417 research outputs found

    REPPlab: An R package for detecting clusters and outliers using exploratory projection pursuit

    Get PDF
    The R-package REPPlab is designed to explore multivariate data sets using one-dimensional unsupervised projection pursuit. It is useful as a preprocessing step to find clusters or as an outlier detection tool for multivariate data. Except from the packages tourr and rggobi, there is no implementation of exploratory projection pursuit tools available in R. REPPlab is an R interface for the Java program EPP-lab that implements four projection indices and three biologically inspired optimization algorithms. It also proposes new tools for plotting and combining the results and specific tools for outlier detection. The functionality of the package is illustrated through some simulations and using some real data

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    A Hybrid Bacterial Swarming Methodology for Job Shop Scheduling Environment

    Get PDF
    Optimized utilization of resources is the need of the hour in any manufacturing system. A properly planned schedule is often required to facilitate optimization. This makes scheduling a significant phase in any manufacturing scenario. The Job Shop Scheduling Problem is an operation sequencing problem on multiple machines with some operation and machine precedence constraints, aimed to find the best sequence of operations on each machine in order to optimize a set of objectives. Bacterial Foraging algorithm is a relatively new biologically inspired optimization technique proposed based on the foraging behaviour of E.coli bacteria. Harmony Search is a phenomenon mimicking algorithm devised by the improvisation process of musicians. In this research paper, Harmony Search is hybridized with bacterial foraging to improve its scheduling strategies. A proposed Harmony Bacterial Swarming Algorithm is developed and tested with benchmark Job Shop instances. Computational results have clearly shown the competence of our method in obtaining the best schedule

    Biologically Inspired Optimization Methods for Image Registration in Visual Servoing of a Mobile Robot

    Get PDF
    Image registration (IR) represents image processing technique that is suitable for use in Visual Servoing (VS). This paper proposes the use of Biologically Inspired Optimization (BIO) methods for IR in VS of nonholonomic mobile robot. The comparison study of three different BIO methods is conducted, namely Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO). The aforementioned optimization algorithms utilized for IR are tested on 24 images of manufacturing entities acquired by mobile robot stereo vision system. The considered algorithms are implemented in the MATLAB environment. The experimental results suggest satisfactory geometrical alignment after IR, whilst GA and PSO outperform GWO

    A General Iterative Procedure of the Non-Numerical Ranking Preferences Method for Multiple Objective Decision Making

    Get PDF
    AbstractMultiple objective evolutionary algorithms (MOEAs), which are biologically-inspired optimization methods, have become popular approaches to solve problems with multiple objective functions. With the use of MOEAs, multiple objective optimization becomes a two-part problem. First, the multiple objective optimization problem needs to be formulated and successfully solved using an MOEA. Then, a non- dominated set -also known as efficient or Pareto frontier- needs to be analyzed to select a solution to the problem. This can represent a challenging task to the decision-maker because this set can contain a large number of solutions. This decision- making stage is usually known as the post-Pareto analysis stage. This paper presents the generalization of a post-Pareto optimality method known as the non-numerical ranking preferences (NNRP) method originally proposed by Taboada et al. (2007). This method can help decision makers reduce the number of design possibilities to small subsets that clearly reflect their objective function preferences. Previous research has only presented the application of the NNRP method using three and four objective functions but had not been generalized to the case of n objective functions. The present paper expands the NNRP method to be able to consider multiple objective optimization problems with n number of objective functions
    corecore