, the distribution over all classes of equivalent states
reached by the a-transition can now be matched by several a-transitions, each
of which may take care of a different class. Secondly, the new equivalence takes
into account the possibility of reaching groups of equivalence classes rather than
individual classes only. This is similar to the approach in [16] (cf. Definition 4).
Notice that considering groups of equivalence classes in Definition 2 does not
change the bisimulation relation, while dealing only with individual classes here
would significantly weaken the discriminating power.

Definition 3. Let (S,A,→) be an FTS. An equivalence relation R over S is a
group-by-group fuzzy bisimulation if, whenever (s, t) ∈ R, for all actions a ∈ A
and for all groups of equivalence classes G ∈ 2S/R, it holds that for each
s

a−→ µ there exists t a−→ ν such that µ(
⋃
G) = ν(

⋃
G), where

⋃
G =

⋃
C∈G C.

We say s and t are group-by-group fuzzy bisimilar, denoted by s ∼FB,gbg t, if
there exists a group-by-group fuzzy bisimulation R such that (s, t) ∈ R.

Intuitively, while in Definition 2 the quantification over [s] ∈ S/R is after the
transition matching, in Definition 3 the quantification over G ∈ 2S/R is before
the transition matching. This allows a transition to be matched possibly by
distinct transitions depending on the target groups. Because of the difference
of the quantification ordering, it is not hard to observe that the bisimulation in
Definition 2 is finer than that in Definition 3.
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Example 1. Consider the Fig.1. We will show that s and t are group-by-group
fuzzy bisimilar. First of all, S = {s, t, si, ti | i = 1, · · · , 6}, we construct an
equivalence relation R on S as follows:

R = {s, t} × {s, t} ∪ {(si, si), (ti, ti), (si, ti) | 1 ≤ i ≤ 6}.

The equivalence class of the state space S under R is

S/R = {{s1, t1}, {s2, t2} · · · , {s6, t6}, {s, t}}.

It suffices to prove that R is a group-by-group fuzzy bisimulation. Obviously,
(s, s), (t, t), (si, si) and (ti, ti) (i = 1, · · · , 6) all satisfy the condition of Definition
3. Hence, we only need to verify that (s, t) and (t, s) satisfy this condition as
well. We first examine (s, t). Let G ∈ 2S/R be any group of equivalence classes
and s a−→ µ1 = 0.3

s1
+ 0.5

s2
. Now, consider the possible matching transitions from

t. Since µ1 takes none-zero values only at s1 and s2, and the three transition
distributions from t take none-zero values only at t1 or t2 or t3, it suffices to
consider G that only contains the {s1, t1} or {s2, t2}, or {s3, t3}. That is, {s1, t1},
{s2, t2}, {s3, t3}, {{s1, t1}, {s2, t2}}, {{s1, t1}, {s3, t3}}, {{s2, t2}, {s3, t3}}, and
{{s1, t1}, {s2, t2}, {s3, t3}}. Let ν1 = 0.5

t1
+ 0.3

t2
, ν2 = 0.3

t1
+ 0.5

t3
and ν3 = 0.5

t2
+ 0.3

t3
.

Then we consider the following cases according to
⋃
G.

(1)
⋃
G = {s1, t1}, there exists t a−→ ν2 such that µ1({s1, t1}) = ν2({s1, t1}) =

0.3;

(2)
⋃
G = {s2, t2}, there exists t a−→ ν3 such that µ1({s2, t2}) = ν3({s2, t2}) =

0.5;

(3)
⋃
G = {s3, t3}, there exists t a−→ ν1 such that µ1({s3, t3}) = ν1({s3, t3}) =

0;

(4)
⋃
G = {s1, s2, t1, t2}, there exists t a−→ ν3 such that µ1({s1, s2, t1, t2}) =

ν3({s1, s2, t1, t2}) = 0.5;

(5)
⋃
G = {s1, s3, t1, t3}, there exists t a−→ ν3 such that µ1({s1, s3, t1, t3}) =

ν3({s1, s3, t1, t3}) = 0.3;

(6)
⋃
G = {s2, s3, t2, t3}, there exists t a−→ ν2 such that µ1({s2, s3, t2, t3}) =

ν2({s2, s3, t2, t3}) = 0.5;

(7)
⋃
G = {s1, s2, s3, t1, t2, t3}, there exists t

a−→ ν1 such that µ1({s1, s2, s3, t1, t2, t3}) =
ν1({s1, s2, s3, t1, t2, t3}) = 0.5.

