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no está tallado en granito.
Yo apenas suelto en el viento,
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Abstract

The irruption of the smartphone into everyone’s life and the ease with which we digitise or record
any data supposed an explosion of quantities of data. Smartphones, equipped with advanced
cameras and sensors, have empowered individuals to capture moments and contribute to the
growing pool of data. This data-rich landscape holds great promise for research, decision-making,
and personalized applications. By carefully analyzing and interpreting this wealth of information,
valuable insights, patterns, and trends can be uncovered.

However, big data is worthless in a vacuum. Its potential value is unlocked only when leveraged
to drive decision-making. In recent times we have been participants of the outburst of artificial
intelligence: the development of computer systems and algorithms capable of perceiving, reasoning,
learning, and problem-solving, emulating certain aspects of human cognitive abilities. Nevertheless,
our focus tends to be limited, merely skimming the surface of the problem, while the reality
is that the application of machine learning models to data introduces is usually fraught. More
specifically, there are two crucial pitfalls frequently neglected in the field of machine learning:
the quality of the data and the erroneous assumption that machine learning models operate
autonomously. These two issues have established the foundation for the motivation driving this
thesis, which strives to offer solutions to two major associated challenges: 1) dealing with irregular
observations and 2) learning when and who should we trust.

The first challenge originates from our observation that the majority of machine learning
research primarily concentrates on handling regular observations, neglecting a crucial technological
obstacle encountered in practical big-data scenarios: the aggregation and curation of heterogeneous
streams of information. Before applying machine learning algorithms, it is crucial to establish
robust techniques for handling big data, as this specific aspect presents a notable bottleneck in
the creation of robust algorithms. Data wrangling, which encompasses the extraction, integration,
and cleaning processes necessary for data analysis, plays a crucial role in this regard. Therefore,
the first objective of this thesis is to tackle the frequently disregarded challenge of addressing
irregularities within the context of medical data. We will focus on three specific aspects. Firstly,
we will tackle the issue of missing data by developing a framework that facilitates the imputation
of missing data points using relevant information derived from alternative data sources or past
observations. Secondly, we will move beyond the assumption of homogeneous observations,
where only one statistical data type (such as Gaussian) is considered, and instead, work with
heterogeneous observations. This means that different data sources can be represented by various
statistical likelihoods, such as Gaussian, Bernoulli, categorical, etc. Lastly, considering the
temporal enrichment of todays collected data and our focus on medical data, we will develop a



novel algorithm capable of capturing and propagating correlations among different data streams
over time. All these three problems are addressed in our first contribution which involves the
development of a novel method based on Deep Generative Models (DGM) using Variational
Autoencoders (VAE). The proposed model, the Sequential Heterogeneous Incomplete VAE (Shi-
VAE), enables the aggregation of multiple heterogeneous data streams in a modular manner,
taking into consideration the presence of potential missing data. To demonstrate the feasibility
of our approach, we present proof-of-concept results obtained from a real database generated
through continuous passive monitoring of psychiatric patients.

Our second challenge relates to the misbelief that machine learning algorithms can perform
independently. However, this notion that AI systems can solely account for automated decision-
making, especially in critical domains such as healthcare, is far from reality. Our focus now shifts
towards a specific scenario where the algorithm has the ability to make predictions independently
or alternatively defer the responsibility to a human expert. The purpose of including the human
is not to obtain jsut better performance, but also more reliable and trustworthy predictions we
can rely on. In reality, however, important decisions are not made by one person but are usually
committed by an ensemble of human experts. With this in mind, two important questions arise:
1) When should the human or the machine bear responsibility and 2) among the experts, who
should we trust? To answer the first question, we will employ a recent theory known as Learning
to defer (L2D). In L2D we are not only interested in abstaining from prediction but also in
understanding the humans confidence for making such prediction. thus deferring only when the
human is more likely to be correct. The second question about who to defer among a pool of
experts has not been yet answered in the L2D literature, and this is what our contributions
aim to provide. First, we extend the two yet proposed consistent surrogate losses in the L2D
literature to the multiple-expert setting. Second, we study the frameworks ability to estimate
the probability that a given expert correctly predicts and assess whether the two surrogate losses
are confidence calibrated. Finally, we propose a conformal inference technique that chooses a
subset of experts to query when the system defers. Ensembling experts based on confidence
levels is vital to optimize human-machine collaboration.

In conclusion, this doctoral thesis has investigated two cases where humans can leverage the
power of machine learning: first, as a tool to assist in data wrangling and data understanding
problems and second, as a collaborative tool where decision-making can be automated by the
machine or delegated to human experts, fostering more transparent and trustworthy solutions.



Resumen

La irrupción de los smartphones en la vida de todos y la facilidad con la que digitalizamos o
registramos cualquier situación ha supuesto una explosión en la cantidad de datos. Los teléfonos,
equipados con cámaras y sensores avanzados, han contribuido a que las personas puedann capturar
más momentos, favoreciendo así el creciente conjunto de datos. Este panorama repleto de datos
aporta un gran potencial de cara a la investigación, la toma de decisiones y las aplicaciones
personalizadas. Mediante el análisis minucioso y una cuidada interpretación de esta abundante
información, podemos descubrir valiosos patrones, tendencias y conclusiones

Sin embargo, este gran volumen de datos no tiene valor por si solo. Su potencial se desbloquea
solo cuando se aprovecha para impulsar la toma de decisiones. En tiempos recientes, hemos sido
testigos del auge de la inteligencia artificial: el desarrollo de sistemas informáticos y algoritmos
capaces de percibir, razonar, aprender y resolver problemas, emulando ciertos aspectos de las
capacidades cognitivas humanas. No obstante, solemos centrarnos solo en la superficie del problema
mientras que la realidad es que la aplicación de modelos de aprendizaje automático a los datos
presenta desafíos significativos. Concretamente, se suelen pasar por alto dos problemas cruciales
en el campo del aprendizaje automático: la calidad de los datos y la suposición errónea de
que los modelos de aprendizaje automático pueden funcionar de manera autónoma. Estos dos
problemas han sido el fundamento de la motivación que impulsa esta tesis, que se esfuerza
en ofrecer soluciones a dos desafíos importantes asociados: 1) lidiar con datos irregulares y 2)
aprender cuándo y en quién debemos confiar.

El primer desafío surge de nuestra observación de que la mayoría de las investigaciones en
aprendizaje automático se centran principalmente en manejar datos regulares, descuidando un
obstáculo tecnológico crucial que se encuentra en escenarios prácticos con gran cantidad de
datos: la agregación y el curado de secuencias heterogéneas. Antes de aplicar algoritmos de
aprendizaje automático, es crucial establecer técnicas robustas para manejar estos datos, ya que
est problemática representa un cuello de botella claro en la creación de algoritmos robustos. El
procesamiento de datos (en concreto, nos centraremos en el término inglés data wrangling), que
abarca los procesos de extracción, integración y limpieza necesarios para el análisis de datos,
desempeña un papel crucial en este sentido. Por lo tanto, el primer objetivo de esta tesis es
abordar el desafío normalmente paso por alto de tratar datos irregulare. Específicamente, bajo
el contexto de datos médicos. Nos centraremos en tres aspectos principales. En primer lugar,
abordaremos el problema de los datos perdidos mediante el desarrollo de un marco que facilite
la imputación de estos datos perdidos utilizando información relevante obtenida de fuentes de
datos de diferente naturalaeza u observaciones pasadas. En segundo lugar, iremos más allá de



la suposición de lidiar con observaciones homogéneas, donde solo se considera un tipo de dato
estadístico (como Gaussianos) y, en su lugar, trabajaremos con observaciones heterogéneas. Esto
significa que diferentes fuentes de datos pueden estar representadas por diversas distribuciones
de probabilidad, como Gaussianas, Bernoulli, categóricas, etc. Por último, teniendo en cuenta
el enriquecimiento temporal de los datos hoy en día y nuestro enfoque directo sobre los datos
médicos, propondremos un algoritmo innovador capaz de capturar y propagar la correlación
entre diferentes flujos de datos a lo largo del tiempo. Todos estos tres problemas se abordan
en nuestra primera contribución, que implica el desarrollo de un método basado en Modelos
Generativos Profundos (Deep Genarative Model en inglés) utilizando Autoencoders Variacionales
(Variational Autoencoders en ingés). El modelo propuesto, Sequential Heterogeneous Incomplete
VAE (Shi-VAE), permite la agregación de múltiples flujos de datos heterogéneos de manera
modular, teniendo en cuenta la posible presencia de datos perdidos. Para demostrar la viabilidad
de nuestro enfoque, presentamos resultados de prueba de concepto obtenidos de una base de datos
real generada a través del monitoreo continuo pasivo de pacientes psiquiátricos.

