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ABSTRACT 

 

Intramedullary nailing (IM) is a technique universally accepted to treat femoral 

diaphyseal fractures. The treatment of distal fractures located in the distal third remains 

a controversial issue though. Thus there is a wrangle over the choice of method of 

fixation in fractures of the distal third of the femur. 

 

A finite element model of the femur has been developed, analysing distal fractures with 

several gap sizes combined with different interlocking combinations of distal screws 

with one oblique screw proximally to stabilize the intramedullary nail. The mechanical 

strength of the nail against bending and compression efforts was studied comparing 

three materials for the nail: stainless-steel, titanium alloy and cobalt-chromium-

molybdenum alloy. 

 

Beside the FE simulations, a clinical follow-up was realized, considering a sample of 15 

patients, 6 males and 9 females, with mean age of 53.2 years. Localizations of fractures 

were 10 in the right femur and 5 in the left femur, respectively. 

 

A fairly good correspondence agreement between clinical results and the simulated 

fractures in terms of gap size was found. Non-comminuted fractures have a mean 

consolidation time of 20.5 weeks (4.8 months), which tendency corresponds to the 

mobility obtained in the FE simulations, whereas comminuted fractures have a higher 

mean consolidation period estimated in 22.2 weeks (5.2 months) corresponding to the 

excessive mobility at fracture site obtained by means of FE simulations. 

 

Results associated with the different screw combinations exhibited the best stability at 

fracture site for the system with three distal screws and the system with two distal 

screws placed medial lateral. The highest leverage of distal screws is obtained 

maximizing the distance between them and choosing the coronal plane for their 

orientation. The results obtained with both nail materials (stainless steel and titanium 

alloy) show a higher mobility when using titanium nails. Steel nails provide stiffer 

osteosyntheses than the titanium nails. 

 



In conclusion, the best screw combination in terms of stability to produce fracture 

healing and the least difficulties during surgical procedure is the one which had one 

oblique proximal screw with two distal lateral screw implanted in the coronal plane. 

 

Key terms: Intramedullary nail, Anterograde reamed nail, Femoral distal fracture, 

Screw combination analysis, Osteosynthesis, Finite element analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.-INTRODUCTION 

 

Intramedullary nailing (IM) is a technique universally accepted to treat femoral 

diaphyseal fractures, however the treatment of distal fractures located in the distal third 

remains a controversial issue 

Distal femoral fractures account for 1% of fractures, and between 3-6% of femoral 

fractures, the incidence increases with age [1, 2] .There are two etiological possibilities 

in these fractures: a) young patients with injuries of high energy, and  b) older patients, 

where a fall is able to produce fracture. It has been published a peak incidence in young 

women and older women [2, 3]. Regularly, the mechanisms in both etiologic cases are 

comminuted. Within this group of fractures we must distinguish extra-articular fractures 

and fractures that affect the knee joint. Following the AO / OTA classification, we 

would have the type fractures A: extra- and intra-articular B and C [4]. 

Despite being extra-articular, there is controversy in the choice of method of fixation in 

fractures of the distal third of the femur, type A. The proposed methods are: anterograde 

or retrograde IM, Fixed-angle Blade Plate, Plate and Sliding Barrel Locking Condylar 

Plate [5].  

 

The fundamental objectives of surgical treatment should be to ensure the stability of the 

fracture to achieve consolidation, keep the length and axis of the limb, get a good 

functional recovery, keeping the knee function, and all with an intervention aggressive 

surgical least possible [6].  

We coincide with other authors, that it is possible to treat fractures in the area 5 of Wiss 

[7, 8] with anterograde locked IM [5, 6, 9, 10]. On the other hand, the locked IM is 

useful to stabilize supracondylar fractures with proximal extension to femoral diaphysis 

[9]. The advantages of locked IM, compared with other methods of osteosynthesis are: 

is a closed technique, preserves the hematoma in the focus of fracture, permits an easier 

extraction, exhibits a high rate of consolidation (98%) and a low percentage of infection 

(1%) [8]. 

 



Conversely, the new femoral nails allow multiple alternatives blocked lock distal to 

ensure the stability of the distal fragment, allowing anterograde extend the indications 

fastened it [6]. 

