529 research outputs found

    Multilabel Classification with R Package mlr

    Full text link
    We implemented several multilabel classification algorithms in the machine learning package mlr. The implemented methods are binary relevance, classifier chains, nested stacking, dependent binary relevance and stacking, which can be used with any base learner that is accessible in mlr. Moreover, there is access to the multilabel classification versions of randomForestSRC and rFerns. All these methods can be easily compared by different implemented multilabel performance measures and resampling methods in the standardized mlr framework. In a benchmark experiment with several multilabel datasets, the performance of the different methods is evaluated.Comment: 18 pages, 2 figures, to be published in R Journal; reference correcte

    CONFIDERAI: a novel CONFormal Interpretable-by-Design score function for Explainable and Reliable Artificial Intelligence

    Full text link
    Everyday life is increasingly influenced by artificial intelligence, and there is no question that machine learning algorithms must be designed to be reliable and trustworthy for everyone. Specifically, computer scientists consider an artificial intelligence system safe and trustworthy if it fulfills five pillars: explainability, robustness, transparency, fairness, and privacy. In addition to these five, we propose a sixth fundamental aspect: conformity, that is, the probabilistic assurance that the system will behave as the machine learner expects. In this paper, we propose a methodology to link conformal prediction with explainable machine learning by defining CONFIDERAI, a new score function for rule-based models that leverages both rules predictive ability and points geometrical position within rules boundaries. We also address the problem of defining regions in the feature space where conformal guarantees are satisfied by exploiting techniques to control the number of non-conformal samples in conformal regions based on support vector data description (SVDD). The overall methodology is tested with promising results on benchmark and real datasets, such as DNS tunneling detection or cardiovascular disease prediction.Comment: 12 pages, 7 figures, 1 algorithm, international journa

    Well-calibrated Confidence Measures for Multi-label Text Classification with a Large Number of Labels

    Full text link
    We extend our previous work on Inductive Conformal Prediction (ICP) for multi-label text classification and present a novel approach for addressing the computational inefficiency of the Label Powerset (LP) ICP, arrising when dealing with a high number of unique labels. We present experimental results using the original and the proposed efficient LP-ICP on two English and one Czech language data-sets. Specifically, we apply the LP-ICP on three deep Artificial Neural Network (ANN) classifiers of two types: one based on contextualised (bert) and two on non-contextualised (word2vec) word-embeddings. In the LP-ICP setting we assign nonconformity scores to label-sets from which the corresponding p-values and prediction-sets are determined. Our approach deals with the increased computational burden of LP by eliminating from consideration a significant number of label-sets that will surely have p-values below the specified significance level. This reduces dramatically the computational complexity of the approach while fully respecting the standard CP guarantees. Our experimental results show that the contextualised-based classifier surpasses the non-contextualised-based ones and obtains state-of-the-art performance for all data-sets examined. The good performance of the underlying classifiers is carried on to their ICP counterparts without any significant accuracy loss, but with the added benefits of ICP, i.e. the confidence information encapsulated in the prediction sets. We experimentally demonstrate that the resulting prediction sets can be tight enough to be practically useful even though the set of all possible label-sets contains more than 1e+161e+16 combinations. Additionally, the empirical error rates of the obtained prediction-sets confirm that our outputs are well-calibrated

    Conformal prediction under ambiguous ground truth

    Full text link
    In safety-critical classification tasks, conformal prediction allows to perform rigorous uncertainty quantification by providing confidence sets including the true class with a user-specified probability. This generally assumes the availability of a held-out calibration set with access to ground truth labels. Unfortunately, in many domains, such labels are difficult to obtain and usually approximated by aggregating expert opinions. In fact, this holds true for almost all datasets, including well-known ones such as CIFAR and ImageNet. Applying conformal prediction using such labels underestimates uncertainty. Indeed, when expert opinions are not resolvable, there is inherent ambiguity present in the labels. That is, we do not have ``crisp'', definitive ground truth labels and this uncertainty should be taken into account during calibration. In this paper, we develop a conformal prediction framework for such ambiguous ground truth settings which relies on an approximation of the underlying posterior distribution of labels given inputs. We demonstrate our methodology on synthetic and real datasets, including a case study of skin condition classification in dermatology

