3 research outputs found

    Retrograde Nailing for Treating Femoral Shaft Fractures: A Review

    Get PDF
    Rigid intramedullary nailing is an effective procedure for treating fractures of the femoral shaft. Although antegrade nailing is the traditionally used technique, retrograde nailing offers various advantages. A companion article published in the seventh volume of The University of New Mexico Orthopaedics Research Journal addressed antegrade femoral nailing. This review will describe retrograde nailing of femoral shaft fractures, including a brief history, indications, detailed technique, outcomes, advice (or “pearls”), and common failures (or “pitfalls”). Retrograde nailing for treating femoral shaft fractures can provide successful results similar to those of antegrade nailing in general and advantages in particular situations such as more distal shaft, bilateral, and certain associated fractures

    Influence of screw combination and nail materials in the stability of anterograde reamed intramedullary nail in distal femoral fractures

    Get PDF
    Intramedullary nailing (IM) is a technique universally accepted to treat femoral diaphyseal fractures. The treatment of fractures located in the distal third remains a controversial issue though. A finite element model of the femur has been developed, analyzing distal fractures with several gap sizes combined with different interlocking combinations of distal screws with one oblique screw proximally to stabilize the intramedullary nail. The mechanical strength of the nail against bending and compression efforts was also studied. Beside the FE simulations, a clinical follow-up of 15 patients, 6 males and 9 females, with mean age of 53.2 years was carried out. Localizations of fractures were 10 in the right femur and 5 in the left femur, respectively. A fairly good correspondence agreement between clinical results and the simulated fractures in terms of gap size was found. Non-comminuted fractures had a mean consolidation time of 20.5 weeks (4.8 months), a tendency corresponding well to the mobility obtained in the FE simulations; Comminuted fractures on the other hand exhibited a higher mean consolidation period of 22.2 weeks (5.2 months) secondary to the excessive mobility at fracture site obtained by means of FE simulations. The best stability at fracture site was found for the system with three distal screws and the system with two distal screws placed medial lateral. The highest leverage of distal screws was obtained maximizing the distance between them and choosing the coronal plane for their orientation. The results obtained with both nail materials (stainless steel and titanium alloy) show a higher mobility when using titanium nails. Steel nails provide stiffer osteosyntheses than the titanium nails. In conclusion, the best screw combination in terms of stability to produce fracture healing and the least difficulties during treatment is the one which had one oblique proximal screw with two distal lateral screw implanted in the coronal plane

    Comparative analysis of the biomechanical behavior of anterograde/retrograde nailing in supracondylar femoral fractures

    Get PDF
    Supracondylar femoral fractures account for a noticeable percentage of the femoral shaft fractures, affecting two etiological groups: high energy trauma in young men, with good bone quality, and older women with osteoporotic femur. Surgical treatment of those kind of fractures remains controversial, with different surgical options such as plate and sliding barrel locking condylar plate, less invasive stabilization system (LISS) or intramedullary nailing, which has emerged as a new fixation choice in the treatment of that type of fractures. The present work performs a comparative study about the biomechanical behavior of anterograde and retrograde nailing in supracondylar femoral fractures type A, in order to determine the best choice of nailing and locking configuration. A three-dimensional finite element model of the femur was developed, modeling femoral supracondylar fracture and different nailing configurations, both for anterograde and retrograde nails. The study was focused on the immediately post-operative stage, verifying the appropriate stability of the osteosynthesis. The obtained results show a better biomechanical behavior for anterograde nails, providing a better stability from the point of view of global movements, lower stresses in screws, and less stress concentration in cortical bone. So, for the analyzed fractures and osteosyntheses types, anterograde nailing has demonstrated to be a better surgical option, being an excellent indication in supracondylar fractures of femur, with clear benefits compared to retrograde nailing, providing a better stabilization which enables for a more satisfactory fracture healing
    corecore