192 research outputs found

    An Environment for Analyzing Space Optimizations in Call-by-Need Functional Languages

    Full text link
    We present an implementation of an interpreter LRPi for the call-by-need calculus LRP, based on a variant of Sestoft's abstract machine Mark 1, extended with an eager garbage collector. It is used as a tool for exact space usage analyses as a support for our investigations into space improvements of call-by-need calculi.Comment: In Proceedings WPTE 2016, arXiv:1701.0023

    On the Pursuit of Static and Coherent Weaving

    Get PDF
    Aspect-oriented programming (AOP) has been shown to be a useful model for software development. Special care must be taken when we try to adapt AOP to strongly typed functional languages which come with features like type inference mechanism, polymorphic types, higher-order functions and type-scoped pointcuts. Specifically, it is highly desirable that weaving of aspect-oriented functional programs can be performed statically and coherently. In [13], we showed a type-directed weaver which resolves all advice chainings coherently at static time. The novelty of this paper lies in the extended framework which supports static and coherent weaving in the presence of polymorphic recursive functions, advising advice bodies and higher-order advices

    Type-Inference Based Short Cut Deforestation (nearly) without Inlining

    Get PDF
    Deforestation optimises a functional program by transforming it into another one that does not create certain intermediate data structures. In [ICFP'99] we presented a type-inference based deforestation algorithm which performs extensive inlining. However, across module boundaries only limited inlining is practically feasible. Furthermore, inlining is a non-trivial transformation which is therefore best implemented as a separate optimisation pass. To perform short cut deforestation (nearly) without inlining, Gill suggested to split definitions into workers and wrappers and inline only the small wrappers, which transfer the information needed for deforestation. We show that Gill's use of a function build limits deforestation and note that his reasons for using build do not apply to our approach. Hence we develop a more general worker/wrapper scheme without build. We give a type-inference based algorithm which splits definitions into workers and wrappers. Finally, we show that we can deforest more expressions with the worker/wrapper scheme than the algorithm with inlining

    Type-Directed Weaving of Aspects for Polymorphically Typed Functional Languages

    Get PDF
    Incorporating aspect-oriented paradigm to a polymorphically typed functional language enables the declaration of type-scoped advice, in which the effect of an aspect can be harnessed by introducing possibly polymorphic type constraints to the aspect. The amalgamation of aspect orientation and functional programming enables quick behavioral adaption of functions, clear separation of concerns and expressive type-directed programming. However, proper static weaving of aspects in polymorphic languages with a type-erasure semantics remains a challenge. In this paper, we describe a type-directed static weaving strategy, as well as its implementation, that supports static type inference and static weaving of programs written in an aspect-oriented polymorphically typed functional language, AspectFun. We show examples of type-scoped advice, identify the challenges faced with compile-time weaving in the presence of type-scoped advice, and demonstrate how various advanced aspect features can be handled by our techniques. Lastly, we prove the correctness of the static weaving strategy with respect to the operational semantics of AspectFun

    What Are Polymorphically-Typed Ambients?

    Full text link
    Abstract: The Ambient Calculus was developed by Cardelli and Gordon as a formal framework to study issues of mobility and migrant code. We consider an Ambient Calculus where ambients transport and exchange programs rather that just inert data. We propose different senses in which such a calculus can be said to be polymorphically typed, and design accordingly a polymorphic type system for it. Our type system assigns types to embedded programs and what we call behaviors to processes; a denotational semantics of behaviors is then proposed, here called trace semantics, underlying much of the remaining analysis. We state and prove a Subject Reduction property for our polymorphically typed calculus. Based on techniques borrowed from finite automata theory, type-checking of fully type-annotated processes is shown to be decidable; the time complexity of our decision procedure is exponential (this is a worst-case in theory, arguably not encountered in practice). Our polymorphically-typed calculus is a conservative extension of the typed Ambient Calculus originally proposed by Cardelli and Gordon

    Efficient Data Structures for Automated Theorem Proving in Expressive Higher-Order Logics

    Get PDF
    Church's Simple Theory of Types (STT), also referred to as classical higher-order logik, is an elegant and expressive formal system built on top of the simply typed λ-calculus. Its mechanisms of explicit binding and quantification over arbitrary sets and functions allow the representation of complex mathematical concepts and formulae in a concise and unambiguous manner. Higher-order automated theorem proving (ATP) has recently made major progress and several sophisticated ATP systems for higher-order logic have been developed, including Satallax, Osabelle/HOL and LEO-II. Still, higher-order theorem proving is not as mature as its first-order counterpart, and robust implementation techniques for efficient data structures are scarce. In this thesis, a higher-order term representation based upon the polymorphically typed λ-calculus is presented. This term representation employs spine notation, explicit substitutions and perfect term sharing for efficient term traversal, fast β-normalization and reuse of already constructed terms, respectively. An evaluation of the term representation is performed on the basis of a heterogeneous benchmark set. It shows that while the presented term data structure performs quite well in general, the normalization results indicate that a context dependent choice of reduction strategies is beneficial. A term indexing data structure for fast term retrieval based on various low-level criteria is presented and discussed. It supports symbol-based term retrieval, indexing of terms via structural properties, and subterm indexing

    Offline Specialisation in Prolog Using a Hand-Written Compiler Generator

    No full text
    The so called "cogen approach" to program specialisation, writing a compiler generator instead of a specialiser, has been used with considerable success in partial evaluation of both functional and imperative languages. This paper demonstrates that the "cogen" approach is also applicable to the specialisation of logic programs (called partial deduction when applied to pure logic programs) and leads to effective specialisers. Moreover, using good binding-time annotations, the speed-ups of the specialised programs are comparable to the speed-ups obtained with online specialisers. The paper first develops a generic approach to offline partial deduction and then a specific offline partial deduction method, leading to the offline system LIX for pure logic programs. While this is a usable specialiser by itself, its specialisation strategy is used to develop the "cogen" system LOGEN. Given a program, a specification of what inputs will be static, and an annotation specifying which calls should be unfolded, LOGEN generates a specialised specialiser for the program at hand. Running this specialiser with particular values for the static inputs results in the specialised program. While this requires two steps instead of one, the efficiency of the specialisation process is improved in situations where the same program is specialised multiple times. The paper also presents and evaluates an automatic binding-time analysis that is able to derive the annotations. While the derived annotations are still suboptimal compared to hand-crafted ones, they enable non-expert users to use the LOGEN system in a fully automated way Finally, LOGEN is extended so as to directly support a large part of Prolog's declarative and non-declarative features and so as to be able to perform so called mixline specialisations. In mixline specialisation some unfolding decisions depend on the outcome of tests performed at specialisation time instead of being hardwired into the specialiser

    Some History of Functional Programming Languages

    Get PDF
    We study a series of milestones leading to the emergence of lazy, higher order, polymorphically typed, purely functional programming languages. An invited lecture given at TFP12, St Andrews University, 12 June 2012

    Database Programming in Machiavelli - A Polymorphic Language With Static Type Inference

    Get PDF
    Machiavelli is a polymorphically typed programming language in the spirit of ML, but supports a different type inferencing that makes its polymorphism somewhat more general than that of ML and appropriate for database applications. In particular, a function that selects a field f of a records is polymorphic in the sense that it can be applied to any record which contains a field f with the appropriate type. When combined with a set data type and database operations including join and projection, this provides a natural medium for relational database programming. Moreover, by implementing database objects as reference types and generating the appropriate views - sets of structures with identity - we can achieve a degree of static type checking for object-oriented databases
    corecore