    Guaranteed Coverage Prediction Intervals with Gaussian Process Regression

    Full text link
    Gaussian Process Regression (GPR) is a popular regression method, which unlike most Machine Learning techniques, provides estimates of uncertainty for its predictions. These uncertainty estimates however, are based on the assumption that the model is well-specified, an assumption that is violated in most practical applications, since the required knowledge is rarely available. As a result, the produced uncertainty estimates can become very misleading; for example the prediction intervals (PIs) produced for the 95\% confidence level may cover much less than 95\% of the true labels. To address this issue, this paper introduces an extension of GPR based on a Machine Learning framework called, Conformal Prediction (CP). This extension guarantees the production of PIs with the required coverage even when the model is completely misspecified. The proposed approach combines the advantages of GPR with the valid coverage guarantee of CP, while the performed experimental results demonstrate its superiority over existing methods.Comment: 12 pages. This work has been submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    How can humans leverage machine learning? From Medical Data Wrangling to Learning to Defer to Multiple Experts

    Get PDF
    Mención Internacional en el título de doctorThe irruption of the smartphone into everyone’s life and the ease with which we digitise or record any data supposed an explosion of quantities of data. Smartphones, equipped with advanced cameras and sensors, have empowered individuals to capture moments and contribute to the growing pool of data. This data-rich landscape holds great promise for research, decision-making, and personalized applications. By carefully analyzing and interpreting this wealth of information, valuable insights, patterns, and trends can be uncovered. However, big data is worthless in a vacuum. Its potential value is unlocked only when leveraged to drive decision-making. In recent times we have been participants of the outburst of artificial intelligence: the development of computer systems and algorithms capable of perceiving, reasoning, learning, and problem-solving, emulating certain aspects of human cognitive abilities. Nevertheless, our focus tends to be limited, merely skimming the surface of the problem, while the reality is that the application of machine learning models to data introduces is usually fraught. More specifically, there are two crucial pitfalls frequently neglected in the field of machine learning: the quality of the data and the erroneous assumption that machine learning models operate autonomously. These two issues have established the foundation for the motivation driving this thesis, which strives to offer solutions to two major associated challenges: 1) dealing with irregular observations and 2) learning when and who should we trust. The first challenge originates from our observation that the majority of machine learning research primarily concentrates on handling regular observations, neglecting a crucial technological obstacle encountered in practical big-data scenarios: the aggregation and curation of heterogeneous streams of information. Before applying machine learning algorithms, it is crucial to establish robust techniques for handling big data, as this specific aspect presents a notable bottleneck in the creation of robust algorithms. Data wrangling, which encompasses the extraction, integration, and cleaning processes necessary for data analysis, plays a crucial role in this regard. Therefore, the first objective of this thesis is to tackle the frequently disregarded challenge of addressing irregularities within the context of medical data. We will focus on three specific aspects. Firstly, we will tackle the issue of missing data by developing a framework that facilitates the imputation of missing data points using relevant information derived from alternative data sources or past observations. Secondly, we will move beyond the assumption of homogeneous observations, where only one statistical data type (such as Gaussian) is considered, and instead, work with heterogeneous observations. This means that different data sources can be represented by various statistical likelihoods, such as Gaussian, Bernoulli, categorical, etc. Lastly, considering the temporal enrichment of todays collected data and our focus on medical data, we will develop a novel algorithm capable of capturing and propagating correlations among different data streams over time. All these three problems are addressed in our first contribution which involves the development of a novel method based on Deep Generative Models (DGM) using Variational Autoencoders (VAE). The proposed model, the Sequential Heterogeneous Incomplete VAE (Shi- VAE), enables the aggregation