2,283 research outputs found

    Sustainable Power Production in a Membrane-less and Mediator-less Wastewater Microbial Fuel Cell

    Get PDF
    Microbial fuel cells (MFCs) fed with wastewater are currently considered a feasible strategy for production of renewable electricity at low cost. A membrane-less MFC with biological cathode was built from a compact wastewater treatment reactor. When operated with an external resistance of 250 Ohm, the MFC produced a long-term power of approximately 70 mW/m2 for ten months. Denaturing Gradient Gel Electrophoresis (DGGE) analysis of the cathode biomass when the MFC was closed on a 2100 Ohm external resistance showed that the sequenced bands were affiliated with Firmicutes, -Proteobacteria, -Proteobacteria, -Proteobacteria, and Bacteroidetes groups. When the external resistance was varied between 250 and 2100 Ohm, sustainable resistance decreased from 900 to 750 Ohm, while sustainable power output decreased from 32 to 28 mW/m2. It is likely that these effects were caused by changes in the microbial ecology of anodic and cathodic biomass attached to the electrodes. Results suggest that cathodic biomass enrichment in “electroactive” bacteria may improve MFCs power output in a similar fashion to what has been already observed for anodic biomass

    Marine aerobic biofilm as biocathode catalyst

    Get PDF
    Stainless steel electrodes were immersed in open seawater and polarized for some days at − 200 mV vs. Ag/AgCl. The current increase indicated the formation of biofilms that catalysed the electrochemical reduction of oxygen. These wild, electrochemically active (EA) biofilms were scraped, resuspended in seawater and used as the inoculum in closed 0.5 L electrochemical reactors. This procedure allowed marine biofilms that are able to catalyse oxygen reduction to be formed in small, closed small vessels for the first time. Potential polarisation during biofilm formation was required to obtain EA biofilms and the roughness of the surface favoured high current values. The low availability of nutrients was shown to be a main limitation. Using an open reactor continuously fed with filtered seawater multiplied the current density by a factor of around 20, up to 60 µA/cm2, which was higher than the current density provided in open seawater by the initial wild biofilm. These high values were attributed to continuous feeding with the nutrients contained in seawater and to suppression of the indigenous microbial species that compete with EA strains in natural open environments. Pure isolates were extracted from the wild biofilms and checked for EA properties. Of more than thirty different species tested, only Winogradskyella poriferorum and Acinetobacter johsonii gave current densities of respectively 7% and 3% of the current obtained with the wild biofilm used as inoculum. Current densities obtained with pure cultures were lower than those obtained with wild biofilms. It is suspected that synergetic effects occur in whole biofilms or/and that wild strains may be more efficient than the cultured isolates

    Catalysis of the electrochemical reduction of oxygen by bacteria isolated from electro-active biofilms formed in seawater

    Get PDF
    Biofilmsformed in aerobic seawater on stainless steel are known to be efficient catalysts of the electrochemicalreduction of oxygen. Based on their genomic analysis, seven bacterial isolates were selected and a cyclic voltammetry (CV) procedure was implemented to check their electrocatalytic activity towards oxygenreduction. All isolates exhibited close catalytic characteristics. Comparison between CVs recorded with glassy carbon and pyrolytic graphite electrodes showed that the catalytic effect was not correlated with the surface area covered by the cells. The low catalytic effect obtained with filtered isolates indicated the involvement of released redox compounds, which was confirmed by CVs performed with adsorbed iron–porphyrin. None of the isolates were able to form electro-activebiofilms under constant polarization. The capacity to catalyze oxygenreduction is shown to be a widespread property among bacteria, but the property detected by CV does not necessarily confer the ability to achieve stable oxygenreduction under constant polarization

    New applications and performance of bioelectrochemical systems

    Get PDF
    Bioelectrochemical systems (BESs) are emerging technologies which use microorganisms to catalyze the reactions at the anode and/or cathode. BES research is advancing rapidly, and a whole range of applications using different electron donors and acceptors has already been developed. In this mini review, we focus on technological aspects of the expanding application of BESs. We will analyze the anode and cathode half-reactions in terms of their standard and actual potential and report the overpotentials of these half-reactions by comparing the reported potentials with their theoretical potentials. When combining anodes with cathodes in a BES, new bottlenecks and opportunities arise. For application of BESs, it is crucial to lower the internal energy losses and increase productivity at the same time. Membranes are a crucial element to obtain high efficiencies and pure products but increase the internal resistance of BESs. The comparison between production of fuels and chemicals in BESs and in present production processes should gain more attention in future BES research. By making this comparison, it will become clear if the scope of BESs can and should be further developed into the field of biorefineries

    Metaproteomic evidence of changes in protein expression following a change in electrode potential in a robust biocathode microbiome