Nuestro segundo desafío está relacionado con la creencia errónea de que los algoritmos de
aprendizaje automático pueden funcionar de manera independiente. Sin embargo, esta idea de que
los sistemas de inteligencia artificial pueden ser los únicos responsables en la toma de decisione,
especialmente en dominios críticos como la atención médica, está lejos de la realidad. Ahora,
nuestro enfoque se centra en un escenario específico donde el algoritmo tiene la capacidad de
realizar predicciones de manera independiente o, alternativamente, delegar la responsabilidad
en un experto humano. La inclusión del ser humano no solo tiene como objetivo obtener un
mejor rendimiento, sino también obtener predicciones más transparentes y seguras en las que
podamos confiar. En la realidad, sin embargo, las decisiones importantes no las toma una sola
persona, sino que generalmente son el resultado de la colaboración de un conjunto de expertos.
Con esto en mente, surgen dos preguntas importantes: 1) ¿Cuándo debe asumir la responsabilidad
el ser humano o cuándo la máquina? y 2) de entre los expertos, ¿en quién debemos confiar?
Para responder a la primera pregunta, emplearemos una nueva teoría llamada Learning to defer
(L2D). En L2D, no solo estamos interesados en abstenernos de hacer predicciones, sino también
en comprender cómo de seguro estará el experto para hacer dichas predicciones, diferiendo solo
cuando el humano sea más probable en predecir correcatmente. La segunda pregunta sobre a quién
deferir entre un conjunto de expertos aún no ha sido respondida en la literatura de L2D, y esto es
precisamente lo que nuestras contribuciones pretenden proporcionar. En primer lugar, extendemos
las dos primeras surrogate losses consistentes propuestas hasta ahora en la literatura de L2D al
contexto de múltiples expertos. En segundo lugar, estudiamos la capacidad de estos modelos para
estimar la probabilidad de que un experto dado haga predicciones correctas y evaluamos si estas
surrogate losses están calibradas en términos de confianza. Finalmente, proponemos una técnica
de conformal inference que elige un subconjunto de expertos para consultar cuando el sistema
decide diferir. Esta combinación de expertos basada en los respectivos niveles de confianza es
fundamental para optimizar la colaboración entre humanos y máquinas.



En conclusión, esta tesis doctoral ha investigado dos casos en los que los humanos pueden
aprovechar el poder del aprendizaje automático: primero, como herramienta para ayudar en
problemas de procesamiento y comprensión de datos y, segundo, como herramienta colaborativa en
la que la toma de decisiones puede ser automatizada para ser realizada por la máquina o delegada
a expertos humanos, fomentando soluciones más transparentes y seguras..
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Doesn’t have a point of view
Knows not where he’s going to
Isn’t he a bit like you and me?

Nowhere Man — The Beatles PLAY-CIRCLE
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Life is uncertain. No one can deny that. From the moment you are born throughout your
whole life, paradoxically, one thing is for certain: life is uncertain. “I’m going on holidays,

will it rain tomorrow?”. “The championship final is tomorrow, who will win?”. “Are you expecting
a child? Congratulations! Is it a boy or a girl?” We are always asking these kind of questions,
and there is always uncertainty about the possible answers one could expect. Inevitably, these
questions need answers, and the answers do not appear spontaneously. There must be a prior
processing step of the question considering the possible outcomes using contextual information,
and subsequently, the resulting decision.

In order to create an abstract route that leads to the final decision, first we need contextual
information. However, this final decision is not only influenced by the present information,
but most often greatly influenced by the past. In the case of humans, this information retrieval
is done by memory. But we sometimes have lapses and forget: “what did I do in summer two
years ago?”. In such cases, we first try to carve inside our memories to get a hint, a clue, an
echo that can lead us to that missing part. But sometimes we do not succeed, and instead we
need to form an abstract memory, that is, we fill those missing gaps with the merging of the
surrounded memories, which might be composed of conceptual representations of images, sounds,
smells still present in our memory. Precisely, this mingling of concepts is heterogeneous since
each conceptual representation might be of different nature. Hence, we can conclude that our

1
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conceptual representations are inherently irregular. In the following sections, we will comment
how this view that we humans have about information relates to data in our modern times.

Once the information has been partially characterized, we can proceed to the next step:
decision-making. The process of making decisions is not exclusively confined to individuals,
as it can be shaped by external factors and involve the collaboration of other individuals. Let’s
consider the scenario of a patient visiting a hospital with a skin lesion. The doctor in charge
would need to prescribe medication or determine the next steps for an accurate diagnosis. In
this case, the responsibility for making the decision lies with the doctor. However, for certain
high-stakes tasks, decisions are often made by a team of doctors. Typically, these decisions are
reached through consensus within the committee. Nonetheless, in practical terms, certain doctors
may exert greater influence in the decision-making process due to their extensive experience
and heightened confidence in their judgment. In the present era, these decisions are further
supported by machine-generated feedback. Doctors utilize advanced equipment to extract medical
information, such as CTA scans, in order to facilitate and alleviate the weight of the ultimate
decision. This posits yet another question that this thesis seeks to answer: For a specific scenario,
should the system or human(s) bear the responsibility of decision-making?

These two preceding examples have been presented as the primary motivation and starting point
for this thesis. Firstly, we hypothesize that, just as local-abstract concepts can be combined to
form deep-abstract concepts, allowing us to discern missing patterns in our memory, we can design
models that leverage probabilistic methods to encode data information from diverse data types. By
doing so, we can generate meaningful latent representations to facilitate tasks such as missing data
imputation and data wrangling. Secondly, we believe in designing machine learning methods in a
more synergistic manner, wherein machines and humans can effectively complement each other’s
abilities. Our objective is to establish a framework that not only determines whether a decision
should be made by a machine learning system or deferred to a single human, but also discerns which
specific human or humans, from a set of individuals, should hold the responsibility. Furthermore,
we also aim for this deferral decision-making process to be reliable, transparent, and trustworthy.

1.1 All that glitters is not gold
In ancient times, the only way to prevent information to be lost was text1. From the very first poems
ever written (Tigay, 2002)2 to ancient Chinese agricultural texts (Needham, 1974)3, humans have
worried about protecting their ideas and discoveries over time. This worry drove the development
of technologies like Johannes Gutenberg’s printing press and continues to be relevant in our current
era. Nowadays, almost anything can be transformed into a digital format - everything can be saved
as a combination of 0s and 1s. No matter the format, whether it is a photo, a music clip, a video, or
a electronic health record (EHR), everything is transformed into an abstract concept called data.

So far we talked about the content: text, books, photos, i.e. data. But we lack the container.
A very widespread term that no one can help to notice is big data. The term big data can
be perceived as ambiguous because it encompasses not only the notion of vast quantities of
data, as the term suggests, but also the associated storage and processing technologies that
leverage this data (Gandomi and Haider, 2015). It is a common belief that we are living the
fourth industrial revolution thanks to big data, the improvement in computational power and
the rapid development of artificial intelligence algorithms. While there is undeniable truth to
this, we can still acknowledge some promises and pitfalls.

1Although one could also think about folklore or painting.
2https://en.wikipedia.org/wiki/Epic_of_Gilgamesh
3https://en.wikipedia.org/wiki/Qimin_Yaoshu
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1.1.1 Promises of Big Data

The irruption of the smartphone into everyone’s life and the ease with which we digitise or record
any data supposed an explosion of quantities of data. Smartphones, equipped with advanced
cameras and sensors, have empowered individuals to capture moments and contribute to the
growing pool of data. The digitized information that captures our interactions with the world
can be utilized to establish a characterization of an individual, commonly referred to as the
digital phenotype (Jain et al., 2015). What’s more, this vast amount of information captured
by personal technology such as social media, online banking, shopping and mobile devices can
add immense value to many fields like security, marketing or healthcare. The digital footprint
(Bidargaddi et al., 2017) we generate through the use of personal technologies in our daily lives is
remarkably diverse, encompassing various types of data and exhibiting temporal dynamics. This
includes information such as visited websites, browser queries, interactions on social networks,
call logs, physical activity recorded by wearables or mobile phones, GPS location, text data
from messaging applications, sleep patterns, and more.

This data-rich landscape holds great promise for research, decision-making, and personalized
applications. By carefully analyzing and interpreting this wealth of information, valuable insights,
patterns, and trends can be uncovered. However, big data is worthless in a vacuum. Its potential
value is unlocked only when leveraged to drive decision making. In our recent times we have
been participants of the outburst of artificial intelligence: the development of computer systems
and algorithms capable of perceiving, reasoning, learning, and problem-solving, emulating certain
aspects of human cognitive abilities. We experienced how the AlphaGo (Silver et al., 2016) defeated
the world champion of the ancient game Go using deep learning and reinforcement learning, and
how this inspired new works like AlphaZero, mastering board games (Silver et al., 2018) or
AlphaTensor (Fawzi et al., 2022), an algorithm to discover faster matrix multiplications. In the
context of protein folding, AlphaFold (Jumper et al., 2021) represents significant advancement in
the field of protein folding as it introduces a groundbreaking approach to predict protein structures.
The impact of accurate protein structure prediction extends across diverse domains such as drug
discovery, enzyme engineering, and comprehending disease mechanisms. Other works like DALL-E,
a deep learning model introduced by Ramesh et al. (2021), has pushed the boundaries of generative
AI by enabling the creation of highly realistic and imaginative images from textual descriptions.
Or the GPT (Stiennon et al., 2020) model has revolutionized natural language processing by
demonstrating impressive capabilities in generating coherent and contextually relevant text based
on given prompts. But these works just represent the tip of the iceberg, the accomplished promises
of big data and artificial intelligence. But, when embarking on a problem involving big data
and algorithm development, the landscape becomes hazier.