That is, for the transition s
a−→ µ1, there is corresponding transition mat-

ching coming from t. Similarly, for other transitions coming from s, there are
corresponding transitions coming from t. Hence, (s, t) satisfy the condition of
Definition 3. In a similar way, we can verify that (t, s) satisfy the condition
of Definition 3 too. Consequently, R is a group-by-group fuzzy bisimulation as
desired.

6



Since
⋃
G is the union of some equivalence classes of R, it is R-closed. Mo-

reover, any R-closed set is the union of some equivalence classes. Hence, we
have the following conclusion which effectively gives an alternative definition
of the group-by-group fuzzy bisimulation. The equivalence of Definition 3 and
Definition 4 is rather straightforward and thus is omitted.

Definition 4. Let (S,A,→) be an FTS. An equivalence relation R over S is a
group-by-group fuzzy bisimulation iff, whenever (s, t) ∈ R, then for all actions
a ∈ A and for all R-closed sets U it holds that for each s a−→ µ there exists t a−→ ν
such that µ(U) = ν(U).

Bisimulation is preserved by the equality, inverse and the transitive closure
of unions, which are summarized in the following proposition.

Proposition 1. The following statements hold.

(i) Eq(S) is a group-by-group fuzzy bisimulation, where Eq(S) = {(s, s) | s ∈
S};

(ii) If R is a group-by-group fuzzy bisimulation, then so is R−1 (in fact, R−1 =
R since R is an equivalence relation);

(iii) If Ri (i = 1, 2) is a group-by-group fuzzy bisimulation, then so is (R1 ∪
R2)∗.

Proof. (i) and (ii) are trivial. Now we prove (iii).
Firstly, (R1 ∪R2)∗ is an equivalence relation by Lemma 1 (iii).
Secondly, let U be (R1 ∪ R2)∗-closed. Then Lemma 1 (ii) implies that it is

also Ri-closed (i = 1, 2) since Ri ⊆ (R1 ∪R2)∗ (i = 1, 2).
Finally, let (s, t) ∈ (R1 ∪ R2)∗ and s

a−→ µ. Then there exist s1, s2, · · · , sn
such that (s, s1), (si, si+1)(i = 1, 2, · · ·n − 1), (sn, t) ∈ R1 ∪ R2. Without loss
of generality, we suppose that (s, s1) ∈ R1 and (sn, t) ∈ R2. Since R1 is a
group-by-group fuzzy bisimulation and U is R1-closed, there exists s1

a−→ ν1
such that µ(U) = ν1(U). Since (si, si+1)(i = 1, 2, · · ·n − 1) must be in R1
or R2, moreover R1, R2 are both group-by-group fuzzy bisimulations and U
is Ri(i = 1, 2)-closed, there exists si

a−→ νi(i = 2, · · · , n), such that ν1(U) =
ν2(U) = · · · = νn(U). Hence µ(U) = νn(U). Similarly, (sn, t) ∈ R2, R2 is a
group-by-group fuzzy bisimulation and U is R2-closed imply that there exists
t
a−→ ν such that νn(U) = ν(U). Consequently, µ(U) = ν(U) as desired. Hence,

(R1 ∪R2)∗ is a group-by-group fuzzy bisimulation by Proposition 4. The proof
is completed.

�
The conclusion of Proposition 1 (iii) can be generalized into any i ∈ I.

