20,688 research outputs found

    Characterizing finite-dimensional quantum behavior

    Get PDF
    We study and extend the semidefinite programming (SDP) hierarchies introduced in [Phys. Rev. Lett. 115, 020501] for the characterization of the statistical correlations arising from finite dimensional quantum systems. First, we introduce the dimension-constrained noncommutative polynomial optimization (NPO) paradigm, where a number of polynomial inequalities are defined and optimization is conducted over all feasible operator representations of bounded dimensionality. Important problems in device independent and semi-device independent quantum information science can be formulated (or almost formulated) in this framework. We present effective SDP hierarchies to attack the general dimension-constrained NPO problem (and related ones) and prove their asymptotic convergence. To illustrate the power of these relaxations, we use them to derive new dimension witnesses for temporal and Bell-type correlation scenarios, and also to bound the probability of success of quantum random access codes.Comment: 17 page

    Generation of unpredictable time series by a Neural Network

    Full text link
    A perceptron that learns the opposite of its own output is used to generate a time series. We analyse properties of the weight vector and the generated sequence, like the cycle length and the probability distribution of generated sequences. A remarkable suppression of the autocorrelation function is explained, and connections to the Bernasconi model are discussed. If a continuous transfer function is used, the system displays chaotic and intermittent behaviour, with the product of the learning rate and amplification as a control parameter.Comment: 11 pages, 14 figures; slightly expanded and clarified, mistakes corrected; accepted for publication in PR

    Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno's Theorem

    Full text link
    In classical information theory, entropy rate and Kolmogorov complexity per symbol are related by a theorem of Brudno. In this paper, we prove a quantum version of this theorem, connecting the von Neumann entropy rate and two notions of quantum Kolmogorov complexity, both based on the shortest qubit descriptions of qubit strings that, run by a universal quantum Turing machine, reproduce them as outputs.Comment: 26 pages, no figures. Reference to publication added: published in the Communications in Mathematical Physics (http://www.springerlink.com/content/1432-0916/

    Optimality of neighbor-balanced designs for total effects

    Full text link
    The purpose of this paper is to study optimality of circular neighbor-balanced block designs when neighbor effects are present in the model. In the literature many optimality results are established for direct effects and neighbor effects separately, but few for total effects, that is, the sum of direct effect of treatment and relevant neighbor effects. We show that circular neighbor-balanced designs are universally optimal for total effects among designs with no self neighbor. Then we give efficiency factors of these designs, and show some situations where a design with self neighbors is preferable to a neighbor-balanced design.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Statistics (http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000048
    corecore