90 research outputs found

    Cross-Spectral Periocular Recognition with Conditional Adversarial Networks

    Full text link
    This work addresses the challenge of comparing periocular images captured in different spectra, which is known to produce significant drops in performance in comparison to operating in the same spectrum. We propose the use of Conditional Generative Adversarial Networks, trained to con-vert periocular images between visible and near-infrared spectra, so that biometric verification is carried out in the same spectrum. The proposed setup allows the use of existing feature methods typically optimized to operate in a single spectrum. Recognition experiments are done using a number of off-the-shelf periocular comparators based both on hand-crafted features and CNN descriptors. Using the Hong Kong Polytechnic University Cross-Spectral Iris Images Database (PolyU) as benchmark dataset, our experiments show that cross-spectral performance is substantially improved if both images are converted to the same spectrum, in comparison to matching features extracted from images in different spectra. In addition to this, we fine-tune a CNN based on the ResNet50 architecture, obtaining a cross-spectral periocular performance of EER=1%, and GAR>99% @ FAR=1%, which is comparable to the state-of-the-art with the PolyU database.Comment: Accepted for publication at 2020 International Joint Conference on Biometrics (IJCB 2020

    FACE RECOGNITION METHOD USING GABOR WAVELETS (GWS)

    Get PDF
    Facial features can be used to recognize and identify the characteristics of a person. In this project, Gabor Wavelet (GW) based recognition technique is proposed whereby the GW is used to extract the facial feature of a person. The face recognition system consist of four (4) major stages namely image preprocessing, feature extraction, matching technique and classification technique. In feature extraction stage, the input images are converted into grayscale image prior to applying the 2D GWs. The resulting feature vectors are used to test the similarity score with the feature vectors of the facial image in the database

    3D FACE RECOGNITION USING LOCAL FEATURE BASED METHODS

    Get PDF
    Face recognition has attracted many researchers’ attention compared to other biometrics due to its non-intrusive and friendly nature. Although several methods for 2D face recognition have been proposed so far, there are still some challenges related to the 2D face including illumination, pose variation, and facial expression. In the last few decades, 3D face research area has become more interesting since shape and geometry information are used to handle challenges from 2D faces. Existing algorithms for face recognition are divided into three different categories: holistic feature-based, local feature-based, and hybrid methods. According to the literature, local features have shown better performance relative to holistic feature-based methods under expression and occlusion challenges. In this dissertation, local feature-based methods for 3D face recognition have been studied and surveyed. In the survey, local methods are classified into three broad categories which consist of keypoint-based, curve-based, and local surface-based methods. Inspired by keypoint-based methods which are effective to handle partial occlusion, structural context descriptor on pyramidal shape maps and texture image has been proposed in a multimodal scheme. Score-level fusion is used to combine keypoints’ matching score in both texture and shape modalities. The survey shows local surface-based methods are efficient to handle facial expression. Accordingly, a local derivative pattern is introduced to extract distinct features from depth map in this work. In addition, the local derivative pattern is applied on surface normals. Most 3D face recognition algorithms are focused to utilize the depth information to detect and extract features. Compared to depth maps, surface normals of each point can determine the facial surface orientation, which provides an efficient facial surface representation to extract distinct features for recognition task. An Extreme Learning Machine (ELM)-based auto-encoder is used to make the feature space more discriminative. Expression and occlusion robust analysis using the information from the normal maps are investigated by dividing the facial region into patches. A novel hybrid classifier is proposed to combine Sparse Representation Classifier (SRC) and ELM classifier in a weighted scheme. The proposed algorithms have been evaluated on four widely used 3D face databases; FRGC, Bosphorus, Bu-3DFE, and 3D-TEC. The experimental results illustrate the effectiveness of the proposed approaches. The main contribution of this work lies in identification and analysis of effective local features and a classification method for improving 3D face recognition performance

    Learning How To Recognize Faces In Heterogeneous Environments

    Get PDF
    Face recognition is a mature field in biometrics in which several systems have been proposed over the last three decades. Such systems are extremely reliable under controlled recording conditions and it has been deployed in the field in critical tasks, such as in border control and in less critical ones, such as to unlock mobile phones. However, the lack of cooperation from the subject and variations on the pose, occlusion and illumination are still open problems and significantly affect error rates. Another challenge that arose recently in face recognition research is the ability of matching faces from different image domains. Use cases encompass the matching between Visual Light images (VIS) with Near infra-red images (NIR), Visual Light images (VIS) with Thermograms or Depth maps. This match can occur even in situations where no real face exists, such as matching using sketches. This task is so called Heterogeneous Face Recognition. The key difficulty in the comparison of faces in heterogeneous conditions is that images from the same subject may differ in appearance due to changes in image domain. In this thesis we address this problem of Heterogeneous Face Recognition (HFR). Our contributions are four-fold. First, we analyze the applicability of crafted features used in face recognition in the HFR task. Second, still working with crafted features, we propose that the variability between two image domains can be suppressed with a linear shift in the Gaussian Mixture Model (GMM) mean subspace. That encompasses inter-session variability (ISV) modeling. Third, we propose that high level features of Deep Convolutional Neural Networks trained on Visual Light images are potentially domain independent and can be used to encode faces sensed in different image domains. Fourth, large-scale experiments are conducted on several HFR databases, covering various image domains showing competitive performances. Moreover, the implementation of all the proposed techniques are integrated into a collaborative open source software library called Bob that enforces fair evaluations and encourages reproducible research

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    Face Detection and Verification using Local Binary Patterns

    Get PDF
    This thesis proposes a robust Automatic Face Verification (AFV) system using Local Binary Patterns (LBP). AFV is mainly composed of two modules: Face Detection (FD) and Face Verification (FV). The purpose of FD is to determine whether there are any face in an image, while FV involves confirming or denying the identity claimed by a person. The contributions of this thesis are the following: 1) a real-time multiview FD system which is robust to illumination and partial occlusion, 2) a FV system based on the adaptation of LBP features, 3) an extensive study of the performance evaluation of FD algorithms and in particular the effect of FD errors on FV performance. The first part of the thesis addresses the problem of frontal FD. We introduce the system of Viola and Jones which is the first real-time frontal face detector. One of its limitations is the sensitivity to local lighting variations and partial occlusion of the face. In order to cope with these limitations, we propose to use LBP features. Special emphasis is given to the scanning process and to the merging of overlapped detections, because both have a significant impact on the performance. We then extend our frontal FD module to multiview FD. In the second part, we present a novel generative approach for FV, based on an LBP description of the face. The main advantages compared to previous approaches are a very fast and simple training procedure and robustness to bad lighting conditions. In the third part, we address the problem of estimating the quality of FD. We first show the influence of FD errors on the FV task and then empirically demonstrate the limitations of current detection measures when applied to this task. In order to properly evaluate the performance of a face detection module, we propose to embed the FV into the performance measuring process. We show empirically that the proposed methodology better matches the final FV performance

    FACE RECOGNITION METHOD USING GABOR WAVELETS (GWS)

    Get PDF
    Facial features can be used to recognize and identify the characteristics of a person. In this project, Gabor Wavelet (GW) based recognition technique is proposed whereby the GW is used to extract the facial feature of a person. The face recognition system consist of four (4) major stages namely image preprocessing, feature extraction, matching technique and classification technique. In feature extraction stage, the input images are converted into grayscale image prior to applying the 2D GWs. The resulting feature vectors are used to test the similarity score with the feature vectors of the facial image in the database
    • …
    corecore