36 research outputs found

    Clashes in the Infosphere, General Intelligence, and Metacognition: Final project report

    Get PDF
    Humans confront the unexpected every day, deal with it, and often learn from it. AI agents, on the other hand, are typically brittle—they tend to break down as soon as something happens for which their creators did not explicitly anticipate. The central focus of our research project is this problem of brittleness which may also be the single most important problem facing AI research. Our approach to brittleness is to model a common method that humans use to deal with the unexpected, namely to note occurrences of the unexpected (i.e., anomalies), to assess any problem signaled by the anomaly, and then to guide a response or solution that resolves it. The result is the Note-Assess-Guide procedure of what we call the Metacognitive Loop or MCL. To do this, we have implemented MCL-based systems that enable agents to help themselves; they must establish expectations and monitor them, note failed expectations, assess their causes, and then choose appropriate responses. Activities for this project have developed and refined a human-dialog agent and a robot navigation system to test the generality of this approach

    Implications of the Google’s US 8,996,429 B1 Patent in Cloud Robotics-Based Therapeutic Researches

    Get PDF
    Intended for being informative to both legal and engineer communities, this chapter raises awareness on the implications of recent patents in the field of human-robot interaction (HRI) studies. Google patented the use of cloud robotics to create robot personality(-ies). The broad claims of the patent could hamper many HRI research projects in the field. One of the possible frustrated research lines is related to robotic therapies because the personalization of the robot accelerates the process of engagement, which is extremely beneficial for robotic cognitive therapies. This chapter presents, therefore, the scientific examination, description, and comparison of the Tufts University CEEO project “Data Analysis and Collection through Robotic Companions and LEGO® Engineering with Children on the Autism Spectrum project” and the US 8,996,429 B1 Patent on the Methods and Systems for Robot Personality Development of Google. Some remarks on ethical implications of the patent will close the chapter and open the discussion to both communities

    Air Force Institute of Technology Research Report 2016

    Get PDF
    This Research Report presents the FY16 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs)

    Effects of an 8-Week Yoga-Based Physical Exercise Intervention on Teachers’ Burnout

    Get PDF
    The purpose of this quasi-experimental study was to investigate the efficacy of an 8-week yoga-based physical exercise program to improve mental and emotional well-being and consequently reduce burnout among teachers. We considered yoga because it is a discipline that enhances body awareness and encourages the contact with nature and the respect for every form of life, with a view to a more sustainable and greener global system. We recruited 40 professional educators (40–47 years), who reported perceiving signs of stress and emotional discomfort. professional educators to either an experimental yoga practice (~60 min, twice a week) group (n = 20) or a control group (n = 20) that received a nonspecific training program (~60 min, twice a week). After base line and after training we administered the Maslach Burnout Inventory: Educators Survey (MBI-ES) and the State Mindfulness Scale (SMS) to assess teachers' perceived level of awareness and professional burnout. We found a significant Time x Group interaction for the (p < 0.001) MBI-ES and SMS, reflecting a meaningful experimental group improvement. No significant pre–post changes were found in thecontrol group. The results suggest that an 8-week yoga practice could aid teachers to achieve a greater body and emotional awareness and prevent professional burnout

    2018 Faculty Excellence Showcase, AFIT Graduate School of Engineering & Management

    Get PDF
    Excerpt: As an academic institution, we strive to meet and exceed the expectations for graduate programs and laud our values and contributions to the academic community. At the same time, we must recognize, appreciate, and promote the unique non-academic values and accomplishments that our faculty team brings to the national defense, which is a priority of the Federal Government. In this respect, through our diverse and multi-faceted contributions, our faculty, as a whole, excel, not only along the metrics of civilian academic expectations, but also along the metrics of military requirements, and national priorities

    Academic Year 2019-2020 Faculty Excellence Showcase, AFIT Graduate School of Engineering & Management

