204 research outputs found

    Finger Vein Recognition Based on PCA Feature using Artificial Neural Network

    Get PDF
    Personal recognition technology is developing rapidly as a security system. Traditional methods such as authentication key; password: card is not secure enough, because they could be stolen or easily forget. Biometrics has been applied to a wide range of systems. According to various researchers, vein biometrics was a good technique from other biometric authentication system used, such as fingerprints, hand geometry, voice, etc. of the DNA. Root Authentication systems can be designed in different ways. All methods include the matching stage. A neural network is an effective way of matching Personal identification authentication system. The finger vein pattern is unique biometric identity of the human beings. The finger vein recognition is a popular biometric technique which is used for authentication purposes in various applications. In the propose work an algorithm is proposed to find the accuracy, FRR and FAR of finger vein recognition. The performances of PCA, threshold segmentation, pre-processing and testing & training techniques has been validate and compared with each other in order to determine the most accurate results in terms of finger vein recognition

    Mouth Image Based Person Authentication Using DWLSTM and GRU

    Get PDF
    Recently several classification methods were introduced to solve mouth based biometric authentication systems. The results of previous investigations into mouth prints are insufficient and produce lesser authentication results. This is mainly due to the difficulties that accompany any analysis of the mouths: mouths are very flexible and pliable, and successive mouth print impressions even those obtained from the same person may significantly differ from one other. The existing machine learning methods, may not achieve higher performance and only few methods are available using deep learning for mouth biometric authentication. The use of deep learning based mouth biometrics authentication gives higher results than usual machine learning methods. The proposed mouth based biometric authentication (MBBA) system is rigorously examined with real world data and challenges with the purpose that could be expected on mouth-based solution deployed on a mobile device. The proposed system has three major steps such as (1) database collection, (2) creating model for authentication, (3) performance evaluation. The database is collected from Annamalai University deep learning laboratory which consists of 5000 video frames belongs to 10 persons. The person authentication model is created using divergence weight long short term memory (DWLSTM) and gated recurrent unit (GRU) to capture the temporal relationship in mouth images of a person. The existing and proposed methods are implemented via the Anaconda with Jupyter notebook. Finally the results of the proposed model are compared against existing methods such as support vector machine (SVM), and Probabilistic Neural Network (PNN) with respect to metrics like precision, recall, F1-score, and accuracy of mouth

    An Efficient Fingerprint Identification using Neural Network and BAT Algorithm

    Get PDF
    The uniqueness, firmness, public recognition, and its minimum risk of intrusion made fingerprint is an expansively used personal authentication metrics. Fingerprint technology is a biometric technique used to distinguish persons based on their physical traits. Fingerprint based authentication schemes are becoming increasingly common and usage of these in fingerprint security schemes, made an objective to the attackers. The repute of the fingerprint image controls the sturdiness of a fingerprint authentication system. We intend for an effective method for fingerprint classification with the help of soft computing methods. The proposed classification scheme is classified into three phases. The first phase is preprocessing in which the fingerprint images are enhanced by employing median filters. After noise removal histogram equalization is achieved for augmenting the images. The second stage is the feature Extraction phase in which numerous image features such as Area, SURF, holo entropy, and SIFT features are extracted. The final phase is classification using hybrid Neural for classification of fingerprint as fake or original. The neural network is unified with BAT algorithm for optimizing the weight factor

    A Biometric Fusion Based on Face and Fingerprint Recognition using ANN

    Get PDF
    Biometric systems are used for identifying and recognizing individual characteristics on the basis of biological or behavioral features. In the research work, a biometric fusion system based on fingerprint and face using the artificial intelligence technique is proposed. To achieve better accuracy of the biometric fusion system, the uniqueness of feature is significant. To find out the unique feature set from the data, we have used different feature extraction algorithm in the proposed biometric fusion system. Initially, pre-processing has been applied on the test images which is used to remove the unwanted data from the uploaded image and return an appropriate data for further process. In the fingerprint part, minutia extraction is used as a feature of fingerprint whereas Extended Local Binary pattern (ELBP) is used for extracting features of face and creates a pattern of face features. To create a unique feature set, optimization algorithm is needed and we have used genetic algorithm as a feature optimization technique. In the proposed fusion system, ANN is used to classify the test data according to the trained ANN structure with optimized feature data of fingerprint and face. To check the efficiency of proposed fusion system, we have calculated the performance parameters like FAR, FRR and Accuracy. From the analysis of proposed fusion system, we have observed that the accuracy of the proposed work is better than the previous ones and it is more than the 94%. To design a proposed biometric fusion system, image processing toolbox is used under the MATLAB environment