1.1.2 Pitfalls of Big Data

If the renowned playwright William Shakespeare was alive today, he would reiterate the timeless
sentiment he once wrote: All that glitters is not gold. That is, not everything that looks precious or
true turns out to be completely so. In our concerning problem, we will talk about two main pitfalls
that appear in any problem involving data: data quality, and algorithms as independent agents.
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Data quality is overlooked

The very first thing we need to worry about, even before algorithm design, is data itself. Because
of the ease of capturing data on today’s’ days, we can have data indiscriminately. But having data
is not the same as having good-quality data. Actually, the assessment of data quality can become
of the biggest problems in practical big-data scenarios. Quoting Lawrence (2017): ’water, water
everywhere and not a drop to drink’, we have ’data, data everywhere and not a set to process’. Just
as extracting drinkable water from the real ocean requires the expensive process of desalination,
extracting usable data from the data-ocean requires a significant amount of processing. This data
processing and data preparation prior to the actual data modeling can be very time-consuming and
tedious. Some authors comment that the task of data preparation constitutes approximately 80% of
the work of data scientists4. This highlights the necessity for effective frameworks that can alleviate
the burden on data scientists and big data practitioners by automating data cleaning and enhancing
data understanding. In the subsequent sections of the thesis, we will present our proposed solution,
which not only addresses the data cleaning aspect but also incorporates comprehensive data
understanding capabilities using probabilistic methods based on deep generative models.

AI is not an independent agent

The next pitfall comes with the common belief that artificial intelligence behaves completely
as an independent agent, to the extent that some argue these agents could potentially replace
humans entirely. Obviously, this is far from being true. The question of whether statistical
methods or the human brain excel in predicting certain outcomes has long been a topic of
discussion in research. The rapid advancements in artificial intelligence, as demonstrated by the
aforementioned achievements, have triggered a lively debate. However, the most probable scenario
for the future is not one where humans and machines operate independently, but rather one
of mutual complementarity, where they collaborate, learn from each other. This perspective is
encapsulated in the concept of Hybrid Intelligence (HI) (Dellermann et al., 2019), which seeks
to combine human intelligence with AI to achieve performance beyond what either humans
or machines could achieve alone (Kamar, 2016b). In this thesis, we embrace the paradigm of
human-machine collaboration and present a solution that revolves around determining when the
machine should make predictions versus when a human should intervene. In particular, our focus
is on efficiently discerning when we should defer to individuals and to whom individuals within
a pool of humans who exhibit the highest levels of confidence and expertise.

1.2 Research Challenges

This section will discuss the research challenges that provided the motivation for this thesis and
highlight the contributions we made in addressing these issues.

4https://whatsthebigdata.com/2016/05/01/data-scientists-spend-most-of-their-time-cleaning-data/

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
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1.2.1 Challenge I: Dealing with Irregular Observations

Designing algorithms to process data and provide meaningful results can be nerve-wracking. In
the context of machine learning, we can define a universal formula (Lawrence, 2017)

data + model→ prediction (1.1)

By looking at the formula, we can deduce that having a good prediction depends on having
both a good model and good data. The common trend in the machine learning community
is to exert a great effort on the design of the best model. This emphasis is particularly
noticeable in academic settings, where research ideas are often evaluated using benchmark datasets
that have minimal artifacts or noise. But the real-life case is completely different. Real-life
datasets frequently contain artifacts due to a range of factors. These factors include noise and
errors originated from data collection through sensors or measurement devices, the presence
of missing data due to sensor failures or incomplete processes, data corruption during storage
or transmission, sampling bias that leads to data collection that is not fully representative of
the entire population, human errors during data entry or interpretation, and the challenges
associated with integrating datasets of different types.

Data Wrangling

Before applying machine learning algorithms, it is crucial to establish robust big data wrangling
techniques, since this particular aspect poses a significant bottleneck in the development of robust
algorithms. Data wrangling encompasses the extraction, integration, and cleaning processes
necessary for data to be analyzed. Classical data wrangling problems include addressing missing
data, detecting outliers, identifying data errors, and cleaning dirty data (Kandel et al., 2011).
It is often estimated that data scientists spend more than half of their time on data wrangling,
emphasizing the urgent need for systematic and cost-effective techniques to support wrangling
activities (Furche et al., 2016). This demand has led to a recent surge of interest from both industry
and academia in these problems, resulting in the exploration of new abstractions, interfaces, scalable
approaches, and statistical techniques (Abiteboul et al., 2017; Chu et al., 2016).

Irregular observations

The majority of machine learning research primarily concentrates on handling regular observations,
neglecting a crucial technological obstacle encountered in practical big-data scenarios: the
aggregation and curation of heterogeneous information streams. This issue involves tackling
various challenges, including temporal alignment of different information streams, resolving
discrepancies in measurements (such as inconsistencies between step counts from wearables and
smartphones or conflicting activity reports), managing missing or corrupted data, and effectively
processing the information streams to construct features that accurately capture human behavior
properties. It is imperative to address these challenges to adequately capture the complexity
of real-world data in big-data applications

In this thesis, we aim to address the often overlooked challenge of handling irregularities
within the context of medical data. We will focus on three specific aspects. Firstly, we will tackle
the issue of missing data by developing a framework that enables us to impute (or marginalize
in more statistical terms) missing points using relevant information from other data sources or
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past observations. Secondly, we will move beyond the assumption of homogeneous observations,
where only one statistical data type (such as Gaussian) is considered, and instead, work with
heterogeneous observations. This means that different data sources can be represented by
various statistical likelihoods, such as Gaussian, Bernoulli, categorical, etc. Lastly, considering the
temporal enrichment of today’s collected data and our focus on medical data, we will develop a
novel algorithm capable of capturing and propagating correlations among different data streams
over time. These three properties of the data involve determining how to temporally align the
different information streams, dealing with contradictory measurements (e.g., inconsistencies
between step counts from wearables and smartphones), handling missing or corrupted data, and
processing the information streams together to construct features that adequately capture the
correlation between different sources. All this process of data wrangling and data understanding
will be done in a fully unsupervised way using deep probabilistic methods.

Contribution Our first contribution in this thesis involves the development of a novel method
based on Deep Generative Models (DGM) using Variational Autoencoders (VAE). This method
enables the aggregation of multiple heterogeneous data streams in a modular manner, taking
into consideration the presence of potential missing data. The research was conducted within
the scope of the Deep-DARWIN 5 project, which focuses on constructing human behavior models
using indirect data measurements obtained from personalized technology. The data is aggregated
based on simpler conceptual levels such as mobility data, social network interactions, physical
activity, and emotions. To demonstrate the feasibility of our approach, we present proof-of-
concept results obtained from a real database generated through continuous passive monitoring
of psychiatric patients. This research collaboration with the Hospital Universitario Fundacion
Jimenez Diaz involved the utilization of mobile phones, wearables and data aggregated from
social networks and fitness platforms.

1.2.2 Challenge II: When and Who Should We Trust?

The previous challenge was focused on the search of a novel method to help the human, alleviating
the data processing burden, and simultaneously facilitating a comprehensive understanding of
the data. In this section we go one step further. Now we will not visualize our AI agent as a
practical tool that can only help us, but we want to interact with this agent. Our goal aligns with
the search of a collective intelligence that tries to answer the following question: How can people
and computers be connected so that collectively they act more intelligently than any individuals,
groups, or computers have ever done before? (Leimeister, 2010).

Referring back to Equation 1.1, we can now add the human into the equation

data + model Handshake human → safer prediction (1.2)

The purpose of including the human is not just to obtain better performance, but also to obtain
more reliable and trust-worthy predictions we can rely on. The notion that AI systems can
solely account for automated decision-making, especially in critical domains such as healthcare,
is far from reality. To motivate why only machine learning models cannot decide independently,
we take the study conducted by (Beede et al., 2020) as an example. In this work, it was
observed that the model declined to make predictions for 20% of the samples due to blurry

5http://deep-darwin.webs.tsc.uc3m.es/
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images. By eliminating ophthalmologists from the system, important safety checks against model
failure (such as distribution shift) and input issues are eliminated as well. Similarly, in another
study for antidepressant prescription, the performance degrade notably when clinicians received
recommendations from machine learning models. Similarly, in another study for antidepressant
prescription, the performance degrade notably when clinicians received recommendations from
ml models (Jacobs et al., 2021).

These works effectively unveil the important flaw of not integrating the human into algorithm
design. In the latter part of this thesis, our emphasis shifts towards the development of human-
centric approaches within the framework of hybrid intelligence Kamar (2016a); Dellermann et al.
(2019); Akata et al. (2020). Hybrid intelligence is characterized by its capability to attain complex
objectives through the combination of human and artificial intelligence, thereby achieving superior
results compared to what each entity could achieve independently.

Who should bear responsibility?

In the pursuit of finding the optimal balance between machines and humans, an important
question arises: who should shoulder the responsibility? Now, our focus turns to a specific
scenario where the algorithm has the ability to make predictions independently or alternatively
defer the responsibility to a human expert. One intuitive approach to address this problem is to
consult the expert whenever the model lacks confidence (Chow, 1957). However, this simplistic
approach overlooks the actual level of human confidence. For instance, a study conducted by
Tschandl et al. (2020) examined the use of AI feedback for clinicians in diagnosing various skin
cancer lesions. The findings demonstrated that experienced clinicians derived less benefit from
AI assistance, while inexperienced raters significantly benefited from regular AI guidance but
were adversely affected by an inaccurate AI model. In order to faithfully rely on the model, we
need the model to understand what the human knows, when the human is confident and the
model can predict with a higher confidence than the human.

Learning to defer

All the above-mentioned concerns are tackled in a recent theory called Learning to defer (L2D)
(Madras et al., 2018). The concept of learning to defer involves the AI system acquiring the ability
to identify specific instances or circumstances where it lacks confidence or faces uncertainty in
generating accurate predictions. Rather than offering potentially flawed or unreliable predictions,
the system delegates the responsibility of decision-making to a human expert. This approach
ensures that the AI system can seek input or guidance from humans when needed, leading
to more precise and dependable outcomes. For instance, in the context of semi-autonomous
driving, the AI system relies on sensing the state of the human to effectively distribute tasks
between itself and the human driver.
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Who should we trust?

