69,031 research outputs found
A strategic niche management approach for shaping bio-based economy in Europe
The goal of this paper is to investigate the transition towards a bio-based economy as part of a broader sustainable transition in Europe. To analyse the challenges and opportunities associated with the bio-based economy, we applied the Strategic Niche Management approach to investigate the drivers that boost the emergence of the bio-based economy, the factors hindering it, as well as institutional changes which are at the base of the socio-technological transition. Although considered as just one piece of the sustainability puzzle, the bio-based economy behaves as a socio-technical system on its own, providing valuable hints on systemic transitions
Properties of bio-based gum Arabic/clay aerogels
Lightweight bio-based aerogels from sustainable gum Arabic (GA) and sodium montmorillonite (Na+-MMT) clay were prepared by means of a simple freeze-drying process. GA/clay aerogels showed high porosity (87.9%–94.9%) of mainly open type and the mechanical properties were improved by the clay. When 40% of clay was added to pure GA, the specific modulus and the absorbed energy of resultant aerogels increased by 1.6 and 4.2 times respectively. On the other hand, the exponent value for modulus in the power-law model for cellular materials increased from 1.95 to 3.28 due to the more anisotropic structures induced by the presence of the clay. In terms of thermal stability and flame retardancy, clay content played a dominant role. With 50% of clay loading, the initial decomposition temperature increased by nearly 16 °C and the peak of heat release rate was 3-fold reduced.Peer ReviewedPostprint (author's final draft
Bio-Based Renewable Additives for Anti-Icing Applications (Phase II)
The performance and impacts of several agro-based anti-icers along with a traditional chloride-based anti-icer (salt brine) were evaluated. A statistical design of experiments (central composite design) was employed for developing anti-icing liquids consisting of cost-competitive chemicals such as agro-based compounds (e.g., Concord grape extract and glycerin), sodium chloride, sodium metasilicate, and sodium formate. The following experimentally obtained parameters were examined as a function of the formulation design: ice-melting capacity at 25°F (−3.9°C), splitting strength of Portland cement mortar samples after 10 freeze-thaw/deicer cycles, corrosion rate of C1010 carbon steel after 24-hour immersion, and impact on asphalt binder stiffness and m-value. One viable formula (“best performer”) was tested for thermal properties by measuring its differential scanning calorimetry (DSC) thermograms, the friction coefficient of asphalt pavement treated by this anti-icing formulation (vs. 23 wt.% NaCl and beet juice blend) at 25°F after being applied at 30 gallons per lane mile (1 hour after simulated trafficking and plowing), and other properties (pH, oxygen demand in COD). Laboratory data shed light on the selection and formulation of innovative agro-based snow- and ice-control chemicals that can significantly reduce the costs of winter maintenance operations
Brief overview on bio-based adhesives and sealants
Adhesives and sealants (AS) are materials with excellent properties, versatility, and simple curing mechanisms, being widely used in different areas ranging from the construction to the medical sectors. Due to the fast-growing demand for petroleum-based products and the consequent negative environmental impact, there is an increasing need to develop novel and more sustainable sources to obtain raw materials (monomers). This reality is particularly relevant for AS industries, which are generally dependent on non-sustainable fossil raw materials. In this respect, biopolymers, such as cellulose, starch, lignin, or proteins, emerge as important alternatives. Nevertheless, substantial improvements and developments are still required in order to simplify the synthetic routes, as well as to improve the biopolymer stability and performance of these new bio-based AS formulations. This environmentally friendly strategy will hopefully lead to the future partial or even total replacement of non-renewable petroleum-based feedstock. In this brief overview, the general features of typical AS are reviewed and critically discussed regarding their drawbacks and advantages. Moreover, the challenges faced by novel and more ecological alternatives, in particular lignocellulose-based solutions, are highlighted.Funding Agency
Portuguese Foundation for Science and Technology
PTDC/AGR-TEC/4814/2014;
PTDC/ASP-SIL/30619/2017;
IF/01005/2014.info:eu-repo/semantics/publishedVersio
No Bug: novel release system and bio-based utilities for mosquito repellent textiles and garments
Closing the loop, adding value
This article describes an innovation which uses waste blood from meat processing to create a valuable bio-based plasti
Improvement of fire reaction and mould growth resistance of a new bio-based thermal insulation material
In the present paper, the performance of an innovative thermal insulation rigid board is evaluated in terms of fire behaviour and fungal resistance. The board is based on vegetal pith and a natural gum (corn pith and sodium alginate) and it is completely compostable. This new composite was developed in previous work. Here boric acid, aluminium hydroxide and ammonium polyphosphate are used as fire retardants and montan wax, acetic acid and lactic acid are used as water repellent and fungicides respectively. Interactions between these different treatments is investigated. Both flaming and smouldering combustion processes of the different formulations are evaluated by small-scale techniques which include pyrolysis microcalorimetry and thermogravimetric analysis. A medium-scale device is also designed in order to study the impact of the different additives to the smouldering kinetics. Fire behaviour tests show that good improvement is obtained, both in flaming and smouldering combustion when boric acid is added. Although smouldering is not avoided in any case, the addition of 8% of boric acid or aluminium hydroxide slows down the speed of combustion propagation. The effect of the different additives on the moisture content and mould growth at 97% RH and 27 °C is analysed. Under such severe conditions none of the additives is able to prevent mould growth, with the exception of boric acid. None or marginal mould growth was observed on samples containing 8% of boric acid although moisture content was higher than the other cases.Peer ReviewedPreprin
- …