It is very important the minimum distance between the fracture site and the most 

proximal screw for distal fixation of the nail. Anterograde IM is possible when the 

fracture is located more than 3 cm from closest distal screw [11]. In vitro studies 

conducted by this author reported that an anterograde titanium alloy nail will survive 1 

million compression/bending cycles when the fracture is > or = 3 cm from the closest of 

the 2 distal locking screws. In these types of fractures, large-diameter nails should be 

used to avoid fatigue fracture at the screw holes [9, 12] furthermore distal cortical 

contact increase stability of the system [12]. 

 

It is difficult to accumulate enough number of fractures with different gap in the fracture 

site to enable us to implement different combinations of placement of distal screws and 

with nails of different alloy  to draw conclusions about which is the ideal combination, 

so that an effective method is to use the simulation by Finite Elements. Computational 

techniques are considered to be a powerful, time-efficient and proven tool to reproduce 

biomechanical behaviour of a wide range of phenomena globally and locally.  

 

Concerning finite element (FE) simulations a previous work developed by Shih [13] 

studied analyzed the influence of muscular contractions on stress analysis of distal nail 

holes and locking screws for different load conditions. As conclusion, when increasing 

the distance from the closest distal screw to the fracture site, a higher global mobility is 

obtained. In other work [14], three-dimensional nonlinear finite element models were 

developed, and the implant strength, fixation stability, and contact area of the fracture 

surfaces were evaluated and the results showed that the static fixation technique resulted 

in sufficient fixation stability and that the dynamic fixation techniques decreased the 

failure risk of the implant and produced a larger contact area of the fracture surfaces. 

 

The objective of the present work is to determine the best screw combination for distal 

fractures with three gap sizes analysing different material for the nail for a given 

accidental load in the early post-operative stage, without considering the onset of 



biological process focussed on the fracture healing. Four locking screw combinations 

and two materials (stainless steel and titanium) were analysed. 

 

2.-MATERIALS & METHODS  

 

2.1.-Modelling of the femur and implants 

 

A three dimensional (3D) finite element model of the femur from 55 year old male 

donor was developed. Outer Geometry of the femur was obtained by means of 3D 

scanner Roland3D Roland® PICZA (Irvine, California) scanner, whereas a set of 

computed tomography (CT) of the donor’s femur were treated using Mimics® Software 

(Materialise, Leuven). Once the inner interface between cortical and trabecular bone 

was determined, by means of an in-house algorithm material properties were assigned to 

the FE model in I-Deas [15], using the same workflow of a previous study [16].  

 

The studied femoral nail Stryker S2TM (Stryker, Mahwah, NJ, USA) was 380 mm long, 

with a wall thickness of 2 mm and an outer diameter of 13 mm. This reamed 

anterograde nail uses locking screws of 5 mm of outer diameter, which were modelled 

as cylinders of the same diameter. 

 

2.2.-Meshing and material properties 

 

Nail surgery was reproduced in I-Deas in a virtual way, inserting the nail into the femur 

with the corresponding screws. Afterwards the assembly of the computer aided design 

(CAD) model was performed under surgeon supervision. Bone, nail and screws were 

meshed with linear tetrahedron. They were assumed for the bone linear elastic isotropic 

properties (ECortical=20000 MPa, n=0.3; ETrabecular=959 MPa, n =0.3 [17], as reference), 

with variable values related with the processed CT images. The metallic nail was made 

either 316 LVM steel (E=192.36 GPa, n =0.3) or Ti-6L-4V (E=113.76 GPa, n =0.34) 

or Cobalt-Chromium-Molybdenum (CoCrMb) (E=214 GPa, n =0.3) and metallic 

screws of 316 LVM steel, both assumed to be linear elastic isotropic.  

 



A sensitivity analysis was performed to determine the minimal size mesh required for 

an accurate simulation. For this purpose, a mesh refinement was performed in order to 

achieve a convergence towards a minimum of the potential energy, both for the whole 

model and for each of its components, with a tolerance of 1% between consecutive 

meshes. 