Proposition 2. The ∼FB,gbg is an equivalence relation and is the greatest
group-by-group fuzzy bisimulation, called group-by-group fuzzy bisimilarity.
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Proof. Proposition 1 (i, ii, iii) imply that ∼FB,gbg is reflexive, symmetric,
transitive, respectively, and hence it is an equivalence relation. By Definition
3, it is straightforward that ∼FB,gbg is the largest group-by-group fuzzy bisi-
mulation. In fact, ∼FB,gbg= (∪i∈IRi)∗ where Ri (i ∈ I) is a group-by-group
fuzzy bisimulation. That is, ∼FB,gbg is the transitive closure of the union of all
group-by-group fuzzy bisimulations. �

Remark 1. Bisimulations for fuzzy systems have received much attention re-
cently. Many different notions have been given, see, for example, [2, 5, 7, 9,
10, 11, 16, 17, 18, 19]. All these notions can be divided into two classes. In the
first class, bisimulations are based on a crisp relation on the state space, and
thus one state is either bisimilar to another state or not. In the second class,
bisimulations are based on a fuzzy relation on the state space, which shows the
degree to which one state is bisimilar to another one. We refer the readers to the
related work in [16, 18] for more details. The present study belongs to the first
class, but provides a coarser bisimulation than those in the existing definitions
falling into the first class [2, 16]. Its advantage is that one can consider whether
two systems are equivalent from the overall perspective. For example, in Fig.1,
after implementing the action a and then β ∈ {b, c, d}, two systems reach the
equivalent states with the equal possibility 0.5. Hence they can be regarded as
equivalent.

4. Fixed-point characterization

In this section, we will use fixed-point method to characterize group-by-
group fuzzy bisimulation. We always suppose that the state space S is finite in
this section.

Let R be the set of all equivalence relations over S. For any R1, R2 ∈ R,
define the partial order on R as follows:

R1 v R2 if R1 ⊆ R2.

For any Ri(i ∈ I) ∈ R, the sup and inf on the set {Ri | i ∈ I} are defined as
follows:

ti∈IRi = (∪i∈IRi)∗
ui∈IRi = ∩i∈IRi.

So, R is a complete lattice, its least element 0 and the greatest element 1 are
Eq(S) and S × S, respectively.

We now review the notion of group-by-group fuzzy bisimulation in terms of
suitable monotone functions over a complete lattice. We consider the function
F defined as follows:

F : R → R, R 7−→

(s, t) ∈ S × S
∀ R-closed set U
∀s a−→ µ ∃t a−→ ν : µ(U) = ν(U)
∀t a−→ ν ∃s a−→ µ : µ(U) = ν(U)

 (1)

8



Given an equivalence relation R ∈ R, it is not difficult to verify that F (R)
is reflexive, symmetric and transitive, i.e., an equivalence relation. This shows
that F is well-defined.

The following proposition establishes the relation between a group-by-group
fuzzy bisimulation and a post-fixed point of F .

Proposition 3. Let R be an equivalence relation over S. Then R is a group-
by-group fuzzy bisimulation if and only if R is a post-fixed point of F , i.e.,
R v F (R).

Proof. It is a straightforward result of Definition 4. �

Recall that the remarkable Tarski’s theorem [8] says that each monotonic
function on a complete lattice has a greatest fixed point. Therefore, to show
that F has a greatest fixed point, it remains to verify that F is monotonic with
respect to v.

Recall that for a partially ordered set (X,≤), a function f : X → X is said
to be monotonic if for all x1, x2 ∈ X, x1 ≤ x2 implies that f(x1) ≤ f(x2).

Lemma 2. F is monotonic with respect to the partial order v.

Proof. It is not difficult to verify by Lemma 1 (ii) and hence we omit its proof.
�

By Tarski’s fixed point theorem, we have the following theorem.

Theorem 1. F has a greatest fixed point µF . Moreover

µF = t{R | R v F (R)}.

This theorem shows that the greatest fixed point of F is the sup of all post-
fixed points of F . By the definition of sup and Propositions 2, 3, the following
theorem holds.

Theorem 2. we have that ∼FB,gbg= µF .

Recall that for a lattice (L,≤), a function f : L→ L is said to co-continuous
if for all decreasing sequence x0, x1, · · · (i.e., xi+1 ≤ xi for all i ∈ N) in the
lattice L, we have f(ui∈Nxi) = ui∈Nf(xi).