The issue of trust in AI poses a significant obstacle to its widespread adoption. Establishing
a delicate balance between trust and distrust is crucial to leverage the benefits of AI without
succumbing to over reliance (Lee and See, 2004). Consequently, this thesis also focuses on ensuring
the validity of our model’s confidence to promote transparency and trust. That is, we want
our L2D models to be confidence-calibrated. However, we go beyond the common assumption
of working with only one expert in Learning to Defer (L2D) scenarios and extend it to involve
multiple experts. Therefore, we aim to determine not only when to seek human expertise but
also which specific human expert to consult. This notion of ensembling experts based on their
confidence levels is essential for optimizing the human-machine combination, as machine learning
models can be influenced by less-experienced clinicians, which we aim to avoid.

Contribution The second contribution of this thesis is the extension of the two most recent
works of L2D, namely the works by Mozannar and Sontag (2020) and Verma and Nalisnick
(2022) to the multiple expert setting. Our study (Verma et al., 2023) investigates the statistical
properties of learning to defer (L2D) to multiple experts. We address the challenges of consistent
surrogate loss, confidence calibration, and expert ensembling. We derive two surrogate losses
based on Mozannar and Sontag (2020) and Verma and Nalisnick (2022) works, and analyze
their ability to estimate expert prediction probabilities. The ensembling of experts is performed
using a conformal inference technique that is applied on the deferred experts, to retrieve those
experts that are expected to be correct.

1.3 Thesis Organization

The structure of this doctoral manuscript comprises two primary parts, each dedicated to addressing
one of the main challenges mentioned earlier. The first part focuses on medical data wrangling
through the utilization of sequential variational autoencoders, while the second part dives into the
topic of learning to defer to multiple experts. Chapters 2 and 4 primarily serve as introductions
and do not present any novel contributions. They set the stage for our main contributions,
which are presented in Chapters 3 and 5.

1.3.1 Part I: Medical Data Wrangling using VAEs
Chapter 2: Handling irregular observations using VAEs

This chapter serves as an introduction to our used learning framework, variational autoencoders
(VAE), which we will use for medical data wrangling. We present a comprehensive overview
of the general VAE theory, covering important notation and fundamental concepts. Moreover,
we highlight the three main challenges we aim to tackle in our research: handling missing data,
dealing with heterogeneous data, and addressing temporal data. For each of these challenges, we
review relevant works from the literature that have attempted to tackle them. This chapter
serves as a motivating and introductory section, setting the stage for the proposed model
described in the following chapter.
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Chapter 3: Medical Data Wrangling With Sequential Variational Autoencoders

In this chapter, we present our novel contribution that addresses the challenge of medical data
wrangling using sequential variational autoencoders. We propose an innovative approach to
model medical data records that consist of heterogeneous data types and exhibit bursty missing
data using sequential variational autoencoders (VAEs). Building upon the work of Nazabal
et al. (2020), we introduce a new methodology called Shi-VAE, which extends the capabilities
of VAEs to effectively handle sequential data streams with missing observations. To assess the
effectiveness of our proposed model, we compare it against state-of-the-art solutions using both an
intensive care unit database (ICU) and a dataset of passive human monitoring. Furthermore, we
demonstrate that conventional error metrics like RMSE are inadequate for evaluating temporal
models. Hence, we incorporate the cross-correlation between the ground truth and the imputed
signal into our analysis. Our experimental results reveal that Shi-VAE outperforms other methods
in terms of both metrics, showcasing its superior performance.

1.3.2 Part II: Learning to Defer to Multiple Experts
Chapter 4: Learning to Defer

Moving on from the first part, our focus now shifts to the section devoted to human-machine
collaboration. This section serves as an introduction to the theory of learning to defer, which will
be the central theme of the final contribution in this thesis. Initially, we present the notation
and theoretical background of a standard classification problem, encompassing both multiclass
and binary scenarios. The purpose is to emphasize that in certain situations, relying solely on
a machine learning classifier may not be sufficient. This realization leads us to introduce the
context and background for learning to defer, placing it within the framework of rejection learning
theory (Chow, 1957), and providing an overview of recent related works. Next, we introduce
the two consistent surrogate losses proposed in the existing learning to defer literature. These
losses will be referred as the softmax loss by Mozannar and Sontag (2020) and the OvA loss by
Verma and Nalisnick (2022). To illustrate the behavior of these losses, we include an example
using a Mixture of Gaussians dataset. Additionally, we present the degenerate behavior discovered
by Verma and Nalisnick (2022) for the softmax surrogate loss. This finding serves as further
motivation for our contribution, as described in Chapter 5.

Chapter 5: Learning to Defer to Multiple Experts

In this thesis, we present the final chapter, which focuses on analyzing the statistical properties of
learning to defer (L2D) to multiple experts. Our main contributions involve addressing challenges
related to consistent surrogate loss derivation, confidence calibration, and principled expert
ensembling. We derive two consistent surrogate losses for the multi-expert setting, one using
softmax parameterization and the other employing a one-vs-all (OvA) parameterization, similar
to the single expert losses proposed by Mozannar and Sontag (2020) and Verma and Nalisnick
(2022) respectively. Through our analysis, we find that the softmax-based loss leads to the
propagation of mis-calibration among the estimates, while the OvA-based loss does not, although
practical trade-offs exist. Lastly, we introduce a conformal inference technique to selectively
query a subset of experts when the system defers, and we empirically validate our approach using
tasks such as galaxy, skin lesion, and hate speech classification.
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Chapter 6: Conclusions and Future Work

The chapter marks the culmination of the doctoral manuscript. We summarize the novel
contributions presented in this thesis: 1) the application of sequential variational autoencoders for
medical data wrangling, and 2) the extension of learning to defer to multiple experts, accounting
for confidence calibration and conformal ensembles. Additionally, we offer future guidelines for
further research ideas in the context of VAEs handling irregular observations and learning to defer.
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Medical Data Wrangling
using VAEs
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Nowadays we have access to a massive amount of data from which we can extract very valuable
information. In particular, in this part of the thesis we focus on medical data. Our major

goal now is to answer the following question: what can we do to understand medical data?
First, we need to learn from this data. That is, we want to design a model that is able to

capture the information and all those hidden correlations that might be present within the data. In
more mathematical words, we want to find a set of parameters θ that define a probabilistic model
pθ(x) that is able to approximate the true distribution of the data p∗(x), i.e. pθ(x) ≈ p∗(x).

Nevertheless, the process of learning becomes significantly difficult when dealing with irregular
observations. In practical scenarios, particularly in healthcare, it is common to encounter missing
values within datasets. These missing values may arise due to various factors such as sensor failures
during laboratory measurements. Additionally, we often come across heterogeneous observations
where the data instance x consists of a combination of variables xd, d = 1, . . . , D belonging to
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Figure 2.1: Latent variable model diagram: Diagram showing a latent variable model and the
corresponding generative process. z lies in a 2D manifold embedded in a high dimensional space.
Figure extracted from this blog1by Jakub M. Tomczak

different statistical types. This combination may include a mixture of real-valued, binary, and
categorical data. Moreover, medical data typically exhibits a temporal aspect due to the inherent
nature of the data, such as electrocardiogram (EKG) readings, or because it is associated with
a patient’s medical history. In order to handle all these irregularities inherent to the data, we
will use Variational Autoencoders (VAE), which are a class of Deep Generative Models (DGM).
We hypothesize that medical data exhibits strong hidden correlations that can be captured in a
common lower dimensional space which can be then used to generate data in a discriminative way.

The outline for this chapter is the following: in Section 2.1 we present our learning framework,
the VAEs: we briefly present latent variable models (LVM), which sets the basis for our lower
dimensional space z, briefly continue with the theory of Variational Inference (VI) and finally
present VAEs. We continue on how we can extend VAEs to 1) handle missing data (Section 2.2),
2) handle heterogeneous data (Section 2.3) and 3) handle temporal data (Section 2.4).

Comments on contributions This chapter does not include any novel contribution. It was
written drawing inspiration from the following amazing works: VAE Section 2.1 from David Blei’s
introduction to VI (Blei et al., 2017), Kingma’s and Welling’s introduction to VAEs (Kingma et al.,
2019) and Jakub Tomczak’s VAEs blog. Missing data Section 2.2 from Chao Ma’s thesis (Ma,
2022). Temporal data Section 2.4 from Lipton et al. (2015)’s review of RNN for sequence learning.

2.1 Our learning framework: Variational Autoencoders
2.1.1 Latent Variable Models

A latent variable model (LVM) is a statistical framework that incorporates hidden or unobserved
variables, referred to as latent variables, to capture complex relationships and underlying structures
in the data. These latent variables are not directly observed but are inferred from the available
data. We assume that there is some unobservable information that influences the observed
data. The model assumes that the observed data is generated as a result of the interaction
between the latent variables and other known variables or parameters. For a given data point
x ∈ XD e.g. an image, a sentence, etc. the latent variable are often denoted as z ∈ ZK , where
it is often assumed that z is a low-dimensional representation of x, i.e. K << D. ZK can

1https://jmtomczak.github.io/blog/4/4_VAE.html

https://jmtomczak.github.io/blog/4/4_VAE.html
https://jmtomczak.github.io/blog/4/4_VAE.html
https://jmtomczak.github.io/blog/4/4_VAE.html
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be referred as a low-dimensional manifold (see Figure 2.1 for a better understanding). The
generative process that defines x is therefore

pθ(x) =
∫
pθ(x, z) dz, (2.1)

which is usually called the marginal likelihood or the model evidence, when taken as a function of
θ. The relationship between x and z allows the distribution pθ(x) to be quite flexible.