    Crypt Edge Detection Using PSO,Label Matrix And BI-Cubic Interpolation For Better Iris Recognition(PSOLB)

    Get PDF
    Iris identification is an automatic system to recognise an individual in biometric applications.Human iris is an internal organ that can be accessed from external view of the body.Moreover,the structure of the iris is formed in a complete random manner and has unique features such as crypts,furrows,collarets,pupil,freckles, and blotches.In fact, no iris patterns are the same.The iris structure is stable which it means the location of the iris features is permanent at certain point.Nevertheless,the shape of iris features changes slowly due to several factors which include aging,surgery,growth,emotion and dietary habits. Recently,there has been renewed interest in iris features detection.Gabor filter,cross entrophy, upport vector,and canny edge detection are methods which produce iris codes in binary codes representation.However,problems have occurred in iris recognition since low quality iris images are created due to blurriness,indoor or outdoor settings, and camera specifications.Failure was detected in 21% of the intra-class comparisons cases which were taken between intervals of three and six months intervals.However,the mismatch or False Rejection Rate (FRR) in iris recognition is still alarmingly high.Higher FRR also causes the value of Equal Error Rate (EER) to be high.The main reason for high values of FRR and EER is that there are changes in the iris due to the amount of light entering into the iris that changes the size of the unique features in the iris.One of the solutions to this problem is by finding any technique or algorithm to automatically detect the unique features.Therefore a new model is introduced which is called Crypt Edge Detection which combines PSO,Label Matrix,and Bi-Cubic Interpolation for Iris Recognition (PSOLB) to solve the problem of detection in iris features.In this research, the unique feature known as crypts has been chosen due to its accessibility and sustainability.Feature detection is performed using particle swarm optimisation (PSO) as an algorithm to select the best iris texture among the unique iris features by finding the pixel values according to the range of selected features.Meanwhile, label matrix will detect the edge of the crypt and the bi-cubic interpolation technique creates sharp and refined crypt images.In order to evaluate the proposed approach,FAR and FRR are measured using Chinese Academy of Sciences' Institute of Automation (CASIA) database for high quality images.For CASIA version 3 image databases, the crypt feature shows that the result of FRR is 21.83% and FAR is 78.17%.The finding from the experiment indicates that by using the PSOLB,the intersection between FAR and FRR produces the Equal Error Rate (EER) with 0.28%,which indicated that equal error rate is lower than previous value, which is 0.38%.Thus,there are advantages from using PSOLB as it has the ability to adapt with unique iris features and use information in iris template features to determine the user.The outcome of this new approach is to reduce the EER rates since lower EER rates can produce accurate detection of unique features.In conclusion,the contribution of PSOLB brings an innovation to the extraction process in the biometric technology and is beneficial to the communities

    A Novel Biometric Key Security System with Clustering and Convolutional Neural Network for WSN

    Get PDF
    Development in Wireless Communication technologies paves a way for the expansion of application and enhancement of security in Wireless Sensor Network using sensor nodes for communicating within the same or different clusters. In this work, a novel biometric key based security system is proposed with Optimized Convolutional Neural Network to differentiate authorized users from intruders to access network data and resources. Texture features are extracted from biometrics like Fingerprint, Retina and Facial expression to produce a biometric key, which is combined with pseudo random function for producing the secured private key for each user. Individually Adaptive Possibilistic C-Means Clustering and Kernel based Fuzzy C-Means Clustering are applied to the sensor nodes for grouping them into clusters based on the distance between the Cluster head and Cluster members. Group key obtained from fuzzy membership function of prime numbers is employed for packet transfer among groups. The three key security schemes proposed are Fingerprint Key based Security System, Retina Key based Security System, and Multibiometric Key based Security System with neural network for Wireless Sensor Networks. The results obtained from MATLAB Simulator indicates that the Multibiometric system with kernel clustering is highly secured and achieves simulation time less by 9%, energy consumption diminished by 20%, delay is reduced by 2%, Attack Detection Rate is improved by 5%, Packet Delivery Ratio increases by 6%, Packet Loss Ratio is decreased by 27%, Accuracy enhanced by 2%, and achieves 1% better precision compared to other methods

