147 research outputs found

    A control theoretic approach to achieve proportional fairness in 802.11e EDCA WLANs

    Get PDF
    This paper considers proportional fairness amongst ACs in an EDCA WLAN for provision of distinct QoS requirements and priority parameters. A detailed theoretical analysis is provided to derive the optimal station attempt probability which leads to a proportional fair allocation of station throughputs. The desirable fairness can be achieved using a centralised adaptive control approach. This approach is based on multivariable statespace control theory and uses the Linear Quadratic Integral (LQI) controller to periodically update CWmin till the optimal fair point of operation. Performance evaluation demonstrates that the control approach has high accuracy performance and fast convergence speed for general network scenarios. To our knowledge this might be the first time that a closed-loop control system is designed for EDCA WLANs to achieve proportional fairness

    A control theoretic approach to achieve proportional fairness in 802.11e EDCA WLANs

    Get PDF
    This paper considers proportional fairness amongst ACs in an EDCA WLAN redfor provision of distinct QoS requirements and priority parameters. A detailed theoretical analysis is provided to derive the optimal station attempt probability which leads to a proportional fair allocation of station throughputs. The desirable fairness can be achieved using a centralised adaptive control approach. This approach is based on multivariable statespace control theory and uses the Linear Quadratic Integral (LQI) controller to periodically update CWmin till the optimal fair point of operation. Performance evaluation demonstrates that the control approach has high accuracy performance and fast convergence speed for general network scenarios. To our knowledge this might be the first time that a closed-loop control system is designed for EDCA WLANs to achieve proportional fairness

    Control-theoretic approaches for efficient transmission on IEEE 802.11e wireless networks

    Get PDF
    With the increasing use of multimedia applications on the wireless network, the functionalities of the IEEE 802.11 WLAN was extended to allow traffic differentiation so that priority traffic gets quicker service time depending on their Quality of Service (QoS) requirements. The extended functionalities contained in the IEEE Medium Access Control (MAC) and Physical Layer (PHY) Specifications, i.e. the IEEE 802.11e specifications, are recommended values for channel access parameters along traffic lines and the channel access parameters are: the Minimum Contention Window CWmin, Maximum Contention Window CWmax, Arbitration inter-frame space number, (AIFSN) and the Transmission Opportunity (TXOP). These default Enhanced Distributed Channel Access (EDCA) contention values used by each traffic type in accessing the wireless medium are only recommended values which could be adjusted or changed based on the condition of number of associated nodes on the network. In particular, we focus on the Contention Window (CW) parameter and it has been shown that when the number of nodes on the network is small, a smaller value of CWmin should be used for channel access in order to avoid underutilization of channel time and when the number of associated nodes is large, a larger value of CWmin should be used in order to avoid large collisions and retransmissions on the network. Fortunately, allowance was made for these default values to be adjusted or changed but the challenge has been in designing an algorithm that constantly and automatically tunes the CWmin value so that the Access Point (AP) gives out the right CWmin value to be used on the WLAN and this value should be derived based on the level of activity experienced on the network or predefined QoS constraints while considering the dynamic nature of the WLAN. In this thesis, we propose the use of feedback based control and we design a controller for wireless medium access. The controller will give an output which will be the EDCA CWmin value to be used by contending stations/nodes in accessing the medium and this value will be based on current WLAN conditions. We propose the use of feedback control due to its established mathematical concepts particularly for single-input-single-output systems and multi-variable systems which are scenarios that apply to the WLAN

    Evolutionary Game Theory Perspective on Dynamic Spectrum Access Etiquette

    Get PDF
    In this paper, we describe the long-term evolution of societies of secondary users in dynamic spectrum access networks. Such an understanding is important to help us anticipate future trends in the organization of large-scale distributed networked deployments. Such deployments are expected to arise in support of a wide variety of applications, including vehicular networks and the Internet of Things. Two new biologically-inspired spectrum access strategies are presented here, and compared with a random access baseline strategy. The proposed strategies embody a range of plausible assumptions concerning the sensing capabilities and social characteristics of individual secondary users. Considering these strategies as the basis of a game against the field, we use replicator dynamics within an evolutionary game-theoretic analysis to derive insights into the physical conditions necessary for each of the strategies to be evolutionarily stable. Somewhat surprisingly, we find that the physical channel conditions almost always uniquely determine which one of the three (pure) strategies is selected, and that no mixed strategy ever survives. We show that social tendencies naturally become advantageous for secondary users as they find themselves situated in network environments with heterogeneous channel resources. Hardware test-bed experiments confirm the validity of the analytic conclusions. Taken together, these results predict the emergence of social behavior in the spectrum access etiquette of secondary users as cognitive radio technology continues to advance and improve. The experimental results show an increase in the throughput of up to 90%, when strategy evolution is continuously operational, compared with any static strategy. We present use cases to envision the potential application of the proposed evolutionary framework in real-world scenarios

