40,694 research outputs found

    Bio-inspired Approaches for Engineering Adaptive Systems

    Get PDF
    AbstractAdaptive systems are composed of different heterogeneous parts or entities that interact and perform actions favouring the emer- gence of global desired behavior. In this type of systems entities might join or leave without disturbing the collective, and the system should self-organize and continue performing their goals. Furthermore, entities must self-evolve and self-improve by learn- ing from their interactions with the environment. The main challenge for engineering these systems is to design and develop distributed and adaptive algorithms that allow system entities to select the best suitable strategy/action and drive the system to the best suitable behavior according to the current state of the system and environment changes. This paper describes existing work related to the development of adaptive systems and approaches and shed light on how features from natural and biological systems could be exploited for engineering adaptive approaches

    Energy adaptive glass matter

    Get PDF
    Natures eco-systems are living multi-functional mechanical, information systems of chemical composition forming hierarchical structures. They have the ability to learn and adapt to changing climatic circumstance and self regulation of thermal adsorption, from nano scale components. Current technological developments strategies for buildings is a static one, by this understanding materials do not react to differing climatic zones or recognition of global positioning. This is in contrast to natures adaptive function , a responsive system to regulate material composition. Could our buildings use these principles to move from being mere material entities to becoming adaptive, self- regulated conduction performance system, based upon bio-logically adaptive approaches. To exploit the functionalities and behaviour of material science to act as a thermal energy adsorption layer by the application of bio-logically inspired engineering aims, by the principles of capture in enabling thermal transfer and control to regulate thermal management of matter by the objectives of: 1. Thermal conductivity matter behaviour exchange.( Material Adaptivity ) 2. Adaptive real-time performance to enable thermal heat exchange and thermal material management.(Matter Autonomy

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    "Going back to our roots": second generation biocomputing

    Full text link
    Researchers in the field of biocomputing have, for many years, successfully "harvested and exploited" the natural world for inspiration in developing systems that are robust, adaptable and capable of generating novel and even "creative" solutions to human-defined problems. However, in this position paper we argue that the time has now come for a reassessment of how we exploit biology to generate new computational systems. Previous solutions (the "first generation" of biocomputing techniques), whilst reasonably effective, are crude analogues of actual biological systems. We believe that a new, inherently inter-disciplinary approach is needed for the development of the emerging "second generation" of bio-inspired methods. This new modus operandi will require much closer interaction between the engineering and life sciences communities, as well as a bidirectional flow of concepts, applications and expertise. We support our argument by examining, in this new light, three existing areas of biocomputing (genetic programming, artificial immune systems and evolvable hardware), as well as an emerging area (natural genetic engineering) which may provide useful pointers as to the way forward.Comment: Submitted to the International Journal of Unconventional Computin
    corecore