5 research outputs found

    Glottal Source Cepstrum Coefficients Applied to NIST SRE 2010

    Get PDF
    Through the present paper, a novel feature set for speaker recognition based on glottal estimate information is presented. An iterative algorithm is used to derive the vocal tract and glottal source estimations from speech signal. In order to test the importance of glottal source information in speaker characterization, the novel feature set has been tested in the 2010 NIST Speaker Recognition Evaluation (NIST SRE10). The proposed system uses glottal estimate parameter templates and classical cepstral information to build a model for each speaker involved in the recognition process. ALIZE [1] open-source software has been used to create the GMM models for both background and target speakers. Compared to using mel-frequency cepstrum coefficients (MFCC), the misclassification rate for the NIST SRE 2010 reduced from 29.43% to 27.15% when glottal source features are use

    A Hybrid Parameterization Technique for Speaker Identification

    Get PDF
    Classical parameterization techniques for Speaker Identification use the codification of the power spectral density of raw speech, not discriminating between articulatory features produced by vocal tract dynamics (acoustic-phonetics) from glottal source biometry. Through the present paper a study is conducted to separate voicing fragments of speech into vocal and glottal components, dominated respectively by the vocal tract transfer function estimated adaptively to track the acoustic-phonetic sequence of the message, and by the glottal characteristics of the speaker and the phonation gesture. The separation methodology is based in Joint Process Estimation under the un-correlation hypothesis between vocal and glottal spectral distributions. Its application on voiced speech is presented in the time and frequency domains. The parameterization methodology is also described. Speaker Identification experiments conducted on 245 speakers are shown comparing different parameterization strategies. The results confirm the better performance of decoupled parameterization compared against approaches based on plain speech parameterization

    Decoupling Vocal Tract from Glottal Source Estimates in Speaker's Identification

    Get PDF
    Classical parameterization techniques in Speaker Identification tasks use the codification of the power spectral density of speech as a whole, not discriminating between articulatory features due to the dynamics of vocal tract (acoustic-phonetics) and those contributed by the glottal source. Through the present paper a study is conducted to separate voicing fragments of speech into vocal and glottal components, dominated respectively by the vocal tract transfer function estimated adaptively to track the acoustic-phonetic sequence of the message, and by the glottal characteristics of the speaker and the phonation gesture. In this way information which is conveyed in both components depending in different degree on message and biometry is estimated and treated differently to be fused at the time of template composition. The methodology to separate both components is based on the decorrelation hypothesis between vocal and glottal information and it is carried out using Joint Process Estimation. This methodology is briefly discussed and its application on vowel-like speech is presented as an example to observe the resulting estimates both in the time as in the frequency domain. The parameterization methodology to produce representative templates of the glottal and vocal components is also described. Speaker Identification experiments conducted on a wide database of 240 speakers is also given with comparative scorings obtained using different parameterization strategies. The results confirm the better performance of de-coupled parameterization techniques compared against approaches based on full speech parameterization

    Glottal Source Cepstrum Coefficients Applied To NIST SRE 2010

    Get PDF
    Abstract. Through the present paper, a novel feature set for speaker recognition based on glottal estimate information is presented. An iterative algorithm is used to derive the vocal tract and glottal source estimations from speech signal. In order to test the importance of glottal source information in speaker characterization, the novel feature set has been tested in the 2010 NIST Speaker Recognition Evaluation (NIST SRE10). The proposed system uses glottal estimate parameter templates and classical cepstral information to build a model for each speaker involved in the recognition process. ALIZ
    corecore