The next natural questions is how we can calculate the integral in Equation 2.1. This integral
is generally very difficult to solve. First, we present an example where this integral is tractable and
that will be very much related to VAEs. Second, we present variational inference, which will be used
as the learning framework to handle the above-mentioned equation when the integral is intractable

Probabilistic PCA (pPCA) The probabilistic Principal Component Analysis (pPCA) (Tipping
and Bishop, 1999) model is defined as follows. First, let us consider now that x ∈ RD and
z ∈ RK are continuous variables. We choose a standard Gaussian prior pθ(z) = N (0, I), and
the dependency between x and z be defined as

x = Wz + b + ε, (2.2)

where ε ∼ N (ε|0, σ2I). Then we know that

pθ(x | z) = N
(
x|Wz + µ, σ2I

)
. (2.3)

Since the prior pθ(z) and the likelihood pθ(x|z) are Gaussian, we can exploit the proper-
ties of the linear combination of two Gaussians (Bishop, 2006) and obtain a closed-form so-
lution for the evidence as:

pθ(x) =
∫
pθ(x | z)pθ(z)dz

=
∫
N (x |Wz + b, σI)N (z | 0, I)dz

= N
(
x | b,WW> + σ2I

)
.

(2.4)

And the same applies for the posterior

pθ(z | x) = N
(
M−1W>(x− µ), σ−2M

)
, (2.5)

where M = W>W +σ2I. Once we found the optimal parameters by maximizing the log-likelihood
we can calculate the distributions over the latent variables z. But this closed-form expression
comes at the cost of using linear combinations, that is, by using W. Next question is: is it still

tractable if we apply non-linear combinations; or if other distributions different from the Gaussian
are used? The answer is no. The integral would not be tractable any more, and therefore we
need a new learning framework that handles this problem.
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Deep Latent Variables For probabilistic Principal Component Analysis (pPCA), we introduced
a latent variable model that relied on a fully Gaussian assumption, which facilitated the tractability
of solving complex integrals. However, it is also possible to parameterize the latent variables using
neural networks. In such cases, we refer to the model as a deep latent variable model (DLVM).
The advantage of using neural networks is that we can approximate very complex distributions
for pθ(x). The common assumption is to factorize the joint distribution as follows

pθ(x, z) = pθ(z)pθ(x|z) (2.6)

The computational challenge of evaluating the probability distribution pθ(x) (Equation 2.1)
is connected to the computational challenge of estimating the posterior distribution pθ(z|x).
It is worth noting that the joint distribution pθ(x, z) can be computed efficiently, and the
densities are related by Bayes’ theorem:

pθ(z|x) = pθ(x, z)
pθ(x) . (2.7)

When the marginal likelihood pθ(x) is computationally tractable, it implies that the posterior
distribution pθ(z|x) is also tractable, and conversely, a tractable posterior leads to a tractable
marginal likelihood. At first, the reader might wonder whether the integral for pθ(x) can be
solved by numerical approximations. Indeed, the simplest scenario would be approximating
the integral by Monte Carlo (MC) samples

pθ(x) =
∫
pθ(x|z)pθ(z)dz = Ez∼pθ(z)[pθ(x|z)] ≈ 1

J

∑
j

pθ(x|zj) (2.8)

where we take J samples from the prior. Intuitively this approach seems simple. But if the
dimensionality of z grows, then we fall into the curse of dimensionality and we would need
an exponentially increasing number of samples to cover the whole space. On the contrary, few
samples would result in suboptimal solutions. Next we present how the notion of variational
inference is a right tool to handle Equation 2.1.

2.1.2 Variational Inference and ELBO

Learning: Variational Inference Approximating the posterior distribution pθ(z|x) and the
marginal likelihood pθ(x) has been proven to be a difficult task for DLVMs. However, aprroximate
inference techniques can be employed to circumvent the problem. In the literature we find different
options (maximum a posteriori (MAP), Varitional EM (Neal and Hinton, 1998)), however we will
use a different learning technique, the so called variational inference (VI) (Jordan et al., 1999).

In variational inference the goal is turning the intractable posterior inference into a tractable
problem. Todo so, we introduce a variational family with variational parameters φ. These
variational parameters φ define a parametric inference model denoted as qφ(z|x), the so called
encoder or inference model. As depicted in Figure 2.2a, we want to optimize the variational
parameters to approximate the true posterior, i.e.

qφ(z|x) ≈ pθ(z|x). (2.9)

The variational distribution qφ(z|x) is defined explicitly — for example, we can assume a spherical
Gaussian distribution with parameters φ = {µ, σ2}.
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(a) Variational inference. Figure courtesy of David
Blei from these VI slides2.

(b) ELBO gap. Figure from Jakub M. Tomczak
VAEs’ blog 3.

Figure 2.2: Variational inference and ELBO gap: In Figure (a) we depict the variational inference
procedure: starting from some initial variational parameters vinit, we try to approximate from the
variational family q(z; v) to the true posterior p(z|x). The distance between the true posterior and our
best approximation (v∗) is the KL divergence. In Figure (b) we depict the gap between the ELBO and
the true log-likelihood resulting from choosing a bad approximation qφ(z|x) of pθ(z|x). A very simple
variational posterior would result in a very high value for DKL [qφ(z|x)||pθ(z)] in Equation 2.12 — the
predicted parameter θ̂ is far from the true parameter θ∗.

ELBO In our attempt to calculate the marginal likelihood, we can take the logarithm of the
marginal likelihood and we get the following expression

log pθ(x) = log
∫
pθ(x | z)pθ(z)dz

= log
∫
qφ(z)
qφ(z)pθ(x | z)pθ(z)dz

= logEz∼qφ(z)

[
pθ(x | z)pθ(z)

qφ(z)

]
≥ Ez∼qφ(z) log

[
pθ(x | z)pθ(z)

qφ(z)

]
= Ez∼qφ(z) [log pθ(x | z) + log pθ(z)− log qφ(z)]

= Ez∼qφ(z)[log pθ(x | z)]− Ez∼qφ(z) [log qφ(z)− log pθ(z)]

ELBO := Ez∼qφ(z)[log pθ(x | z)]− Ez∼qφ(z) [log qφ(z)− log pθ(z)] ,

(2.10)

where we applied Jensen’s inequality in the fourth line. This final expression is the so called
Evidence Lower Bound (ELBO). As the name suggests, this new equation defines a lower found
for the true log likelihood of the model. It can be checked in Figure 2.2b.

Amortized Inference In standard variational inference we would have a variational distribution
for each data sample. However, we could instead allow the inference model qφ(z|x) to use a set
of parameters to model the relationship between the input x and the latent variables z, that
is, qφ(z|x) instead of qφ(z). This is called amortized inference (Gershman and Goodman, 2014)
(other works such as Kim et al. (2018) have investigated semi-amortized inference techniques;
however, we will always stick to fully amortized inference). With amortized inference we train
one single network and we can obtain the parameters of the variational distribution rather fast.
With this new scheme, the ELBO can be expressed as

log pθ(x) ≥ Ez∼qφ(z|x)[log pθ(x | z)]− Ez∼qφ(z|x) [log qφ(z|x)− log pθ(z)]

= Ez∼qφ(z|x)[log pθ(x | z)]−DKL (qφ(z|x)||pθ(z))
(2.11)

2http://www.cs.columbia.edu/~blei/talks/Blei_VI_tutorial.pdf
3https://jmtomczak.github.io/blog/4/4_VAE.html

http://www.cs.columbia.edu/~blei/talks/Blei_VI_tutorial.pdf
https://jmtomczak.github.io/blog/4/4_VAE.html
http://www.cs.columbia.edu/~blei/talks/Blei_VI_tutorial.pdf
https://jmtomczak.github.io/blog/4/4_VAE.html
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Notice that we just substituted qφ(z|x) by qφ(z) in Equation 2.10. The first term for this
ELBO qφ(z|x)[log pθ(x | z)] is the expected conditional log-likelihood, which can be seen as the
(negative) reconstruction error, since the input x is encoded to z and then decoded back. The
second part of the ELBO, DKL (qφ(z|x)||pθ(z)) is the KL divergence between the variational
posterior q(z|x), and the prior p(z). This KL term is often seen as a regularizer that forces
the variational distribution towards the prior.

Important of having a good variational posterior The ELBO can be derived in different
ways (Hoffman and Johnson, 2016; Alemi et al., 2018). In the following we derive the ELBO as fol-
lows

log pθ(x) = Ez∼qφ(z|x)[log pθ(x)]

= Ez∼qφ(z|x)

[
log pθ(z | x)pθ(x)

pθ(z | x)

]
= Ez∼qφ(z|x)

[
log pθ(x | z)pθ(z)

pθ(z | x)

]
= Ez∼qφ(z|x)

[
log pθ(x | z)pθ(z)

pθ(z | x)
qφ(z | x)
qφ(z | x)

]
= Ez∼qφ(z|x)

[
log pθ(x | z) pθ(z)

qφ(z | x)
qφ(z | x)
pθ(z | x)

]
= Ez∼qφ(z|x)

[
log pθ(x | z)− log qφ(z | x)

pθ(z) + log qφ(z | x)
pθ(z | x)

]
= Ez∼qφ(z|x)[log pθ(x | z)]−DKL [qφ(z | x)‖pθ(z)]︸ ︷︷ ︸

ELBO

+DKL [qφ(z | x)‖pθ(z | x)] .