Lemma 3. F is co-continuous on the complete lattice R.

Proof. Let Ri ∈ R (i ∈ N) be a decreasing sequence. Since the state space
S is finite, there are at most finite different equivalence relations. Further,
Ri ∈ R (i ∈ N) being a decreasing sequence implies that there exists k such
that Rk v Ri for all i ∈ N. As a result, F (ui∈NRi) = F (Rk). On the other
hand, F (Rk) v F (Ri) for any i ∈ N since F is monotonic by Lemma 2. Hence
F (Rk) v ui∈NF (Ri), while ui∈NF (Ri) v F (Rk) is obvious since k ∈ N. That
is, F (Rk) = ui∈NF (Ri). It follows that F (ui∈NRi) = ui∈NF (Ri). The proof is
completed. �

Based on this lemma, one can show that un∈NFn(1) is the greatest fixed
point of F (cf. [8]). So, the following corollary holds.
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Corollary 1. we have that ∼FB,gbg= µF = un∈NFn(1).

This says that the group-by-group fuzzy bisimilarity is un∈NFn(S × S).

5. Algorithmic characterization

In this section, we present an algorithm for checking if two states s and t
are group-by-group bisimilar in a finitary FTS M = (S,A,→) which we fix
for the rest of the section. We follow the standard partition-refinement scheme,
which essentially is to compute the greatest fixed point of the function F (cf. (1))
defined in the preceding section. We start with some additional notations. Let
Ξ be a partition of S, i.e., Ξ = {B1, · · · , Bm} such that

⋃m
i=1 Bi = S.

• Given B ∈ Ξ and C ⊆ Ξ,

Bµ(C) := {t ∈ B | ∃ν.t a−→ ν ∧ ν(C) = µ(C)}.

• For any vector ~v = (a1, · · · , an) and I ⊆ [n], we write max~v[I] for max{ai |
i ∈ I}.

As a routine in partition-refinement algorithms, in Algorithm 1, we start
with an initial (trivial) partition Ξ and, in each iteration, we refine the current
partition according to F (cf. (1)) until it is stabilized. Clearly, when the algo-
rithm terminates, Ξ stores the greatest fixed point of F , and this is precisely the
bisimulation quotient of S, i.e., S/ ∼FB,gbg, which is the output of Algorithm 1.

The challenging part, however, is to check whether the current partition Ξ
of S is already a bisimulation, and in particular, to check this in polynomial
time. According to the definition of ∼FB,gbg, this is to check, for a pair of states
(s, t) in an equivalence class of Ξ and an action a with s

a−→ µ, whether for
all C ⊆ Ξ there always exists some ν such that t a−→ ν and µ(C) = ν(C). A
naïve approach, which verifies for each C ⊆ Ξ individually, is doable, but would
need exponential time in the worst case. We shall show that this brute force
enumeration of all C ⊆ Ξ is unnecessary and the check can actually be carried
out in a more efficient way, i.e., in polynomial time. This is the main purpose
of the Match function of Algorithm 1 and Algorithm 2.

Let us fix two states s and t, an action a, and a distribution µ such that
s
a−→ µ, and assume that the current partition is Ξ. Function Match(s, t, a, µ,Ξ)

will test whether, for all C ⊆ Ξ, some ν exists such that t a−→ ν and µ(C) = ν(C).
If this is the case, the procedure Match returns an empty set; otherwise it returns
some C ⊆ Ξ which one can use to refine the current partition Ξ.

Technically, assume that Ξ = {B1, · · · , Bk}. We let

• ~vµ := (a1, · · · , ak) where ai := µ(Bi). (Recall that µ(B) := max{µ(s) |
s ∈ B}.)

