369 research outputs found

    A Reactive and Efficient Walking Pattern Generator for Robust Bipedal Locomotion

    Full text link
    Available possibilities to prevent a biped robot from falling down in the presence of severe disturbances are mainly Center of Pressure (CoP) modulation, step location and timing adjustment, and angular momentum regulation. In this paper, we aim at designing a walking pattern generator which employs an optimal combination of these tools to generate robust gaits. In this approach, first, the next step location and timing are decided consistent with the commanded walking velocity and based on the Divergent Component of Motion (DCM) measurement. This stage which is done by a very small-size Quadratic Program (QP) uses the Linear Inverted Pendulum Model (LIPM) dynamics to adapt the switching contact location and time. Then, consistent with the first stage, the LIPM with flywheel dynamics is used to regenerate the DCM and angular momentum trajectories at each control cycle. This is done by modulating the CoP and Centroidal Momentum Pivot (CMP) to realize a desired DCM at the end of current step. Simulation results show the merit of this reactive approach in generating robust and dynamically consistent walking patterns

    Integration of vertical COM motion and angular momentum in an extended Capture Point tracking controller for bipedal walking

    Get PDF
    In this paper, we demonstrate methods for bipedal walking control based on the Capture Point (CP) methodology. In particular, we introduce a method to intuitively derive a CP reference trajectory from the next three steps and extend the linear inverted pendulum (LIP) based CP tracking controller introduced in [1], generalizing it to a model that contains vertical CoM motions and changes in angular momentum. Respecting the dynamics of general multibody systems, we propose a measurement-based compensation of multi-body effects, which leads to a stable closed-loop dynamics of bipedal walking robots. In addition we propose a ZMP projection method, which prevents the robots feet from tilting and ensures the best feasible CP tracking. The extended CP controller’s performance is validated in OpenHRP3 [2] simulations and compared to the controller proposed in [1]

    A method for rough terrain locomotion based on Divergent Component of Motion

    Get PDF
    Abstract—For humanoid robots to be used in real world scenarios, there is a need of robust and simple walking controllers. Limitation to flat terrain is a drawback of many walking controllers. We overcome this limitation by extending the concept of Divergent Component of Motion (DCM, also called ‘Capture Point’) to 3D. Therefor, we introduce the “Enhanced Centroidal Moment Pivot point” (eCMP) and the “Virtual Repellent Point” (VRP), which allow for a very intuitive understanding of the robot’s CoM dynamics. Based on eCMP, VRP and DCM, we present a method for real-time planning and control of DCM trajectories in 3D

    Dynamic Walking: Toward Agile and Efficient Bipedal Robots

    Get PDF
    Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review article outlines the end-to-end process of methods which have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced order models that capture essential walking behaviors to hybrid dynamical systems that encode the full order continuous dynamics along with discrete footstrike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiation on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is agile and efficient

    Motor Control Insights on Walking Planner and its Stability

    Full text link
    The application of biomechanic and motor control models in the control of bidedal robots (humanoids, and exoskeletons) has revealed limitations of our understanding of human locomotion. A recently proposed model uses the potential energy for bipedal structures to model the bipedal dynamics, and it allows to predict the system dynamics from its kinematics. This work proposes a task-space planner for human-like straight locomotion that target application of in rehabilitation robotics and computational neuroscience. The proposed architecture is based on the potential energy model and employs locomotor strategies from human data as a reference for human behaviour. The model generates Centre of Mass (CoM) trajectories, foot swing trajectories and the Base of Support (BoS) over time. The data show that the proposed architecture can generate behaviour in line with human walking strategies for both the CoM and the foot swing. Despite the CoM vertical trajectory being not as smooth as a human trajectory, yet the proposed model significantly reduces the error in the estimation of the CoM vertical trajectory compared to the inverted pendulum models. The proposed model is also able to asses the stability based on the body kinematics embedding in currently used in the clinical practice. However, the model also implies a shift in the interpretation of the spatiotemporal parameters of the gait, which are now determined by the conditions for the equilibrium and not \textit{vice versa}. In other words, locomotion is a dynamic reaching where the motor primitives are also determined by gravity
    corecore