(2.12)

In this reformulation we get the same as Equation 2.11, with an additional term at the end.
This term is the Kullback-Leibler divergence between the variational posterior and true posterior.
However, we don’t have access to the real posterior. As shown Figure 2.2b, we will obtain a
gap between the log-likelihood and the ELBO, and this gap will be tight or loose depending
on the variational posterior, and thererfore on the capacity of the encoder architecture of our
VAE, as noted by Cremer et al. (2018) and Mattei and Frellsen (2018).

2.1.3 Variational Autoencoders

So far the reader might notice that we have followed an encoder-decoder scheme, where we first
encode our samples x into a latent space z and then decode back to x, or the approximation
x̂ (ideally we would expect x, however there is always some loss of information). However, our
encoder-decoder mechanism is not derterministic, we allow the encoder and the decoder to be
stochastic, that is, to explicit set them to follow a certain distribution. The idea of using an
autoencoder with variational inference as learning framework is called Variational Autoencoder
(VAE) (Kingma and Welling, 2014; Rezende et al., 2014).

Variational Autoencoders (VAE) are composed of a stochastic encoder or inference model, and
a stochastic decoder or generative model. These two modules are interconnected yet parametrized
independently. The encoder defines the variational posterior qφ(z|x) that approximates the true
posterior pθ(z|x) and the stochastic decoder defines the conditional distribution of the data given
the latent variable pθ(x|z). Figure 2.3 depicts the overall framework. The parameters φ and θ

are often parametrized using neural networks, thereby defining a DLVM. The last choice when
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Figure 2.3: VAE framework: In this figure we depict the VAE framework with a Gaussian latent variable
z. The input x is encoded to z through some neural networks with parameters φ and then decoded back
with a different neural network with parameter θ. z is commonly a low-dimensional representation of x.
Also notice that z is calculating using the reparametrization trick z = µ + σ � ε. Figure extracted from
(Weng, 2018).

designing VAEs is the prior p(z), which we will briefly comment later. VAEs are optimized using
the ELBO as objective function. For the sake of clarity, we rewrite the equation again

ELBO : log pθ(x) ≥ Ez∼qφ(z|x)[log pθ(x | z)]−DKL (qφ(z|x)||pθ(z)) (2.13)

Decoder (Generative model) parametrization The choice of the decoder is rather flexible
and will be fully dependent on the problem. We could choose a categorical distribution pθ(x|z) =
Categorical(x|θ(z)) where the probabilities for each category are the output of a neural network
θ(z) = softmax(ψ(z)), where ψ is the neural network, e.g. a multi-layer perceptron (MLP),
convolutional neural network (CNN), etc. Another flexible choice is the Gaussian distribution
pθ(x|z) = N (x|µθ(z),diag[σ2

θ(z)]), where µθ(z) and σ2
θ(z) are the outputs of a neural network,

and diag(·) is the diagonal operator.

Encoder (Recognition model) parametrization The variational distribution for the encoder
can also be parametrized by neural networks. A common choice is defining a continuous latent
space with a Gaussian distribution

qφ(z|x) = N (z|µφ(x),diag[σ2
φ(x)]) (2.14)

where again µφ(x) and σ2
φ(x) are the outputs of the neural network. Here we assumed a

diagonal covariance matrix, but we could also choose a full covariance matrix (details can
be found in Kingma and Welling (2014)).

Choosing the distribution qθ(z|x) is fully linked to choosing the prior p(z). The first VAE
Kingma and Welling (2014) assumed an isotropic Gaussian prior p(z) = N (z|0, I). It is simple and
no extra parameters must be learned. However, we could also use more sophisticated prior such
as the Mixture of Gaussians Prior pλ(z) =

∑K
k=1 wkN

(
z | µk, σ

2
k

)
with new trainable parameters

λ = {wk, µk, σ
2
k} for all mixture components k, or the VampPrior (Tomczak and Welling, 2018),

which we refer the reader to the original paper for full details. The right choice of priors in VAEs
is a whole field of research on its own (Chen et al., 2017; Gatopoulos and Tomczak, 2021).
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Reparametrization trick By looking at the ELBO in Equation 2.11 we see that we need to
calculate an integral with respect to the posterior qφ(z|x). However, we can instead take Monte
Carlo samples. However, if you sample z from qφ(z|x), calculate the ELBO and take gradients
with respect to the parameters φ defined bt the neural network, we observe that the variance of
the gradient is very large. Indeed, this was pointed out by Rezende et al. (2014) and Kingma
and Welling (2014). Hopefully, they came out with a solution which is probably one of the most
significant contributions of the VAE framework. This solution, called reparametrization trick
is based on reparametrizing the distribution qφ(z|x) using transformations of an independent
random variable with a simple distribution (Devroye, 1996). That is, instead of expressing
z ∼ qφ(z | x), we express z as z = g(ε,φ,x), where g is a differentiable (invertible) transformation,
e.g. sum, log, and the independent variable ε is independent of the input x and the variational
parameters φ. For example, we can choose

z = µ+ σ � ε (2.15)

where ε ∼ N (ε|0, 1). With this trick we reduce the variance of the gradients because now the
stochasticity is given by ε and therefore we can alleviate the computation of the gradients with
respect to the parameters of the neural network, which are deterministic. For other variational
distributions qφ(z | x) assuming different distributions from the Gaussian we would need to
follow a similar procedure — for the categorical distribution, a common practice is to use the
Gumbel Softmax reparametrization (Jang et al., 2017). Additionally, if the categorical variable
has a high dimensionality, alternative techniques like the REINFORCE algorithm (Williams,
1992) can be employed to approximate the gradient.

Common problems in VAEs VAEs are very powerful models able to outperform other
competitive state-of-the-art models in today’s machine learning literature. However, they also
present some drawbacks. Here we briefly comment a few of these that we personally experienced
when working with VAEs, or other authors pointed out in similar works. The most common
problem is the so called posterior collapse (Bowman et al., 2015). As the name suggest, this
problem occurs when the variational posterior collapses to the prior, i.e. qφ(z|x) = p(z). If the
decoder is very powerful, it will discard the information from z, treating it as noise.

Another problem arises when the aggregated posterior (the average of the variational posteriors
over all data points qφ(z) = 1

N

∑
n qφ (z | xn)) and the prior p(z). There might be regions in the

latent space where the prior assigns high probability and the posterior assigns low probability.
Or the opposite. This problem is called the hole problem (Rezende and Viola, 2018).

Lastly, we present the out-of-distribution (OOD) problem that appears in deep generative
models in general. In Nalisnick et al. (2019), the authors test the following: they train a deep
generative model on a dataset, MNIST for example, and then test on samples from other dataset,
FashionMNIST for instance. Intuitively, we would expect that the model assigns more probability to
MNIST samples and low probability to FashionMNIST samples. Paradoxically, this is not the case.
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2.2 Handling Missing Data

The common trend in the machine learning literature is assuming we have fully observed data.
But in real-world scenarios, this is rarely the case (Schafer and Graham, 2002; Rubin, 1976).
Missing data might appear due to human errors, failure in measurement sensors, non-responses,
etc. In scenarios where there are missing entries in our dataset, it is crucial to acknowledge our
uncertainty about these missing values. Neglecting this uncertainty can potentially impact the
performance of machine learning models and subsequent tasks reliant on these models. Hence, it
becomes essential to conduct learning and inference while considering missing data and accurately
quantify the uncertainties stemming from these missing values.

Notation Assume that for each data sample x ∈ Rd it can be further decomposed into the
observed values xo and the missing values xm. We can denote as O the index set of observed values
andM the index set of missing values, such that Ot∩Mt = ∅. Furthermore, we can define a binary
mask vector m which indicates whether a value in x is observed md = 1 or missing md = 0. With
this notation, we can define the missing mechanism with the conditional distribution p(m|x), where
the dependency between m and x defines the following missing data assumption (Rubin, 1976):

• If p(m|x) = p(m), the data is missing completely at random (MCAR).

• If p(m|x) = p(m|xO), the data is missing at random (MAR). That is, the cause of missingness
m is observed.

• Otherwise, the data is missing not at random (MNAR). That is, the cause of missingness is
unobserved.

Most works often assume MCAR or MAR mechanism due to the simplicity. But in reality
the MNAR assumption is more common: the failure of a sensor along time might be periodic,
or the hospital record for a patient might have missing days because patients have doctor’s
appointment with a certain frequency. Some works have already proposed solutions to the MNAR
problem using DGM (Ma and Zhang, 2021; Collier et al., 2020). However, the ideal choice of
the missing data mechanism is not straight-forward and new assumptions have been proposed
recently. For instance, Berrevoets et al. (2023) propose a new mechanism called mixed confounded
missingness (MCM) for treatment effect estimation where some missingness determines treatment
selection and other missingness I by treatment selection. With these missing data mechanisms
in mind, we can distinguish different techniques to handle missing data: 1) imputation/deletion
techniques and 2) generative models for missing data.

2.2.1 Imputation and Deletion Techniques

The most naïve approach one could very first think is discard those samples with missing
information: we could employ listwise deletion (Allison, 2001) or pairwisedeletion (Marsh, 1998)
to name a few. Obviously, these techniques induce a clear bias, specially for MAR and MNAR
assumptions. The next intuitive procedure would be to replace the missing values with imputed
values from certain methods. The most standard techniques are replacing with zero, mean,
mode or other statistics. For regression problems we can also apply interpolation techniques, or
backward/forward imputation in a temporal signal. We can also apply non-parametric methods
based on k-nearest neighbors (Keerin et al., 2012), random forest (Stekhoven and Bühlmann,
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2012), etc. These are single-imputation techniques because they only produce one imputed value
for each data sample. Single-imputation techniques just produce a point estimate, therefore
they do not quantify missing data uncertainty unfortunately. To account for this problem we
can employ multiple imputation methods. The most used multiple-imputation method is the
MICE (White et al., 2011), a procedure that imputes missing data through an iterative series
of predictive models. In each iteration, each variable xd from the da is imputed using the
other variables in the dataset until convergence.