    Get PDF
    An excerpt from the Dean\u27s Message: There is no place like the Air Force Institute of Technology (AFIT). There is no academic group like AFIT’s Graduate School of Engineering and Management. Although we run an educational institution similar to many other institutions of higher learning, we are different and unique because of our defense-focused graduate-research-based academic programs. Our programs are designed to be relevant and responsive to national defense needs. Our programs are aligned with the prevailing priorities of the US Air Force and the US Department of Defense. Our faculty team has the requisite critical mass of service-tested faculty members. The unique composition of pure civilian faculty, military faculty, and service-retired civilian faculty makes AFIT truly unique, unlike any other academic institution anywhere

    Metamodel for personalized adaptation of pedagogical strategies using metacognition in Intelligent Tutoring Systems

    Get PDF
    The modeling process of metacognitive functions in Intelligent Tutoring Systems (ITS) is a difficult and time-consuming task. In particular when the integration of several metacognitive components, such as self-regulation and metamemory is needed. Metacognition has been used in Artificial Intelligence (AI) to improve the performance of complex systems such as ITS. However the design ITS with metacognitive capabilities is a complex task due to the number and complexity of processes involved. The modeling process of ITS is in itself a difficult task and often requires experienced designers and programmers, even when using authoring tools. In particular the design of the pedagogical strategies for an ITS is complex and requires the interaction of a number of variables that define it as a dynamic process. This doctoral thesis presents a metamodel for the personalized adaptation of pedagogical strategies integrating metamemory and self-regulation in ITS. The metamodel called MPPSM (Metamodel of Personalized adaptation of Pedagogical Strategies using Metacognition in intelligent tutoring systems) was synthetized from the analysis of 40 metacognitive models and 45 ITS models that exist in the literature. MPPSMhas a conceptual architecture with four levels of modeling according to the standard Meta- Object Facility (MOF) of Model-Driven Architecture (MDA) methodology. MPPSM enables designers to have modeling tools in early stage of software development process to produce more robust ITS that are able to self-regulate their own reasoning and learning processes. In this sense, a concrete syntax composed of a graphic notation called M++ was defined in order to make the MPPSM metamodel more usable. M++ is a Domain-Specific Visual Language (DSVL) for modeling metacognition in ITS. M++ has approximately 20 tools for modeling metacognitive systems with introspective monitoring and meta-level control. MPPSM allows the generation of metacognitive models using M++ in a visual editor named MetaThink. In MPPSM-based models metacognitive components required for monitoring and executive control of the reasoning processes take place in each module of an ITS can be specified. MPPSM-based models represent the cycle of reasoning of an ITS about: (i) failures generated in its own reasoning tasks (e.g. self-regulation); and (ii) anomalies in events that occur in its Long-Term Memory (LTM) (e.g. metamemory). A prototype of ITS called FUNPRO was developed for the validation of the performance of metacognitive mechanism of MPPSM in the process of the personalization of pedagogical strategies regarding to the preferences and profiles of real students. FUNPRO uses self-regulation to monitor and control the processes of reasoning at object-level and metamemory for the adaptation to changes in the constraints of information retrieval tasks from LTM. The major contributions of this work are: (i) the MOF-based metamodel for the personalization of pedagogical strategies using computational metacognition in ITS; (ii) the M++ DSVL for modeling metacognition in ITS; and (iii) the ITS prototype called FUNPRO (FUNdamentos de PROgramaciĂłn) that aims to provide personalized instruction in the subject of Introduction to Programming. The results given in the experimental tests demonstrate: (i) metacognitive models generated are consistent with the MPPSM metamodel; (ii) positive perceptions of users with respect to the proposed DSVL and it provide preliminary information concerning the quality of the concrete syntax of M++; (iii) in FUNPRO, multi-level pedagogical model enhanced with metacognition allows the dynamic adaptation of the pedagogical strategy according to the profile of each student.Doctorad
    corecore