    Get PDF
    Microorganisms that respire electrodes may be exploited for biotechnology applications if key pathways for extracellular electron transfer (EET) can be identified and manipulated through bioengineering. To determine whether expression of proposed Biocathode-MCL EET proteins are changed by modulating electrode potential without disrupting the relative distribution of microbial constituents, metaproteomic and 16S rRNA gene expression analyses were performed after switching from an optimal to suboptimal potential based on an expected decrease in electrode respiration. Five hundred and seventy-nine unique proteins were identified across both potentials, the majority of which were assigned to three previously defined Biocathode-MCL metagenomic clusters: a Marinobacter sp., a member of the family Chromatiaceae, and a Labrenzia sp. Statistical analysis of spectral counts using the Fisher's exact test identified 16 proteins associated with the optimal potential, five of which are predicted electron transfer proteins. The majority of proteins associated with the suboptimal potential were involved in protein turnover/turnover, motility, and membrane transport. Unipept and 16S rRNA gene expression analyses indicated that the taxonomic profile of the microbiome did not change after 52 hours at the suboptimal potential. These findings show that protein expression is sensitive to the electrode potential without inducing shifts in community composition, a feature that may be exploited for engineering Biocathode-MCL

    A Previously Uncharacterized, Nonphotosynthetic Member of the Chromatiaceae Is the Primary CO_2-Fixing Constituent in a Self-Regenerating Biocathode

    Get PDF
    Biocathode extracellular electron transfer (EET) may be exploited for biotechnology applications, including microbially mediated O_2 reduction in microbial fuel cells and microbial electrosynthesis. However, biocathode mechanistic studies needed to improve or engineer functionality have been limited to a few select species that form sparse, homogeneous biofilms characterized by little or no growth. Attempts to cultivate isolates from biocathode environmental enrichments often fail due to a lack of some advantage provided by life in a consortium, highlighting the need to study and understand biocathode consortia in situ. Here, we present metagenomic and metaproteomic characterization of a previously described biocathode biofilm (+310 mV versus a standard hydrogen electrode [SHE]) enriched from seawater, reducing O_2, and presumably fixing CO_2 for biomass generation. Metagenomics identified 16 distinct cluster genomes, 15 of which could be assigned at the family or genus level and whose abundance was roughly divided between Alpha- and Gammaproteobacteria. A total of 644 proteins were identified from shotgun metaproteomics and have been deposited in the the ProteomeXchange with identifier PXD001045. Cluster genomes were used to assign the taxonomic identities of 599 proteins, with Marinobacter, Chromatiaceae, and Labrenzia the most represented. RubisCO and phosphoribulokinase, along with 9 other Calvin-Benson-Bassham cycle proteins, were identified from Chromatiaceae. In addition, proteins similar to those predicted for iron oxidation pathways of known iron-oxidizing bacteria were observed for Chromatiaceae. These findings represent the first description of putative EET and CO_2 fixation mechanisms for a self-regenerating, self-sustaining multispecies biocathode, providing potential targets for functional engineering, as well as new insights into biocathode EET pathways using proteomics

    Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)

    Get PDF
    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solarpowered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products

    Assessment of the microbial community in the cathode compartment of a plant microbial fuel cell

    Get PDF
    Introduction: In plant microbial fuel cells (plant-MFCs) living plants and microorganisms form an electrochemical unit able to produce clean and sustainable electricity from solar energy. It is reasonable to assume that besides the bacteria in the anode compartment also the cathode compartment plays a crucial role for a stable high current producing plant-MFC. In this study we aim to identify dominant bacterial species in the cathode compartment of the plant-MFC

    Seawater operating bio-photovoltaic cells coupling semiconductor photoanodes and enzymatic biocathodes

    Get PDF
    Access to fresh water and energy is ranked as one of the most severe challenges to humankind. The restricted availability of fossil fuels and clean water does not match the increasing energy demands and growing population needs, which, desirably, should be satisfied in the most sustainable, clean and inexpensive way. Here, we report clean and sustainable conversion of solar energy into electricity by photo- and bio-electrocatalytic recycling of the H2O/O2 redox couple in a hybrid bio-photovoltaic (BPV) membraneless cell comprising a sunlight-illuminated water-oxidizing semiconductor anode (either Zn-doped hematite or TiO2) and an oxygen-reducing enzymatic biocathode, in such environmental media as seawater. Upon simulated solar light illumination (AM 1.5G, 100 mW cm−2), the maximum power density (Pmax) generated by the cell was 236 and 21.4 μW cm−2 in 1 M Tris–HCl and seawater, both at pH 8, respectively. In seawater its ionic content inhibited mostly the activity of the photoanode, but not that of the biocathode. The obtained Pmax values were orders of magnitude higher than those of a photo-electrochemical cell with a Pt mesh cathode (0.32 μW cm−2 in seawater). The demonstrated thermodynamically feasible coupling of cost-effective photoactive materials such as TiO2 or hematite semiconductors and enzymatic counterparts in seawater media opens a prospective clean and sustainable way of transformation of the most abundant, clean and renewable source of energy – solar light – and the Earth's most massive water resource – seawater – into electricity, which can also be used for fresh water production
    corecore