2,034 research outputs found

    Equivalence-Checking on Infinite-State Systems: Techniques and Results

    Full text link
    The paper presents a selection of recently developed and/or used techniques for equivalence-checking on infinite-state systems, and an up-to-date overview of existing results (as of September 2004)

    Game Characterization of Probabilistic Bisimilarity, and Applications to Pushdown Automata

    Full text link
    We study the bisimilarity problem for probabilistic pushdown automata (pPDA) and subclasses thereof. Our definition of pPDA allows both probabilistic and non-deterministic branching, generalising the classical notion of pushdown automata (without epsilon-transitions). We first show a general characterization of probabilistic bisimilarity in terms of two-player games, which naturally reduces checking bisimilarity of probabilistic labelled transition systems to checking bisimilarity of standard (non-deterministic) labelled transition systems. This reduction can be easily implemented in the framework of pPDA, allowing to use known results for standard (non-probabilistic) PDA and their subclasses. A direct use of the reduction incurs an exponential increase of complexity, which does not matter in deriving decidability of bisimilarity for pPDA due to the non-elementary complexity of the problem. In the cases of probabilistic one-counter automata (pOCA), of probabilistic visibly pushdown automata (pvPDA), and of probabilistic basic process algebras (i.e., single-state pPDA) we show that an implicit use of the reduction can avoid the complexity increase; we thus get PSPACE, EXPTIME, and 2-EXPTIME upper bounds, respectively, like for the respective non-probabilistic versions. The bisimilarity problems for OCA and vPDA are known to have matching lower bounds (thus being PSPACE-complete and EXPTIME-complete, respectively); we show that these lower bounds also hold for fully probabilistic versions that do not use non-determinism

    Bisimilarity is not Borel

    Full text link
    We prove that the relation of bisimilarity between countable labelled transition systems is Ī£11\Sigma_1^1-complete (hence not Borel), by reducing the set of non-wellorders over the natural numbers continuously to it. This has an impact on the theory of probabilistic and nondeterministic processes over uncountable spaces, since logical characterizations of bisimilarity (as, for instance, those based on the unique structure theorem for analytic spaces) require a countable logic whose formulas have measurable semantics. Our reduction shows that such a logic does not exist in the case of image-infinite processes.Comment: 20 pages, 1 figure; proof of Sigma_1^1 completeness added with extended comments. I acknowledge careful reading by the referees. Major changes in Introduction, Conclusion, and motivation for NLMP. Proof for Lemma 22 added, simpler proofs for Lemma 17 and Theorem 30. Added references. Part of this work was presented at Dagstuhl Seminar 12411 on Coalgebraic Logic

    Distribution-based bisimulation for labelled Markov processes

    Full text link
    In this paper we propose a (sub)distribution-based bisimulation for labelled Markov processes and compare it with earlier definitions of state and event bisimulation, which both only compare states. In contrast to those state-based bisimulations, our distribution bisimulation is weaker, but corresponds more closely to linear properties. We construct a logic and a metric to describe our distribution bisimulation and discuss linearity, continuity and compositional properties.Comment: Accepted by FORMATS 201

    Revisiting bisimilarity and its modal logic for nondeterministic and probabilistic processes

    Get PDF
    We consider PML, the probabilistic version of Hennessy-Milner logic introduced by Larsen and Skou to characterize bisimilarity over probabilistic processes without internal nondeterminism.We provide two different interpretations for PML by considering nondeterministic and probabilistic processes as models, and we exhibit two new bisimulation-based equivalences that are in full agreement with those interpretations. Our new equivalences include as coarsest congruences the two bisimilarities for nondeterministic and probabilistic processes proposed by Segala and Lynch. The latter equivalences are instead in agreement with two versions of Hennessy-Milner logic extended with an additional probabilistic operator interpreted over state distributions rather than over individual states. Thus, our new interpretations of PML and the corresponding new bisimilarities offer a uniform framework for reasoning on processes that are purely nondeterministic or reactive probabilistic or are mixing nondeterminism and probability in an alternating/non-alternating way

    Branching Bisimilarity of Normed BPA Processes is in NEXPTIME

    Full text link
    Branching bisimilarity on normed BPA processes was recently shown to be decidable by Yuxi Fu (ICALP 2013) but his proof has not provided any upper complexity bound. We present a simpler approach based on relative prime decompositions that leads to a nondeterministic exponential-time algorithm; this is close to the known exponential-time lower bound.Comment: This is the same text as in July 2014, but only with some acknowledgment added due to administrative need
    • ā€¦
    corecore