 

2.3.- Configurations used and contact modelling 

 

The purpose of this study was to investigate de optimal screw combination for a single 

distal fracture location and gap size. The transverse fracture was modelled using an 

irregular surface remaining faithfully to a comminuted fracture considering three gap 

sizes: 0.5 mm, 3 mm and 20 mm. Thus, four combinations of locking screws were 

considered as Table 1 shows: one oblique proximal screw combined with four 

configurations of the three distal ones, two lateral-medial (L/M) and one antero-

posterior (A/P). Table 1 summarizes the list of FE models simulated for the three gap 

sizes: 4 models were generated for each material of the nail. 

 

The present was study considered the immediate post-operative stage. Consequently, no 

biological osseointegration process was considered. Contact interaction was assumed 

between the outer surface of the nail and the inner cortex of the medullary canal of the 

femur (Fig. 1). Tied interaction between screws and cortical bone was considered, 

whereas contact between screws a femoral nail was simulated. The selected friction 

values of bone/nail and nail/screws were 0.1 and 0.15, respectively, in accordance with 

literature [18-20]. Other similar studies modelled bone/nail interaction as frictionless, 

though [21, 22]. 

 

2.4.- Loads and boundary conditions 

 

Regarding boundary conditions for all the simulations, fully constrained conditions at 

the condyles were considered and a load case associated with an accidental support of 

the leg at early post-operative (PO) stage (Fig. 2). This load was quantified to be about 

25% the maximum gait load. According to Orthoload’s database, the hip reaction force 

and abductor force (as the prime muscle group), referred to the 45% of gait, correspond 



to the maximum and most representative load [23]. Muscle attachments areas 

corresponding to abductor group muscle were determined mimicking anatomy atlas. 

 

2.5.- Clinical follow-up 

 

Beside the FE simulations, a clinical follow-up was realized, considering a sample of 15 

patients, 6 males and 9 females, with mean age of 53.2 years, all of them treated with 

anterograde femoral nail Stryker S2TM. Localizations of fractures were 10 in the right 

femur and 5 in the left femur. The statistic corresponding to fracture localization and 

fracture grade are included in Table 2. The comminute grade was measured according to 

the scale of Winquist/Hansen [24]. For all the clinical cases, the interlocking systems 

correspond to the fourth one (Table 1): one proximal oblique screw and two distal 

screws places in lateral-medial position. 

 

3.-RESULTS  

 

The FE simulations allow obtaining the mobility results for the different cases analyzed. 

Figure 3 shows the deformed shape amplified (x25) and the vertical displacement maps 

(U3) corresponding to all four combinations of screws and steel nail.  

 

The study of micromotions at fracture site was measured as the relative motion between 

pairs of homologue points defined from opposed nodes depicted in Fig. 4. When 

analysing micromotions at fracture site in order to investigate fracture healing according 

to Perren’s method [15], models with gap sizes of 3 mm and 20 mm verify this 

condition as Table 3a and 3b show for both materials of the nail. The threshold strain 

value of 10% beyond which fracture healing is expected to occur strongly depends on 

the gap size. Values for steel nail range from 1.61% to 2.06 % and 0.33% to 0.41% for 

gap sizes of 3 mm and 20 respectively. Values for titanium nail are incremented due to 

the smaller stiffness of the complete locking mechanism with values 3.06 %-3.36% for 

3 mm gap size and 0.62 %-0.48% for 20 mm gap size. 

 

Conversely, except from the fourth screw combination (8.14 %), all models with gap 

size of 0.5 mm. and steel nail produce strains beyond the proposed threshold  (10.91-

11.05 %), none of them verify Perren’s conditions when changing material nail. These 



obtained results for the smallest gap could be counterintuitive as the biggest fracture 

gives strains below the 10% threshold. Consequently, this criterion should be used with 

caution. 

 

The maximum amplitude of micromotion between homologue points at the fracture site 

for steel and titanium nail is reported in Tables 4a and 4b respectively. The most rigid 

behaviour both nail materials corresponds to the fourth interlocking system: 40.69 µm 

(gap size of 0.5 mm) and 48.33 µm (gap size of 3 mm), whereas the first one (three 

distal screws) shows the best stability in terms of micromotions for biggest gap size of 

20 mm: 63.50 µm. The second and the third screw combination exhibit a similar 

behaviour when the nail material is changed to titanium and among the three gap sizes. 