2.2.2 Generative Models for Missing Data

The problem of missing data has been tackled before the recent explosion of DGM: the extension
of the Expectation-Maximization (EM) algorithm with missing data (Ghahramani and Jordan,
1994) or the application of the EM with missing data in time series, (Bashir and Wei, 2018) to
name a few. However, the flexibility and scalability of DGMs make the favorable for the missing
data problem. The assumption is the following: if we have a sufficiently powerful generative
model pθ(x), then theoretically we could expect our inferred posterior over the unobserved data
pθ(xm|xo) should be accurate too. However, the usage of these methods posit two questions:

1. Learning: How can we estimate the optimal parameters θ given that we have partial
observations xo?

2. Inference: How can we quantify missing data uncertainty, that is, how can we calculate
pθ(z|xo) and how can we impute pθ(xm|xo)?

The standard VAE framework does not consider missing data: we cannot incorporate samples with
missing entries per se into the model. The most common nissing assumption in VAEs handling
missing data is MCAR because one can integrate out the missing variables from the ELBO
and calculate it only on the observed variables. This approach was followed by Nazabal et al.
(2020) and similarly by Mattei and Frellsen (2019), where they adapt the importance weighted
autoencoder (IWAE)(Burda et al., 2015) to missing data. But the missing entries must be handled
somehow: the encoder of the VAE usually requires a fixed-length input. One common step often
used in the literature is to apply a zero-filling mechanism, where we replace the missing values
with zero values (Vedantam et al., 2018; Nazabal et al., 2020; Mattei and Frellsen, 2019; Ma et al.,
2019). This is a naive procedure that works well in practice, however there is one evident problem:
there is no way to distinguish between a missing value and an observed value 0.

In order to circumvent this issue, other works have proposed different inference model
mechanisms to handle the missing entries. In Vedantam et al. (2018) propose a product of
Gaussian factorization in the inference model, requiring a separate encoder for each dimension x.
While more expressive, this approach does not scale well to higher dimensions, and one could argue
that we loose the beauty of VAEs to elegantly capture the hidden correlations of the data within
a common and shared latent space. Ma et al. (2019), within their proposed EDDI framework
(Efficient Dynamic Discovery of high-value Information), yet propose a novel VAE architecture,
called Partial VAE. The partial VAE draws inspiration from the Point Net approach for point
cloud classification, and proposes a VAE encoder which is permutation invariant and depends
only on xo, whose dimensionality may vary among different samples.



2. Handling Irregular Observations using VAEs 23

Figure 2.4: Generative and Inference models for the HI-VAE : In Figure (a) we show the generative
model for the HI-VAE, where each dimension is model independently from a shared latent space z. Figure
(b) depicts the inference model where we see that z only depends on the observed values xo, and the
missing values xm only depend on z. Figure adapted from Nazabal et al. (2020).

2.2.3 HI-VAE: Our Basis for Missing data Handling

In this thesis, our reference for will be the HI-VAE (Nazabal et al., 2020), and we will follow their
proposed strategy to handle missing data. To get a better illustration of the problem, we will briefly
present their approach. Again, we will be using a VAE. Hence, we need to define the likelihood
pθ(x|z), the variational posterior qφ(z|xo) and the prior pθ(z). As we commented above, we can
split x into and observed xo and missing xm partitions, which defines the following likelihood

pθ (x | z) =
∏
d∈O

pθ (xd | z)
∏

d∈M

pθ (xd | z) . (2.16)

The inference model from Figure 2.4 (b) also shows how the the latent space z only de-
pends on the observed values

qφ (z,xm | xo) = qφ (z | xo)
∏

d∈M

pθ (xd | z) . (2.17)

The objective we will use for training our VAE is therefore the ELBO computed only on the observed
variables. For a sample x ∈ X , the ELBO on the observed variable xo has the following form

log pθ (xo) = log
∫
pθ (xo,xm, z) dzdxm

≥ Ez∼qφ(z|xo)

[∑
d∈O

log pθ (xd | z)
]
−DKL (qφ (z | xo) ‖pθ (z)) .

(2.18)

Notice that the only difference with respect to the original ELBO from Equation 2.10 is that we
marginalize over the observed variables. In Nazabal et al. (2020) they choose an isotropic prior
for pθ(z) and a Gaussian distribution for the inference model qφ (z | xo), where the input x is
transformed into a new x̃ resulting from filling the missing entries with zeros. But the choice of
the prior and the variational posterior is flexible. In the upcoming section, we discuss the use of
a Gaussian prior mixture to address the challenge of handling heterogeneous data, as suggested
in the HI-VAE paper. This approach, which is also employed in our own contribution outlined
in Chapter 3, is a reasonable option for effectively tackling the issue.
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Figure 2.5: Likelihood imbalance problem: From the figure we can see how a Vanilla VAE with an
heterogenous decoder trained on both discrete and continuous variables fails at properly fitting the data.
Blue is the original distribution, and orange the generated distribution from the vanilla VAE. Figure
courtesy of Adrián Javaloy, from this tweet4, and associated to Javaloy et al. (2022).

2.3 Handling Heterogeneous Data

When we think about data nowadays, we do not just think about the nature of the data, that is,
whether a datum is a photo, a video, a document, an audio, or any other data format. We also think
about the container of the data, which is the database. Hence, a database will be usually composed
of different datums of different nature. For instance, imagine a hospital where, for each patient,
we can have the Electronic Health Records (EHR) with medical different measurements, diagnosis,
genomic information, electrocardiograms (EKG) or CT scans, just to name a few. But surprisingly,
most of the literature has been primarily focused on modeling under the homogeneous assumption.

Therefore, without loss of generality, we can conclude that databases will usually be heteroge-
neous. Some related works in the literature also refer to this problem as mixed-type data problem,
where we assume some data can have different statistical distributions at the same time (a tabular
database with continuous and discrete variables), or also multi-view problem (Damianou et al.,
2012, 2021; Guerrero-López et al., 2022), where we can have access to different modalities of the
data (a meeting can be defined by th audio and the video feed). While the literature of these
two concepts complement each other, we will focus on the mixed-type data.

2.3.1 The Challenge of Modeling Heterogeneous Distributions

In an heterogeneous problem, we define our data sample x = [x1, . . . , xD], where each xd will
be modeled by a certain distribution depending on the data type: continuous variables
which can be categorized into real-valued data (xd ∈ R), positive real-valued data (xd ∈ R+),
etcand discrete data, including categorical data, which comprises values in a finite unordered
set (xd ∈ {’walking’, ’sit’, ’laying’}) or other discrete distributions. Continuous and discrete
distributions are defined in different domains that require different likelihood functions (e.g.
Gaussian likelihoods for real-valued variables and Bernoulli likelihoods for binary variables). As
a consequence, the impact of each likelihood on the training objective can vary significantly,
resulting in complex optimization challenges (Kendall et al., 2018). Consequently, certain data
dimensions may be inadequately represented in favor of others, or in other words, likelihood
imbalance of certain distributions might appear, as shown in Figure 2.5

The most standard solution is obviously not worrying about this heterogeneity, and treat all
variables either continuous or discrete, as Gaussian. Or we could also scale the likelihood of each

4https://twitter.com/javaloyML/status/1536299712881500163?s=20

https://twitter.com/javaloyML/status/1536299712881500163?s=20
https://twitter.com/javaloyML/status/1536299712881500163?s=20
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data type in the ELBO to compensate for penalizations; however it is not intuitive how to do
it properly. Luckily, some works focused on dealing with heterogeneity directly. One example is
the work by Valera et al. (2020), where they proposed the general latent feature model (GLFM)
suitable for heterogeneous datasets where the attributes describing each object can be either
discrete, continuous or mixed variables. The proposed model extends the Indian Buffet Process
(IBP), a Bayesian nonparametric latent feature model, to handle heterogeneous datasets. In
Valera and Ghahramani (2017) they further propose a model that automatically detects the
type of variable in a dataset. We find other interesting works for heterogeneous distributions in
other machine learning areas. In the Gaussian process (GP) community, Moreno-Muñoz et al.
(2018) extended a multi-output GP for handling heterogeneous outputs; in the change-point
detection community Romero-Medrano and Artés-Rodríguez (2023) present a new change-point
detection methodology with adaptive factorizations mechanisms that is able to handle multi-source
observations with different statistical properties.

2.3.2 VAEs for Heterogeneous Data

While traditional latent variable models have dealt with the heterogeneous problem before
(Valera and Ghahramani, 2017; Dhir et al., 2018, 2020), deep generative models have been
shown to outperform these methods.

Provably the first work to shed light on this topic was the Heterogeneous-Incomplete VAE
(HI-VAE) (Nazabal et al., 2020) presented earlier. In this work, a part from proposing an
approach to deal with missing data in VAEs, they also propose a VAE framework able to handle
heterogeneous data. By using a factorized decoder where every dimension xd is parametrized by an
independent neural network (depicted in Figure 2.4(a)) and a common latent space which captures
the underlying correlations among variables they are able to outperform state-of-the-art methods
in missing data estimation. However, they also remark the importance of preventing certain
dimensions to dominate the training when designing models for heterogeneous data. Further
details for the decoder will be explained in next section.