• for each ν such that t a−→ ν, ~wν := (bν1 , · · · , bνk) where bνi := ν(Bi).
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Algorithm 1: Calculate the quotient space of bisimulation ∼FB,gbg

Data: FTS (S,A,→)
Result: Bisimulation quotient space S/ ∼FB,gbg
begin

Ξ←− S × S;
Ξold ←− S × S;
repeat

Ξold ←− Ξ;
for each B ∈ Ξ do

for each pair of states s, t ∈ B and a, µ with s a−→ µ do
C ←− Match(s, t, a, µ,Ξ);
if C , ∅ then

Ξ←− Π \ {B} ∪ {Bµ(C)};

until Ξold = Ξ;
S/ ∼FB,gbg←− Ξ

Function Match(s, t, a, µ,Ξ)
Data: s, t ∈ S, a ∈ A with s a−→ µ, Ξ is the current partition of S
Result: true if L is fulfilled; otherwise false
begin

~vµ := (µ(C1), · · · , µ(Ck));
//compute the vector ~vµ.
h←− 1;
for each ν with t a−→ ν do

~wν := (ν(C1), · · · , ν(Ci));
W [h]←− ~wν ;
h←− h+ 1 ;

//compute all ~wν and store them in the matrix W
for each i ∈ [k] do

Li ←− {j ∈ [k] | ~vµ[j] ≤ ~vµ[i]};
// ~vµ[i] is the largest element of ~vµ among the indices in Li.
if Cover(i, ~vµ,W,Li) = False then

Match(s, t, a, µ,Ξ) := Li;
Return;

Match(s, t, a, µ,Ξ) := ∅

Observe that Match(s, t, a, µ,Ξ) = ∅ iff

for all subset I ⊆ [k], ν exists such that max~vµ[I] = max ~wν [I] (?)

To verify (?), for each i ∈ [k], we define an index set Li such that ai is the
maximal element among Li in ~vµ. Formally, Li = {k | ak ≤ ai}. Furthermore,
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Algorithm 2: Cover(i, ~v,W,L)
Data: i ∈ L ⊆ [k], ~v[i] = max~vµ[L]
Result: True iff for all i ∈ I ⊆ L, there exists some j such that

~v[i] = maxW [j][I]
begin

I ←− L;
while True do

S ←− S(I) ;
if S = ∅ then

Cover(i, ~v,W,L)←− False;
Return;

else
if i ∈ S then

Cover(i, ~v,W,L)←− True;
Return;

else
I ←− I \ S;

for a given index set L with a := max~vµ[L], we define

S[L] := {k ∈ L | ∃ν. a = ~wν [k] = max ~wν [L]}.

Note that obviously S[L] ⊆ L.

Lemma 4. Given an index set L ⊆ [n], let `M ∈ L be ~vµ[`M ] = max~vµ[L]. For
all I ⊆ L with S[L] ∩ I , ∅ and `M ∈ I, max~vµ[I] = max ~wν [I].

Proof. By definition S[L] := {k ∈ L | ∃ν. a = ~wν [k] = max ~wν [L]}. As `M ∈ L,
max~vµ[I] = ~vµ[`M ]. It follows that there exists some ν and k ∈ I ∩ S[L] such
that ~vµ[`M ] = ~wν [k], and ~wν [k] = max ~wν [L] ≥ max ~wν [I]. Moreover, as k ∈ I,
max ~wν [L] ≤ max ~wν [I]. We then can conclude that max~vµ[I] = max ~wν [I],
which completes the proof. �

Proposition 4. [Correctness of Algorithm 2] Function Cover(i, ~v,W,L) returns
True iff for all I such i ∈ I ⊆ L, there exists some row of W indexed by ν (viz.
~wν) such that max~v[I] = max ~wν [I].

Proof. Recall that, as the precondition of Cover(i, ~v,W,L), i satisfies that ~v[i]
is the maximal element among ~v[I], i.e., for all I ⊆ L with i ∈ I, max~v[I] =
max~vµ[L]. Cover(i, ~v,W,L) first computes S(I) ⊆ I. Clearly, if S(I) = ∅, we
can conclude that, for I, there is no ν such that max~v[I] = max ~wν [I], hence the
function returns False. If, on the other hand, S(I) , ∅, we have the following
two cases:

12



• i ∈ S(I). Then clearly S(I) ∩ I , ∅ as i ∈ I. By Lemma 4, we can
conclude that some ν exists such that max~v[I] = max ~wν [I].