    Performance analysis of multimodal biometric fusion

    Get PDF
    Biometrics is constantly evolving technology which has been widely used in many official and commercial identification applications. In fact in recent years biometric-based authentication techniques received more attention due to increased concerns in security. Most biometric systems that are currently in use typically employ a single biometric trait. Such systems are called unibiometric systems. Despite considerable advances in recent years, there are still challenges in authentication based on a single biometric trait, such as noisy data, restricted degree of freedom, intra-class variability, non-universality, spoof attack and unacceptable error rates. Some of the challenges can be handled by designing a multimodal biometric system. Multimodal biometric systems are those which utilize or are capable of utilizing, more than one physiological or behavioural characteristic for enrolment, verification, or identification. In this thesis, we propose a novel fusion approach at a hybrid level between iris and online signature traits. Online signature and iris authentication techniques have been employed in a range of biometric applications. Besides improving the accuracy, the fusion of both of the biometrics has several advantages such as increasing population coverage, deterring spoofing activities and reducing enrolment failure. In this doctoral dissertation, we make a first attempt to combine online signature and iris biometrics. We principally explore the fusion of iris and online signature biometrics and their potential application as biometric identifiers. To address this issue, investigations is carried out into the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. We compare the results of the multimodal approach with the results of the individual online signature and iris authentication approaches. This dissertation describes research into the feature and decision fusion levels in multimodal biometrics.State of Kuwait – The Public Authority of Applied Education and Trainin

    Multimodal Biometric Systems for Personal Identification and Authentication using Machine and Deep Learning Classifiers

    Get PDF
    Multimodal biometrics, using machine and deep learning, has recently gained interest over single biometric modalities. This interest stems from the fact that this technique improves recognition and, thus, provides more security. In fact, by combining the abilities of single biometrics, the fusion of two or more biometric modalities creates a robust recognition system that is resistant to the flaws of individual modalities. However, the excellent recognition of multimodal systems depends on multiple factors, such as the fusion scheme, fusion technique, feature extraction techniques, and classification method. In machine learning, existing works generally use different algorithms for feature extraction of modalities, which makes the system more complex. On the other hand, deep learning, with its ability to extract features automatically, has made recognition more efficient and accurate. Studies deploying deep learning algorithms in multimodal biometric systems tried to find a good compromise between the false acceptance and the false rejection rates (FAR and FRR) to choose the threshold in the matching step. This manual choice is not optimal and depends on the expertise of the solution designer, hence the need to automatize this step. From this perspective, the second part of this thesis details an end-to-end CNN algorithm with an automatic matching mechanism. This thesis has conducted two studies on face and iris multimodal biometric recognition. The first study proposes a new feature extraction technique for biometric systems based on machine learning. The iris and facial features extraction is performed using the Discrete Wavelet Transform (DWT) combined with the Singular Value Decomposition (SVD). Merging the relevant characteristics of the two modalities is used to create a pattern for an individual in the dataset. The experimental results show the robustness of our proposed technique and the efficiency when using the same feature extraction technique for both modalities. The proposed method outperformed the state-of-the-art and gave an accuracy of 98.90%. The second study proposes a deep learning approach using DensNet121 and FaceNet for iris and faces multimodal recognition using feature-level fusion and a new automatic matching technique. The proposed automatic matching approach does not use the threshold to ensure a better compromise between performance and FAR and FRR errors. However, it uses a trained multilayer perceptron (MLP) model that allows people’s automatic classification into two classes: recognized and unrecognized. This platform ensures an accurate and fully automatic process of multimodal recognition. The results obtained by the DenseNet121-FaceNet model by adopting feature-level fusion and automatic matching are very satisfactory. The proposed deep learning models give 99.78% of accuracy, and 99.56% of precision, with 0.22% of FRR and without FAR errors. The proposed and developed platform solutions in this thesis were tested and vali- dated in two different case studies, the central pharmacy of Al-Asria Eye Clinic in Dubai and the Abu Dhabi Police General Headquarters (Police GHQ). The solution allows fast identification of the persons authorized to access the different rooms. It thus protects the pharmacy against any medication abuse and the red zone in the military zone against the unauthorized use of weapons
    corecore