
A method for rough terrain locomotion based on
Divergent Component of Motion

Johannes Englsberger1, Christian Ott1 and Alin Albu-Schäffer1

Abstract— For humanoid robots to be used in real
world scenarios, there is a need of robust and sim-
ple walking controllers. Limitation to flat terrain is a
drawback of many walking controllers. We overcome
this limitation by extending the concept of Divergent
Component of Motion (DCM, also called ‘Capture Point’)
to 3D. Therefor, we introduce the “Enhanced Centroidal
Moment Pivot point” (eCMP) and the “Virtual Repellent
Point” (VRP), which allow for a very intuitive under-
standing of the robot’s CoM dynamics. Based on eCMP,
VRP and DCM, we present a method for real-time
planning and control of DCM trajectories in 3D.

I. INTRODUCTION

Many successful LIP based walking control methods
have been presented recently [1]–[3]. The use of the
LIP model for bipedal walking control is restricted to
horizontal CoM motions (z = const). This motivates
the derivation of methods for non-constant CoM and
floor height. Zhao and Sentis [4] present a method
for three-dimensional foot placement planning on un-
even ground surfaces. Yet, the lateral foot-placement
cannot be predefined, but is dependent on the sagittal
dynamics and the desired CoM Surface and the ground
surfaces have to be of constant height laterally.

The concept of ’Capture Point’ or ’Divergent Com-
ponent of Motion’ (DCM) [5]–[11] splits the CoM
dynamics into a stable (CoM) and an unstable (DCM)
part and thus simplifies the design of walking con-
trollers. In the presented work and in [12], we derive
a method for bipedal gait planning and control on
uneven terrain, facilitated by the use of the linear
properties of the DCM dynamics and suffering from
none of the afore mentioned restrictions.

II. T HREE-DIMENSIONAL DCM, ECMP AND VRP

Motivated by the performance of 2D Capture Point
(= DCM) control [8], [9], we introduce the three-
dimensional Divergent Component of Motion (DCM):

ξ = x+ bẋ, (1)

whereξ = [ξx,ξy,ξz]
T is the DCM,x = [x,y,z]T and

ẋ= [ẋ, ẏ, ż]T are the CoM position and velocity and
b > 0 is the time-constant of the DCM dynamics. By
reordering (1), we directly find the CoM dynamics as

ẋ=−

1
b
(x−ξ). (2)
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This shows that the CoM has a stable first order
dynamics forb> 0 (→ it follows the DCM). Addition-
ally, we introduce the so called Enhanced Centroidal
Moment Pivot point (eCMP), which encodes the ex-
ternal (e.g. leg-) forces in a linear force law, based on
the difference of the CoM and the eCMP:

Fext =
m
b2 (x−recmp). (3)

The eCMP is closely related to the CMP [13], but
not restricted to the foot plane or ground surface. This
allows for encoding of not only the direction of the
sum of external forces, but also its magnitude. To
encode the total sum of forces (including gravity), we
introduce the Virtual Repellent Point (VRP):

rvrp = recmp +
[
0 0 b2g

]T
= recmp +

[
0 0 ∆zvrp

]T
.
(4)

This leads to following DCM dynamics:

ξ̇ =
1
b
(ξ−rvrp). (5)

For b > 0 the DCM has an unstable first order dynam-
ics (“pushed” by the VRP on a straight line). The VRP
encodes gravity and external forces in a single point:

F =
m
b2 (x−rvrp). (6)

Figure 1 clarifies the correlations between eCMP, CMP
and CoP for general (bipedal) robot dynamics.

III. G ENERATION OFDCM REFERENCE

The basic idea - exploiting the first order dynamics
of the DCM - is to find a DCM trajectory which
corresponds to constant eCMPs in the centers of the
preplanned future foot positionsr f ,i, thus fulfilling
the ZMP constraints. Given a desired eCMP-to-VRP
height difference∆zvrp, we find the according desired
VRPs (see fig 2) with (4) as

rvrp,d,i = r f ,i +
[
0 0 ∆zvrp

]T
(7)

With (4), we find the time-constant of the DCM dy-
namics asb =

√
∆zvrp/g. The desired DCM locations

at the end of each step are found via recursion:

ξd,eos,i−1 = ξd,ini,i = rvrp,d,i + e−
tstep

b (ξd,eos,i −rvrp,d,i).
(8)

For t < tstep, the desired DCM trajectory in time is

ξd(t) = rvrp,d,1+ e
t−tstep

b (ξd,eos,1−rvrp,d,1). (9)
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Fig. 1. Point correlations for general robot dynamics. The CMP is
at the intersection of the line CoM-to-eCMP with the ground.The
leg force line of actionlact is shifted by a torqueτ around the CoM,
so the CoP does generally not coincide with the CMP.

IV. T HREE-DIM . DCM TRACKING CONTROL

The DCM control law used in this work is

rvrp,c = ξ+ k b(ξ−ξd)− bξ̇d , (10)

It leads to the following stable closed loop dynamics
[
ẋ

ξ̇

]

=

[
−1/b 1/b

0 −k

][
x

ξ

]

︸ ︷︷ ︸

f eedback

+

[
0 0
k 1

][
ξd

ξ̇d

]

︸ ︷︷ ︸

f eed f orward

. (11)

For b > 0 and k > 0 the dynamics is stable. The
according desired leg-force can be found as

Fleg,c =
mg

∆zvrp
(x− (rvrp,c−

[
0 0 ∆zvrp

]T

︸ ︷︷ ︸

recmp,c

)) (12)

Note that the only equations that are finally needed
are (8) and (9) for three-dimensional DCM trajectory
generation and (10) and (12) for force-based DCM
tracking control. They can easily be computed in real-
time on any computer.

V. CONCLUSIONS

In addition to the shown equations, we found meth-
ods to guarantee feasibility of the finally commanded
forces (not presented in this abstract). The performance
of the proposed control framework was tested in
point-mass/point-foot (bipedal) simulations and sim-
ulations of DLR’s humanoid TORO in OpenHRP3.
The controller shows high robustness towards external
unknown perturbations (constant and impulsive forces)
and model inaccuracies.
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Fig. 2. Planning of DCM trajectory over rough terrain. The DCM
reference trajectory (bold lines) and the resulting CoM trajectory
(sinusoidal curve, “automatically” follows the DCM) are 3D.
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