    Antenna Array Enabled Space/Air/Ground Communications and Networking for 6G

    Get PDF
    Antenna arrays have a long history of more than 100 years and have evolved closely with the development of electronic and information technologies, playing an indispensable role in wireless communications and radar. With the rapid development of electronic and information technologies, the demand for all-time, all-domain, and full-space network services has exploded, and new communication requirements have been put forward on various space/air/ground platforms. To meet the ever increasing requirements of the future sixth generation (6G) wireless communications, such as high capacity, wide coverage, low latency, and strong robustness, it is promising to employ different types of antenna arrays with various beamforming technologies in space/air/ground communication networks, bringing in advantages such as considerable antenna gains, multiplexing gains, and diversity gains. However, enabling antenna array for space/air/ground communication networks poses specific, distinctive and tricky challenges, which has aroused extensive research attention. This paper aims to overview the field of antenna array enabled space/air/ground communications and networking. The technical potentials and challenges of antenna array enabled space/air/ground communications and networking are presented first. Subsequently, the antenna array structures and designs are discussed. We then discuss various emerging technologies facilitated by antenna arrays to meet the new communication requirements of space/air/ground communication systems. Enabled by these emerging technologies, the distinct characteristics, challenges, and solutions for space communications, airborne communications, and ground communications are reviewed. Finally, we present promising directions for future research in antenna array enabled space/air/ground communications and networking

    Traffic-Driven Energy Efficient Operational Mechanisms in Cellular Access Networks

    Get PDF
    Recent explosive growth in mobile data traffic is increasing energy consumption in cellular networks at an incredible rate. Moreover, as a direct result of the conventional static network provisioning approach, a significant amount of electrical energy is being wasted in the existing networks. Therefore, in recent time, the issue of designing energy efficient cellular networks has drawn significant attention, which is also the foremost motivation behind this research. The proposed research is particularly focused on the design of self-organizing type traffic-sensitive dynamic network reconfiguring mechanisms for energy efficiency in cellular systems. Under the proposed techniques, radio access networks (RANs) are adaptively reconfigured using less equipment leading to reduced energy utilization. Several energy efficient cellular network frameworks by employing inter-base station (BS) cooperation in RANs are proposed. Under these frameworks, based on the instantaneous traffic demand, BSs are dynamically switched between active and sleep modes by redistributing traffic among them and thus, energy savings is achieved. The focus is then extended to exploiting the availability of multiple cellular networks for extracting energy savings through inter-RAN cooperation. Mathematical models for both of these single-RAN and multi-RAN cooperation mechanisms are also formulated. An alternative energy saving technique using dynamic sectorization (DS) under which some of the sectors in the underutilized BSs are turned into sleep mode is also proposed. Algorithms for both the distributed and the centralized implementations are developed. Finally, a two-dimensional energy efficient network provisioning mechanism is proposed by jointly applying both the DS and the dynamic BS switching. Extensive simulations are carried out, which demonstrate the capability of the proposed mechanisms in substantially enhancing the energy efficiency of cellular networks

    Heterogeneous and opportunistic wireless networks

    Get PDF
    Recent years have witnessed the evolution of a large plethora of wireless technologies with different characteristics, as a response of the operators' and users' needs in terms of an efficient and ubiquitous delivery of advanced multimedia services. The wireless segment of network infrastructure has penetrated in our lives, and wireless connectivity has now reached a state where it is considered to be an indispensable service as electricity or water supply. Wireless data networks grow increasingly complex as a multiplicity of wireless information terminals with sophisticated capabilities get embedded in the infrastructure. © 2012 Springer Milan. All Right Reserved
    corecore