of multiple heterogeneous data streams in a modular manner, taking into consideration the presence of potential missing data. To demonstrate the feasibility of our approach, we present proof-of-concept results obtained from a real database generated through continuous passive monitoring of psychiatric patients. Our second challenge relates to the misbelief that machine learning algorithms can perform independently. However, this notion that AI systems can solely account for automated decisionmaking, especially in critical domains such as healthcare, is far from reality. Our focus now shifts towards a specific scenario where the algorithm has the ability to make predictions independently or alternatively defer the responsibility to a human expert. The purpose of including the human is not to obtain jsut better performance, but also more reliable and trustworthy predictions we can rely on. In reality, however, important decisions are not made by one person but are usually committed by an ensemble of human experts. With this in mind, two important questions arise: 1) When should the human or the machine bear responsibility and 2) among the experts, who should we trust? To answer the first question, we will employ a recent theory known as Learning to defer (L2D). In L2D we are not only interested in abstaining from prediction but also in understanding the humans confidence for making such prediction. thus deferring only when the human is more likely to be correct. The second question about who to defer among a pool of experts has not been yet answered in the L2D literature, and this is what our contributions aim to provide. First, we extend the two yet proposed consistent surrogate losses in the L2D literature to the multiple-expert setting. Second, we study the frameworks ability to estimate the probability that a given expert correctly predicts and assess whether the two surrogate losses are confidence calibrated. Finally, we propose a conformal inference technique that chooses a subset of experts to query when the system defers. Ensembling experts based on confidence levels is vital to optimize human-machine collaboration. In conclusion, this doctoral thesis has investigated two cases where humans can leverage the power of machine learning: first, as a tool to assist in data wrangling and data understanding problems and second, as a collaborative tool where decision-making can be automated by the machine or delegated to human experts, fostering more transparent and trustworthy solutions.La irrupción de los smartphones en la vida de todos y la facilidad con la que digitalizamos o registramos cualquier situación ha supuesto una explosión en la cantidad de datos. Los teléfonos, equipados con cámaras y sensores avanzados, han contribuido a que las personas puedann capturar más momentos, favoreciendo así el creciente conjunto de datos. Este panorama repleto de datos aporta un gran potencial de cara a la investigación, la toma de decisiones y las aplicaciones personalizadas. Mediante el análisis minucioso y una cuidada interpretación de esta abundante información, podemos descubrir valiosos patrones, tendencias y conclusiones Sin embargo, este gran volumen de datos no tiene valor por si solo. Su potencial se desbloquea solo cuando se aprovecha para impulsar la toma de decisiones. En tiempos recientes, hemos sido testigos del auge de la inteligencia artificial: el desarrollo de sistemas informáticos y algoritmos capaces de percibir, razonar, aprender y resolver problemas, emulando ciertos aspectos de las capacidades cognitivas humanas. No obstante, solemos centrarnos solo en la superficie del problema mientras que la realidad es que la aplicación de modelos de aprendizaje automático a los datos presenta desafíos significativos. Concretamente, se suelen pasar por alto dos problemas cruciales en el campo del aprendizaje automático: la calidad de los datos y la suposición errónea de que los modelos de aprendizaje automático pueden funcionar de manera autónoma. Estos dos problemas han sido el fundamento de la motivación que impulsa esta tesis, que se esfuerza en ofrecer soluciones a dos desafíos importantes asociados: 1) lidiar con datos irregulares y 2) aprender cuándo y en quién debemos confiar. El primer desafío surge de nuestra observación de que la mayoría de las investigaciones en aprendizaje automático se centran principalmente en manejar datos regulares, descuidando un obstáculo tecnológico crucial que se encuentra en escenarios prácticos con gran cantidad de datos: la agregación y el curado de secuencias heterogéneas. Antes de aplicar algoritmos de aprendizaje automático, es crucial establecer técnicas robustas para manejar estos datos, ya que est problemática representa un cuello de botella claro en la creación de algoritmos robustos. El procesamiento de datos (en concreto, nos centraremos en el término inglés data