 

Tables 5a and 5b show the global stability of each fixation system which follows similar 

tendencies as the aforementioned amplitude of micromotion for steel nail and titanium 

nail. The global movement at the top of the nail was measured yielding to the most rigid 

behaviour for the fourth interlocking system: 1.75 to 2.01 mm for steel nail whereas for 

titanium nail, the first screw combination showed smallest motion for the first 

interlocking system 2.81 mm and 2.80 mm (3 mm gap size and 20 mm respectively). 

For the smallest gap size, the fourth interlocking system was again the most stable in 

terms of global movement (2.36 mm). Analogously to the analyzed micromotions, the 

second and the third fixation system yield to similar results for both materials in the two 

gaps associated with comminuted fractures. 

 

Table 6a summarizes the evolution of micromotion at fracture site associated to the 

fourth interlocking system for different nail materials and fracture gap sizes. Table 6b 

compiles results associated to global stability. A marked tendency is reported in these 

tables showing a decrease in mobility (global and local) from titanium to CoCrMb. 

Results of stability for every type of fracture are similar for steel and CoCrMb, while 

the stability decreases for titanium nail. 

 

With respect to the clinical follow-up, non-comminuted fractures have a mean 

consolidation time of 20.5 weeks (4.8 months), whereas comminuted fractures (grade 2 

and 1 Winquist and Hansen) have a higher mean consolidation period estimated in 22.2 

weeks (5.2 months). One case resulted in pseudarthrosis with is posterior surgery. 



 

 

4.-DISCUSSION 

 

The choice of method of surgical treatment to stabilize the extra-articular fractures of 

the lower third of the femur remains a controversial issue but the appearance of new 

blocked nails, can extend the indication of anterograde nailing this type of fractures 

[25]. Fracture healing may be modified by extrinsic conditions, one of the most 

important is biomechanics of fracture fixation [26] Achieve good stability of the 

fracture site is essential for the consolidation. This stability is determined by several 

factors including nail size, number of locking screws or bolts, and distance of the 

locking screw or bolt from the fracture site [27]. 

 

The originality of our work is that from our knowledge no simulation studies on the 

influence on the stability of fracture site depending on the number and orientation of the 

distal locking screws using different alloys of material with different gap of fracture 

site. The use of computational techniques has been an excellent tool to verify whether 

the stability provided by different interlocking systems consistent with the achievement 

of the consolidation in case of comminuted distal femoral fractures. 

In the locked intramedullary the load is transmitted from proximal to distal to the distal 

screws, which are subjected to high stress. This stress of distal screw decreased as the 

length of nail-cortical contact and the distance between the distal locking screw and the 

fracture site increased [28]. The diameter of the nail is important in fractures of the 

distal third to ensure good contact with the femoral medial cortex and also to allow the 

insertion of locking screws minimum diameter of 5 mm, we have employed in the 

simulation a nail of 13 mm section and screws 5 mm. 

Works have been published on the safety lock that gives a static screw [14]. The need to 

place 2 distal screws in titanium nails [29]. 

Variations in the stress of the distal screws in relation with the distance between the 

fracture site and distal locking screws [28]. The influence on stability with a single 

distal static screw relating it to the distance of the screw to fracture site [30] and 



checking that can significantly affect rotational stability but not axial or angular 

fixation. The security that can give set screws use as distal locking [31].  

It is accepted that the position of the proximal locking screws is in different 

biomechanical point of view , but two screws should be placed [25]. Interestingly there 

are works about the position and number of distal screws in the tibial nailing [32-34].  

However there are no biomechanical studies about the influence on stability according 

to the number and orientation of the distal screws, so we consider our study interesting 

and original. 

 

According to the results presented previously, Perren’s method can be a useful 

verification for fracture healing when evaluating small gap sizes due to the strong 

dependence of the strain value with the analyzed gap size. Therefore, counterintuitive 

results are obtained, as the biggest fracture gives strains below the 10% threshold 

compared to gaps sizes of 0.5 mm and 3 m. Consequently, this criterion should be used 

with caution. 

