2,321 research outputs found

    An Adaptive Fault-Tolerant Communication Scheme for Body Sensor Networks

    Get PDF
    A high degree of reliability for critical data transmission is required in body sensor networks (BSNs). However, BSNs are usually vulnerable to channel impairments due to body fading effect and RF interference, which may potentially cause data transmission to be unreliable. In this paper, an adaptive and flexible fault-tolerant communication scheme for BSNs, namely AFTCS, is proposed. AFTCS adopts a channel bandwidth reservation strategy to provide reliable data transmission when channel impairments occur. In order to fulfill the reliability requirements of critical sensors, fault-tolerant priority and queue are employed to adaptively adjust the channel bandwidth allocation. Simulation results show that AFTCS can alleviate the effect of channel impairments, while yielding lower packet loss rate and latency for critical sensors at runtime.Comment: 10 figures, 19 page

    Concepts and evolution of research in the field of wireless sensor networks

    Full text link
    The field of Wireless Sensor Networks (WSNs) is experiencing a resurgence of interest and a continuous evolution in the scientific and industrial community. The use of this particular type of ad hoc network is becoming increasingly important in many contexts, regardless of geographical position and so, according to a set of possible application. WSNs offer interesting low cost and easily deployable solutions to perform a remote real time monitoring, target tracking and recognition of physical phenomenon. The uses of these sensors organized into a network continue to reveal a set of research questions according to particularities target applications. Despite difficulties introduced by sensor resources constraints, research contributions in this field are growing day by day. In this paper, we present a comprehensive review of most recent literature of WSNs and outline open research issues in this field

    Bio-Inspired Solutions and Its Impact on Real-World Problems: A Network on Chip (NoC) Perspective

    Get PDF
    Bio-inspired solutions are used to solve the real-world problems as they are able to resolve the complex issues. Already existing bio-inspired solutions are reviewed in this chapter which solved the complex engineering problems. Moreover, this chapter also discusses the implementation of biological brain mechanism in Network on Chip to address the fault-tolerant issues. Network on Chip (NoC) is a communication framework for System on Chip (SoC). Due to routers and interconnect failure, NoC suffers from faults. Therefore, bio-inspired solutions help us to recover from these faults. The techniques from the biological brain were implemented in NoC as the brain is fault tolerant and highly adaptive. Results showed that bio-inspired techniques are performing well compared to the traditional fault-tolerant algorithms

    Structure and topology of transcriptional regulatory networks and their applications in bio-inspired networking

    Get PDF
    Biological networks carry out vital functions necessary for sustenance despite environmental adversities. Transcriptional Regulatory Network (TRN) is one such biological network that is formed due to the interaction between proteins, called Transcription Factors (TFs), and segments of DNA, called genes. TRNs are known to exhibit functional robustness in the face of perturbation or mutation: a property that is proven to be a result of its underlying network topology. In this thesis, we first propose a three-tier topological characterization of TRN to analyze the interplay between the significant graph-theoretic properties of TRNs such as scale-free out-degree distribution, low graph density, small world property and the abundance of subgraphs called motifs. Specifically, we pinpoint the role of a certain three-node motif, called Feed Forward Loop (FFL) motif in topological robustness as well as information spread in TRNs. With the understanding of the TRN topology, we explore its potential use in design of fault-tolerant communication topologies. To this end, we first propose an edge rewiring mechanism that remedies the vulnerability of TRNs to the failure of well-connected nodes, called hubs, while preserving its other significant graph-theoretic properties. We apply the rewired TRN topologies in the design of wireless sensor networks that are less vulnerable to targeted node failure. Similarly, we apply the TRN topology to address the issues of robustness and energy-efficiency in the following networking paradigms: robust yet energy-efficient delay tolerant network for post disaster scenarios, energy-efficient data-collection framework for smart city applications and a data transfer framework deployed over a fog computing platform for collaborative sensing --Abstract, page iii

    Fault-tolerant wireless sensor networks using evolutionary games

    Get PDF
    This dissertation proposes an approach to creating robust communication systems in wireless sensor networks, inspired by biological and ecological systems, particularly by evolutionary game theory. In this approach, a virtual community of agents live inside the network nodes and carry out network functions. The agents use different strategies to execute their functions, and these strategies are tested and selected by playing evolutionary games. Over time, agents with the best strategies survive, while others die. The strategies and the game rules provide the network with an adaptive behavior that allows it to react to changes in environmental conditions by adapting and improving network behavior. To evaluate the viability of this approach, this dissertation also describes a micro-component framework for implementing agent-based wireless sensor network services, an evolutionary data collection protocol built using this framework, ECP, and experiments evaluating the performance of this protocol in a faulty environment. The framework addresses many of the programming challenges in writing network software for wireless sensor networks, while the protocol built using the framework provides a means of evaluating the general viability of the agent-based approach. The results of this evaluation show that an evolutionary approach to designing wireless sensor networks can improve the performance of wireless sensor network protocols in the presence of node failures. In particular, we compared the performance of ECP with a non-evolutionary rule-based variant of ECP. While the purely-evolutionary version of ECP has more routing timeouts than the rule-based approach in failure-free networks, it sends significantly fewer beacon packets and incurs statistically fewer routing timeouts in both simple fault and periodic fault scenarios

    A Fault-Tolerant Emergency-Aware Access Control Scheme for Cyber-Physical Systems

    Full text link
    Access control is an issue of paramount importance in cyber-physical systems (CPS). In this paper, an access control scheme, namely FEAC, is presented for CPS. FEAC can not only provide the ability to control access to data in normal situations, but also adaptively assign emergency-role and permissions to specific subjects and inform subjects without explicit access requests to handle emergency situations in a proactive manner. In FEAC, emergency-group and emergency-dependency are introduced. Emergencies are processed in sequence within the group and in parallel among groups. A priority and dependency model called PD-AGM is used to select optimal response-action execution path aiming to eliminate all emergencies that occurred within the system. Fault-tolerant access control polices are used to address failure in emergency management. A case study of the hospital medical care application shows the effectiveness of FEAC

    Real valued negative selection for anomaly detection in wireless ad hoc networks

    Get PDF
    Wireless ad hoc network is one of the network technologies that have gained lots of attention from computer scientists for the future telecommunication applications. However it has inherits the major vulnerabilities from its ancestor (i.e., the fixed wired networks) but cannot inherit all the conventional intrusion detection capabilities due to its features and characteristics. Wireless ad hoc network has the potential to become the de facto standard for future wireless networking because of its open medium and dynamic features. Non-infrastructure network such as wireless ad hoc networks are expected to become an important part of 4G architecture in the future. In this paper, we study the use of an Artificial Immune System (AIS) as anomaly detector in a wireless ad hoc network. The main goal of our research is to build a system that can learn and detect new and unknown attacks. To achieve our goal, we studied how the real-valued negative selection algorithm can be applied in wireless ad hoc network network and finally we proposed the enhancements to real-valued negative selection algorithm for anomaly detection in wireless ad hoc network
    • …
    corecore