wrangling), que abarca los procesos de extracción, integración y limpieza necesarios para el análisis de datos, desempeña un papel crucial en este sentido. Por lo tanto, el primer objetivo de esta tesis es abordar el desafío normalmente paso por alto de tratar datos irregulare. Específicamente, bajo el contexto de datos médicos. Nos centraremos en tres aspectos principales. En primer lugar, abordaremos el problema de los datos perdidos mediante el desarrollo de un marco que facilite la imputación de estos datos perdidos utilizando información relevante obtenida de fuentes de datos de diferente naturalaeza u observaciones pasadas. En segundo lugar, iremos más allá de la suposición de lidiar con observaciones homogéneas, donde solo se considera un tipo de dato estadístico (como Gaussianos) y, en su lugar, trabajaremos con observaciones heterogéneas. Esto significa que diferentes fuentes de datos pueden estar representadas por diversas distribuciones de probabilidad, como Gaussianas, Bernoulli, categóricas, etc. Por último, teniendo en cuenta el enriquecimiento temporal de los datos hoy en día y nuestro enfoque directo sobre los datos médicos, propondremos un algoritmo innovador capaz de capturar y propagar la correlación entre diferentes flujos de datos a lo largo del tiempo. Todos estos tres problemas se abordan en nuestra primera contribución, que implica el desarrollo de un método basado en Modelos Generativos Profundos (Deep Genarative Model en inglés) utilizando Autoencoders Variacionales (Variational Autoencoders en ingés). El modelo propuesto, Sequential Heterogeneous Incomplete VAE (Shi-VAE), permite la agregación de múltiples flujos de datos heterogéneos de manera modular, teniendo en cuenta la posible presencia de datos perdidos. Para demostrar la viabilidad de nuestro enfoque, presentamos resultados de prueba de concepto obtenidos de una base de datos real generada a través del monitoreo continuo pasivo de pacientes psiquiátricos. Nuestro segundo desafío está relacionado con la creencia errónea de que los algoritmos de aprendizaje automático pueden funcionar de manera independiente. Sin embargo, esta idea de que los sistemas de inteligencia artificial pueden ser los únicos responsables en la toma de decisione, especialmente en dominios críticos como la atención médica, está lejos de la realidad. Ahora, nuestro enfoque se centra en un escenario específico donde el algoritmo tiene la capacidad de realizar predicciones de manera independiente o, alternativamente, delegar la responsabilidad en un experto humano. La inclusión del ser humano no solo tiene como objetivo obtener un mejor rendimiento, sino también obtener predicciones más transparentes y seguras en las que podamos confiar. En la realidad, sin embargo, las decisiones importantes no las toma una sola persona, sino que generalmente son el resultado de la colaboración de un conjunto de expertos. Con esto en mente, surgen dos preguntas importantes: 1) ¿Cuándo debe asumir la responsabilidad el ser humano o cuándo la máquina? y 2) de entre los expertos, ¿en quién debemos confiar? Para responder a la primera pregunta, emplearemos una nueva teoría llamada Learning to defer (L2D). En L2D, no solo estamos interesados en abstenernos de hacer predicciones, sino también en comprender cómo de seguro estará el experto para hacer dichas predicciones, diferiendo solo cuando el humano sea más probable en predecir correcatmente. La segunda pregunta sobre a quién deferir entre un conjunto de expertos aún no ha sido respondida en la literatura de L2D, y esto es precisamente lo que nuestras contribuciones pretenden proporcionar. En primer lugar, extendemos las dos primeras surrogate losses consistentes propuestas hasta ahora en la literatura de L2D al contexto de múltiples expertos. En segundo lugar, estudiamos la capacidad de estos modelos para estimar la probabilidad de que un experto dado haga predicciones correctas y evaluamos si estas surrogate losses están calibradas en términos de confianza. Finalmente, proponemos una técnica de conformal inference que elige un subconjunto de expertos para consultar cuando el sistema decide diferir. Esta combinación de expertos basada en los respectivos niveles de confianza es fundamental para optimizar la colaboración entre humanos y máquinas En conclusión, esta tesis doctoral ha investigado dos casos en los que los humanos pueden aprovechar el poder del aprendizaje automático: primero, como herramienta para ayudar en problemas de procesamiento y comprensión de datos y, segundo, como herramienta colaborativa en la que la toma de decisiones puede ser automatizada para ser realizada por la máquina o delegada a expertos humanos, fomentando soluciones más transparentes y seguras.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Joaquín Míguez Arenas.- Secretario: Juan José Murillo Fuentes.- Vocal: Mélanie Natividad Fernández Pradie
    corecore