• i < S(I). Then by Lemma 4, we have that all I ′ with S[I] ∩ I ′ , ∅ and
i ∈ I ′, max~v[I ′] = max ~wν [I ′]. For I ′ such that i ∈ I ′ but S[I] ∩ I ′ =
∅, we have that I ′ ⊆ I \ S[I], and the iteration (the while loop) will
guarantee that, if the function returns True, there exists some ν such
that max~v[I ′] = max ~wν [I ′].

�

Proposition 5. [Correctness of Algorithm 1] The main procedure in Algo-
rithm 1 terminates and, when it terminates, the output is S/ ∼FB,gbg.

Proof. Recall the notations introduced before, i.e., ~vµ, ~wν with respect to
the fixed states s, t, action a, and partition Ξ. We only need to show that
the Match function (from Algorithm 2) and the Cover (from Algorithm 2)
faithfully check (?), and the rest follows standard argument for partition-refine
algorithms. Note that each I ⊆ [k] is verified under some i ∈ I with Li given in
theMatch function, and Proposition 4 shows that for such Li, we can determine
correctly whether it will invalidate the condition that ~vµ(Li) = ~wν(Li).

Termination of Algorithm 1 is straightforward. For Algorithm 2, we observe
that when S , ∅, the size of I decreases and finally we will have I = {i} for
which the function terminates. On the other hand, when S = ∅, the function
returns immediately. Hence the while loop will terminate in, at most, |L| steps.

�

Complexity analysis. The partition-refinement takes at most O(|S|2) steps. For
each step, the computation time is dominated by Cover function in Algorithm 2.
At mentioned earlier, it takes at most O(|L|) ≤ O(|S|) steps. Hence for Ma-
tch function, it takes O(|S|2 · |A| · |S|) steps. Wrapping up, the overall time is
O(|S|5|A|), which puts the bisimulation checking problem in (strongly) polyno-
mial time.2

Example 2. We use the example FTS in Fig. 1 to illustrate some key steps of
the algorithm. First of all, S = {s, t, si, ti | i = 1, · · · , 6}. Let’s assume that the
current partition Ξ = {{s, t}, {si, ti}1≤i≤6}. To check whether the equivalence
relation induced by Ξ is a bisimulation, clearly we only need to verify whether
the pair (s, t) satisfies necessary condition. To this end, as an example, we
consider s a−→ 0.3

s1
+ 0.5

s2
and the candidate transitions from t are t a−→ 0.5

t1
+ 0.3

t2
,

t
a−→ 0.3

t1
+ 0.5

t3
, and t a−→ 0.5

t2
+ 0.3

t3
. We then, following theMatch function, obtain

that

2We made no effort to optimize the algorithm, nor to provide a tightened analysis, as our
main purpose is to show that the problem is in P.
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• ~vµ = (0.3, 0.5, 0),

• ~w1 = (0.5, 0.3, 0), ~w2 = (0.3, 0, 0.5), ~w3 = (0, 0.5, 0.3).

Here k = 3, and W =

0.5 0.3 0
0.3 0 0.5
0 0.5 0.3

.
For illustration purpose, we check for i = 1 and thus, following the Match

function, obtain that Li = {1, 3} andS(Li) = {3}. Hence Cover(1, ~vµ,W, {1, 3})
in Algorithm 2 is invoked. In this case, after one iteration, L is updated by {1}
and S(L) = {1}, and thus we have i = 1 ∈ S(L), True is returned.

One could check further other transitions from s, i.e., s a−→ 0.5
s1

+ 0.3
s3

and
s
a−→ 0.3

s2
+ 0.5

s3
, and readily conclude that indeed Ξ is stable, hence it is the after

bisimulation quotient of the state space S.

6. Logical characterization

In this section, we embark upon the relationship between group-by-group
bisimilarity and logics. More concretely, we will show that two states are group-
by-group bisimilar iff they satisfy the same logical formulae.