 

The stability at fracture site measured in terms of relative micromotions of homologue 

points provides a more accurate measure for bone ingrowth. Evaluating results obtained 

for steel nail, the fourth interlocking system produce the best results in terms of local 

and also global stability for non-comminuted fractures; for comminuted fractures the 

first and the fourth interlocking systems provide the same stability. On the other hand, 

for titanium nail, the best results were obtained for the fourth interlocking system for the 

minimum gap (0.5 mm); for the intermediate gap (3.0 mm), the first and the fourth 

interlocking systems provide similar stability; finally, for comminuted fractures, the 

first interlocking system achieve the best results. 

 

The highest locking rate is achieved when the distance between distal screws bigger, as 

the lever arm produced to block the movement of the nail is higher. Thereupon, the use 

of screw #3 for the first locking model is not leveraged and thus, micromotions 

produced by the second and third interlocking systems are within the same high rate as 

the distance between both distal screws is minimal. Besides, the inclusion of a third 

screw in a different plane (antero posterior) does not improve results compared to two 

L/M locking system. Thus, this A/P does not account for the extra difficulties assigned 



to the surgical technique: longer surgery times, higher radiation exposition and bigger 

difficulties associated to the screw insertion in two anatomical planes (sagittal and 

coronal). Therefore an alternative design of the nail can be proposed to maximize the 

distance of L/M threads with the restrictions of proximity to distal fracture and femoral 

condyles. 

 

From analyzed results comparing the three materials used for the nails, the election of 

steel nail prevails over the election of the thread combination, whereas for titanium nail 

screw combination plays the most important role. This is even more marked for 

comminuted fractures (gap size of 20 mm). Considering a stiffer material for the nail as 

CoCrMb alloy for the fourth model, the aforementioned tendency is confirmed as the 

behaviour of global motion and micromotions are more uniform between CoCrMb and 

Steel nail for gap sizes of 0.5 and 3 mm. On the other hand, when the stiffness of nail is 

reduced with titanium, stability is reduced considerably even more for gap size of 20 

mm where it plummets. Titanium nail does not confer the same stiffness to the fractured 

femur as the steel nail, globally and at fracture site.  

 

The correspondence of clinical results with simulations is although fairly good, they are 

not conclusive, as the number of patients is slightly small. In addition to this, the 

concept of consolidation is normally under debate, as it is defined according to clinical 

criteria related with symptomatology and interobserver radiological procedures. 

 

5.-CONCLUSIONS 

 

FE models developed in the present work permitted characterize the stability of 

different interlocking systems and identify the optimal one for every type of fracture. 

Moreover, the results are in correspondence to a set of clinical cases included in the 

follow-up. 

 

Non-comminuted fractures have the minimum mean consolidation time, which 

coincides with the appropriate mobility at fracture site obtained in the FE simulations, 

whereas comminuted fractures have the higher mean consolidation period, 



corresponding to the excessive mobility at fracture site obtained by means of FE 

simulations. The healing time increases inasmuch as the comminution grade is higher. 

 

Among the studied combinations of distal screws, the one with two distal screws medial 

lateral provided the best results in terms of stability at fracture site and global 

movement at the top of the nail along the three fracture gaps sizes. This tendency is 

explained as the locking effect is maximized when the distance in between the distal 

screws is increased. This parameter is limited by the proximity to fracture site and the 

distance to femoral condyles. Mobility rate with titanium screw was higher than with 

steel nail as it confers a stiffer fixation system which is better for osteosynthesis. 

 

Although a fair agreement between clinical results and the simulated fractures is 

obtained, this correspondence should be taken with caution as set of patients is small 

and consolidation is a blurred concept. 

 

In conclusion, the best screw combination in terms of stability to produce fracture 

healing and the least difficulties during surgical procedure is the one which had one 

oblique proximal screw with two distal lateral screw implanted in the coronal plane. 
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Figure legends 

 

Figure 1. Interaction between nail and bone and between screws and nail  

Figure 2. Boundary conditions  

Figure 3. Deformed shape (x25) and vertical displacement maps corresponding to a 

distal fracture: a) 1st interlocking system; b) 2nd interlocking system; c) 3rd interlocking 

system; d) 4th interlocking system 

Figure 4. Homologue points for micromotion processing: anterior and posterior view. 

