30 research outputs found

    Lossy Source Coding via Spatially Coupled LDGM Ensembles

    Full text link
    We study a new encoding scheme for lossy source compression based on spatially coupled low-density generator-matrix codes. We develop a belief-propagation guided-decimation algorithm, and show that this algorithm allows to approach the optimal distortion of spatially coupled ensembles. Moreover, using the survey propagation formalism, we also observe that the optimal distortions of the spatially coupled and individual code ensembles are the same. Since regular low-density generator-matrix codes are known to achieve the Shannon rate-distortion bound under optimal encoding as the degrees grow, our results suggest that spatial coupling can be used to reach the rate-distortion bound, under a {\it low complexity} belief-propagation guided-decimation algorithm. This problem is analogous to the MAX-XORSAT problem in computer science.Comment: Submitted to ISIT 201

    Lossy source coding using belief propagation and soft-decimation over LDGM codes

    Get PDF
    This paper focus on the lossy compression of a binary symmetric source. We propose a new algorithm for binary quantization over low density generator matrix (LDGM) codes. The proposed algorithm is a modified version of the belief propagation (BP) algorithm used in the channel coding framework and has linear complexity in the code block length. We also provide a common framework under which the proposed algorithm and some previously proposed algorithms fit. Simulation results show that our scheme achieves close to state-of-the-art performance with reduced complexity

    Efficient LDPC Codes over GF(q) for Lossy Data Compression

    Full text link
    In this paper we consider the lossy compression of a binary symmetric source. We present a scheme that provides a low complexity lossy compressor with near optimal empirical performance. The proposed scheme is based on b-reduced ultra-sparse LDPC codes over GF(q). Encoding is performed by the Reinforced Belief Propagation algorithm, a variant of Belief Propagation. The computational complexity at the encoder is O(.n.q.log q), where is the average degree of the check nodes. For our code ensemble, decoding can be performed iteratively following the inverse steps of the leaf removal algorithm. For a sparse parity-check matrix the number of needed operations is O(n).Comment: 5 pages, 3 figure

    Approaching the Rate-Distortion Limit with Spatial Coupling, Belief propagation and Decimation

    Get PDF
    We investigate an encoding scheme for lossy compression of a binary symmetric source based on simple spatially coupled Low-Density Generator-Matrix codes. The degree of the check nodes is regular and the one of code-bits is Poisson distributed with an average depending on the compression rate. The performance of a low complexity Belief Propagation Guided Decimation algorithm is excellent. The algorithmic rate-distortion curve approaches the optimal curve of the ensemble as the width of the coupling window grows. Moreover, as the check degree grows both curves approach the ultimate Shannon rate-distortion limit. The Belief Propagation Guided Decimation encoder is based on the posterior measure of a binary symmetric test-channel. This measure can be interpreted as a random Gibbs measure at a "temperature" directly related to the "noise level of the test-channel". We investigate the links between the algorithmic performance of the Belief Propagation Guided Decimation encoder and the phase diagram of this Gibbs measure. The phase diagram is investigated thanks to the cavity method of spin glass theory which predicts a number of phase transition thresholds. In particular the dynamical and condensation "phase transition temperatures" (equivalently test-channel noise thresholds) are computed. We observe that: (i) the dynamical temperature of the spatially coupled construction saturates towards the condensation temperature; (ii) for large degrees the condensation temperature approaches the temperature (i.e. noise level) related to the information theoretic Shannon test-channel noise parameter of rate-distortion theory. This provides heuristic insight into the excellent performance of the Belief Propagation Guided Decimation algorithm. The paper contains an introduction to the cavity method
    corecore