First, we recall modal logics that are used to characterize bisimulations of
Cao et al. [4]. Wu and Deng in [16] gave the following logic:

ϕ ::= > | ϕ1 ∧ ϕ2 | ¬ϕ | 〈a〉pϕ. (2)

where a ∈ A and p ∈ [0, 1], and ϕ is a state formula that is interpreted on
states. Under the assumption of image-finiteness, this logic can characterize the
bisimularity of Cao et al. for a deterministic FTS.

For a nondeterministic FTS, Wu et al. in [17] gave the following two-sorted
logic:

ϕ ::= > | ϕ1 ∧ ϕ2 | ¬ϕ | 〈a〉ψ
ψ ::= ψ1 ∧ ψ2 | ¬ψ | [ϕ]p

(3)

where ψ is a distribution formula that is interpreted on distributions. Under
the assumption of image-finiteness, this logic can characterize the bisimularity
of Cao et al. for a nondeterministic FTS. For example, consider the FTS in
Fig. 1, and a logical formula ϕ = 〈a〉([〈b〉[>]1]0.3 ∧ [〈c〉[>]1]0.5). We have that
s |= ϕ but t 6|= ϕ. Hence, the bisimulation of Cao et al. will distinguish s and t.

In this paper, the FTS is nondeterministic. With a slight modification of
the logic in (2), we obtain the following logic L:

ϕ ::= > | ϕ1 ∧ ϕ2 | ¬ϕ | 〈a〉[p1,p2]ϕ (4)

where 0 ≤ p1 ≤ p2 ≤ 1. This is the basic logic that we employ to establish the
logical characterization of group-by-group fuzzy bisimilarity for an FTS.

Fix an FTS (S,A,→), the satisfaction relation is defined by
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• s |=L >, for any s ∈ S;

• s |=L ϕ1 ∧ ϕ2 iff s |= ϕi for i = 1, 2;

• s |=L ¬ϕ iff s 6|=L ϕ;

• s |=L 〈a〉[p1,p2]ϕ iff a transition s a−→ µ exists such that p1 ≤ µ([[ϕ]]) ≤ p2.

Let ThL(s) = {ϕ ∈ L | s |= ϕ} be the set of formulae that the state s
satisfies.

Lemma 5. For any ϕ ∈ L, [[ϕ]] is ∼FB,gbg closed.

Proof. It can be proven by structure induction on formulae, we only consider
the case: ψ = 〈a〉[p1,p2]ϕ. Let s ∼FB,gbg t and s |= 〈a〉[p1,p2]ϕ. It suffices to
prove that t |= 〈a〉[p1,p2]ϕ. By induction, [[ϕ]] is ∼FB,gbg closed, which is the
union of some equivalence classes of ∼FB,gbg. Thus, there exists G ∈ 2S/∼FB,gbg

such that
⋃
G = [[ϕ]]. Since s |= 〈a〉[p1,p2]ϕ, a transition s

a−→ µ exists such
that p1 ≤ µ([[ϕ]]) ≤ p2. That is, p1 ≤ µ(

⋃
G) ≤ p2. Further, by the definition

of group-by-group fuzzy bisimulation, there exists t a−→ ν such that µ(
⋃
G) =

ν(
⋃
G), i.e., µ([[ϕ]]) = ν([[ϕ]]). Hence, p1 ≤ ν([[ϕ]]) ≤ p2 and then t |= 〈a〉[p1,p2]ϕ.

�

Lemma 6. Let state space be finite and R = {(s, t) | ThL(s) = ThL(t)}.
Then, for any equivalence class [si] of R, there exists a formula ϕi ∈ L such
that [[ϕi]] = [si].

Proof. Its proof can be found in the proof of Theorem 4.6 in [16]. �

Theorem 3. Let the set S be finite and (S,A,→) be an FTS. Then for any
two states s, t ∈ S, s ∼FB,gbg t iff ThL(s) = ThL(t).