 

 

 

 

 

 

 

 



Tables 

 

Table 1. List of FE models according screw combination 

Model 
Proximal 

screws 
Distal screws 

Fracture 

location 

Gap size 
 

1 

Oblique (#1) 

2 M/L screws 

and  1 A/P 

screw (#2,3,4) 

Distal 

 

 

0.5 mm. 

 

2 

1 L/M screw 

and  1 A/P 

screw (#2,3) 

3 

1 L/M screw 

and  1 A/P 

screw (#3,4) 

 

3 mm. 

4 
2 L/M screws 

(#2,4) 

 

20 mm. 

 

Table 2. Statistics for the clinical follow-up 

Wiss zone Cases Conminution grade Cases 

5 9 None 9 

5 5 2 5 

5 1 4 1 

    

Total   15 

 

 



Table 3a. Gap strain (% ε) verification according to Perren. Steel nail 

# Model Gap 0.5 mm Gap 3.0 mm. Gap 20.0 mm. 

1 10.91 2.06 0.32 

2 11.05 2.10 0.41 

3 10.93 2.20 0.41 

4 8.14 1.61 0.33 

 

Table 3b. Gap strain (% ε) verification according to Perren. Titanium nail 

# Model Gap 0.5 mm Gap 3.0 mm. Gap 20.0 mm. 

1 16.67 3.16 0.48 

2 16.90 3.22 0.63 

3 16.76 3.36 0.63 

4 12.40 3.06 0.62 

 

Table 4a. Amplitude of axial micromotion [µm]. Steel nail 

# Model Gap 0.5 mm Gap 3.0 mm. Gap 20.0 mm. 

1 54.53 61.73 63.50 

2 55.26 63.13 81.70 

3 54.64 66.14 81.24 

4 40.69 48.33 66.43 

 

Table 4b. Amplitude of axial micromotion [µm]. Titanium 

# Model Gap 0.5 mm Gap 3.0 mm. Gap 20.0 mm. 

1 83.34 94.95 96.28 

2 84.52 96.56 123.47 

3 83.80 100.69 126.54 

4 62.02 91.87 123.71 

 

 

 

 

 

 



Table 5a. Global movement at the top of the nail [mm]. Steel nail 

# Model Gap 0.5 mm Gap 3.0 mm. Gap 20.0 mm. 

1 1.89 2.07 2.03 

2 1.91 2.08 2.22 

3 1.90 2.13 2.52 

4 1.75 1.85 2.01 

 

Table 5b. Global movement at the top of the nail [mm]. Titanium nail 

# Model Gap 0.5 mm Gap 3.0 mm. Gap 20.0 mm. 

1 2.59 2.81 2.80 

2 2.61 2.87 3.15 

3 2.60 2.94 3.50 

4 2.36 2.85 3.14 

 

Table 6a. Amplitude of axial micromotion [µm] for the #4 model. Material nail: 

Titanium, Steel and Cobalt-Chromium 

Material Gap 0.5 mm Gap 3.0 mm. Gap 20.0 mm. 

CoCr 37.22 44.31 60.65 

Steel 40.69 48.33 66.43 

Titanium 62.02 91.87 123.71 

 

Table 6b. Global Global movement at the top of the nail [mm] for the #4 model. 

Material nail: Titanium, Steel and Cobalt-Chromium 

Material Gap 0.5 mm Gap 3.0 mm. Gap 20.0 mm. 

CoCr 1.65 1.73 1.87 

Steel 1.75 1.85 2.01 

Titanium 2.36 2.85 3.14 

 

 

 

 

 



Figures 

 

Figure 1. Interaction between nail and bone and between screws and nail  



 

Figure 2. Boundary conditions  



 



 



 

Figure 3. Deformed shape (x25) and vertical displacement maps corresponding to a 

distal fracture: a) 1st interlocking system; b) 2nd interlocking system; c) 3rd interlocking 

system; d) 4th interlocking system 

 

 

 
 

Figure 4. Homologue points for micromotion processing: anterior and posterior view. 

 

 

 

 

 