Proof.
(=⇒) First we show soundness, i.e.,

∀s, t ∈ S. s ∼FB,gbg t =⇒ ThL(s) = ThL(t).

Let s, t ∈ S, s ∼FB,gbg t and ψ be a formula. We show that s |=L ψ ⇐⇒ t |=L ψ
by structural induction on ψ. The cases of >, conjunction and negation are
trivial. Now consider ψ ≡ 〈a〉[p1,p2]ϕ.

By Lemma 5, [[ϕ]] is ∼FB,gbg-closed. Further, since ∼FB,gbg is an equivalence
relation by Proposition 2, [[ϕ]] is the union of some equivalence classes of ∼FB,gbg
by Lemma 1 (i). Now let s |=L 〈a〉[p1,p2]ϕ. Then a transition s a−→ µ exists such
that p1 ≤ µ([[ϕ]]) ≤ p2. Since s ∼FB,gbg t, there exists a transition t

a−→ ν
such that µ([[ϕ]]) = ν([[ϕ]]). As a result, p1 ≤ ν([[ϕ]]) ≤ p2. It follows that
t |=L 〈a〉[p1,p2]ϕ. Another direction holds since the symmetry of ∼FB,gbg. Hence,
s |=L ψ ⇐⇒ t |=L ψ as desired.
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(⇐=). Let R = {(s, t) | ThL(s) = ThL(t)}. Obviously, R is an equivalence
relation. It remains to prove that R is a group-by-group fuzzy bisimulation.
Let G = {[si] | i ∈ I} be the set of all equivalence classes of R. Assume by
contrary that R is not a group-by-group fuzzy bisimulation. Then there exist
(s, t) ∈ R, G0 ∈ 2S/R and some transition s

a−→ µ such that for all transitions
t
a−→ ν, µ(

⋃
G0) , ν(

⋃
G0). For each [si] ∈ G0, Lemma 6 implies that a formula

ϕi ∈ L exists such that [[ϕi]] = [si]. Further, let ϕ = ∨ϕi where [[ϕi]] = [si]
and [si] ∈ G0. Then

⋃
G0 = [[ϕ]]. Let µ([[ϕ]]) = µ(

⋃
G0) = p. We have that

s |= 〈a〉[p,p]ϕ, but t 6|= 〈a〉[p,p]ϕ, which contradicts (s, t) ∈ R. �

Example 3. Consider the FTS in Fig. 1 again, s, t |= 〈a〉[0.3,0.5]〈β〉[1,1]> where
β ∈ {b, c, d}. One of the benefits of a logical characterization is that we can
conveniently detect two states which are not bisimilar. For example, if we
adjust the central transition from s as s a−→ 0.5

s1
+ 0.4

s3
, then we have that s |=

〈a〉[0.4,0.4]〈d〉[1,1]> but t 6|= 〈a〉[0.4,0.4]〈d〉[1,1]>. Hence, s and t are not group-by-
group fuzzy bisimilar.

Remark 2. In probabilistic systems, the literature [1] (see Theorem 1, page 75)
has established the logical characterization theorem of group-by-group probabilis-
tic bisimilarity, which needs image-finite condition and the minimal probability
assumption. While Theorem 3 in this paper does not need this condition and
similar assumption. In addition, in order to characterize ∼PB,gbg, the litera-
ture [1] first characterizes ∼iPB,gbg, i ∈ N that is a coarser equivalence rela-
tion and its limit is ∼PB,gbg. While Theorem 3 in this paper adopts a direct
approach-structural induction on formulae and the definition of group-by-group
bisimulation.

7. Conclusion and future work

In this paper, we have investigated a novel group-by-group fuzzy bisimulation
for FTS, which is coarser than that in [4]. We provided both fixed point charac-
terization and logical characterization for the group-by-group fuzzy bisimilarity,
together with a polynomial-time algorithm to compute the group-by-group fuzzy
bisimilarity.

As future work, two questions are worth studying. One is to study behavioral
distance that can measure to what extent two states are group-by-group fuzzy
bisimilar. The other is to consider coalgebraic theory of group-by-group fuzzy
bisimulation.
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