This likelihood imbalance problem pointed out by Nazabal et al. (2020) in the HI-VAE was
effectively confirmed by Ma et al. (2020a). To remedy this, the same authors propose a new model,
the Variational Auto-encoder for heterogeneous mixed type data (VAEM) (Ma et al., 2020b). In
this work, the authors present a new two-stage approach: in the first stage they train marignal
VAEs for every variable independently, projecting into a Gaussian uni-dimensional space, and
in the second stage they use a dependency VAE that fuses every marginal VAE using balanced
Gaussian likelihoods. The VAEM is shown to achieve very competitive results with other models
such as the HI-VAE in similar prediction tasks, and they also test in on sequential feature selection
tasks. This model was later improved by Peis et al. (2022) with the HH-VAEM, an extension of the
VAEM with a novel hierarchical VASE-based architecture that leverages the improved approximate
inference of using Hamiltonian Monte Carlo methods. Also in a recent study by Gong et al. (2021),
a VAE-based model called the variational selective autoencoder (VSAE) was introduced as a
comprehensive framework for learning representations from partially observed heterogeneous data.
VSAE tackles the challenge of capturing latent dependencies within such data by modeling the
joint distribution of observed data, unobserved data, and an imputation mask that indicates the
missing data patterns. This approach facilitates the learning of informative representations in the
presence of missing or incomplete information, enabling a more comprehensive understanding of
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heterogeneous datasets. The VAEM, HH-VAEM and VSAE emerge as interesting works because
they tackle both the heterogeneous and the missing data problems.

These works have contributed to a significant increase of interest in this topic. Continuing with
VAEs, Javaloy et al. (2022) conjecture that VAEs designed for multimodal tasks e.g. trained for
both image and caption, often suffer from modality collapse, which happens when the VAE only
focuses on a subset of modalities. e.g. fitting the image and neglecting the caption. This problem
directly relates to the likelihood imbalance problem commented before. In Javaloy et al. (2021)
they further analysed the feature overlooking symptom that VAEs suffer from, and relate it to the
problem of negative transfer and gradient interaction using multitask learning (MTL) theory.

2.3.3 HI-VAE: Our Basis for Heterogeneous Data Handling

To cope with heterogeneous observations, we will also use the HI-VAE (Nazabal et al., 2020) as
our basis framework. Hence, we proceed to explain how the Hi-VAE addresses the heterogeneous
problem, which we will also use in our work in Chapter 3: 1) how the factorized decoder
accommodates to heterogeneous observations, 2) how a applying a normalization per variable
prevents some variables to dominate the training and 3) how a hierarchical model using a Gaussian
mixture prior can facilitate obtaining a rich posterior and hence alleviate the heterogeneous problem.

1) Factorized Decoder

From Figure 2.4 (a) we can see how the decoder can be factorized in the following way

pθ (x, z) = pθ (z)
∏

d

pθ (xd | z) (2.19)

where again z ∈ RK is the latent K-dimensional vector for x, and pθ(z) = N (z|0, IK). The
likelihood for each variable is parametrized as

pθ(xd|z) = pθ(xd|γd = hd(z)) (2.20)

where hd(·) is an independent DNN, one for each variable, that transforms the global latent
variable z into the specific domain for xd. Next step is to define the likelihood functions that
will be used to model continuous and discrete data types. For each data type then, we have
the following parametrizations :

• Real-valued data (Normal): We assume a Gaussian likelihood

p(xd|γd) = N (xd|µd(z), σ2
d(z)), (2.21)

where γd =
{
µd(z), σ2

d(z)
}

are the output of a DNN.

• Positive real-valued data (log-Normal): We assume a log-normal likelihood

p(xd|γd) = logN (xd|µd(z), σ2
d(z)), (2.22)

where γd =
{
µd(z), σ2

d(z)
}

are the output of a DNN corresponding to the mean and variance
of the variable after applying the natural logarithm.
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Figure 2.6: Overall HI-VAE generative and inference model: On Figure (a) we present the generative
model described in Equation 2.26, where we can see the factorized decoder and how the parameters γd

are generated for each statistical data type xd. On figure (b) the inference model is presented following
Equation 2.28. Figure from original paper (Nazabal et al., 2020).

• Binomial (Bernoulli): We assume a Bernoulli likelihood distribution, i.e.,

p(xd|γd) = Be(pd(z)), (2.23)

and γd = pd(z) = σ(hd(z)) is the probability parameter of the Bernoulli distribution and σ

is the sigmoid function.

• Categorical (Mult. logit): We assume a multinomial likelihood distribution where the
parameters of the likelihood are the C-dimensional output of a DNN with a log-softmax
output

log p(xd = c|γdc) = hd(zd)|c for c = [1, . . . , C]. (2.24)

where γd =
{
hd0(zd), . . . , hd(C−1)(zd)

}
. To ensure identifiability, we fix the value of hd0(z)

to zero.

where we changed notation from θ to γ for each data type.

2) Data Normalization

Another strategy to prevent the likelihood imbalance problem is to implement a normalization
technique on the input data before feeding it into the model, along with a corresponding
denormalization process to map the learned values back to the original domain. In the case
of real-valued data, a standard normalization technique is applied, which involves shifting
and scaling the variables such that they have a mean of zero and a variance of one. The
parameters for shifting and scaling, denoted as µ′ and σ′, are then utilized for denormalization.
i.e. xd ∼ N (xd|σ′µd(z) + µ′, σ′2σ2

d(z)). For positive real-valued data, a similar approach is
followed, but after applying the natural logarithm to the data. In the case of binary and
categorical data, a one-hot encoding scheme is used. This normalization strategy ensures a
more fair training between all the statistical data types.
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3) Gaussian Mixture Prior

A vanilla VAE equipped with a simple continuous latent space might fail at handling both missing
and heterogeneous observations. Namely, a standard Gaussian prior p(z) might be too restrictive
to model complex and high-dimensional data (Tomczak and Welling, 2018). Plus, the factorized
decoder of the HI-VAE loses the properties of an amortized decoder where each dimension xd

is parametrized by the same DNN. To overcome this issues, Nazabal et al. (2020) propose to
use a Gaussian mixture prior (Li et al., 2019b) of the form

pθ (s) = Categorical (s | π)

pθ (z | s) = N (z | µθ (s) , IK)
(2.25)

where s is the one-hot encoding indicating the component that generates z, and πl = 1/L, l =
1, . . . , L for L Gaussian components.

Generative Model As depicted in Figure 2.6 ,the corresponding joint probability would be

pθ (x, z, s) = pθ (s) pθ (z | s)
∏

d

pθ (xd | γd = hd (yd, s)) (2.26)

where Y = [y1, . . . ,yD] = g (z) defines a hierarchical structure that allows the generative model
to share parameters across different data types from g(·), and therefore favor the capturing of
hidden correlations between variables. This is also depicted in Figure 2.6.

Inference Model From Figure 2.6 we notice that the variational distributions are formulated as
follows

qφ (s | xo) = Categorical (s | πφ (x̃))

qφ (z | xo, s) = N (z | µφ (x̃, s) ,Σφ (x̃, s)) .
(2.27)

where x̃ is the sample x with the missing values filled by zeros. qφ (s | xo) is a categorical
distribution with probability parameters πφ coming from a DNN, and qφ (z | xo, s) follows a
Gaussian distribution where the parameters are given by two distinct DNNs whose input is the
concatenation of x̃ and s. Assuming that the missing values xm are conditionally independent on
the observed attributes xo, we finally write the whole variational distribution as

qφ (s, z,xm | xo) = qφ (s | xo) qφ (z | xo, s)
∏

d∈M

pθ (xd | z, s) , (2.28)

where M denotes the missing attributes for x. Finally, the training of the HI-VAE model is
done applying the ELBO marginalizing out the missing observations as described in Equation
2.18, but now incorporating the discrete latent space s. To draw samples from q (s | xo) we
apply the Gumbel-softmax reparametrization trick (Li et al., 2019b). We will follow the same
procedure in our model in Chapter 3.
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2.4 Handling Temporal Data

Before, we commented that the first common assumption about data is assuming fully observed
data, and talked about how can we deal with missing data in the learning process. We
continued presenting the next common assumption that data is assumed homogeneous, when
in real-case scenarios this will rarely be the case, and how assuming heterogeneous likelihood
is a very challenging problem. Lastly, we present the last common assumption: assuming
that data is independent.

The independence assumption is arguably one of the first assumptions that any statistician (or
machine learning researcher in our case) would make about the data, i.e. assuming independent
and identically distributed (i.i.d) samples. Not surprisingly, even model assuming this complete
independence are able to implicitly capture inner dependencies within the data out-of-the-box.
Furthermore, perhaps this assumptions is one of the cornerstones of the recent machine learning
succeed. But we can always do better. For instance, take an image classification problem. We
could always assume independence among pixels, but convolutional neural networks (CNN)
supposed a milestone in this field because they explicitly capture the spatial correlation between
the pixels of the image (among other things, of course). That is why Recurrent Neural Networks
(RNN) also supposed a milestone in those problems where the data follows a temporal distribution
and we cannot assume independence between samples.

Obviously, there has been a vast amount of investigation in how can we properly model
sequential data before the RNN (re)appearance. Provably one of the top competitors of RNNs are
Markov models, which model transitions between states. Among Markov models, Hidden Markov
Models (HMM) are one of the most used, because they model observations based on the transition
between hidden states with a probabilistic dependence. These states are drawn from a discrete
state S, and the transition between time-adjacent states is defined by a probability table of size
|S|2. For an increasing number of possible states the operations for HMMs becomes and feasible.
And while it is true that the dependency along time can be made larger, usually the order of the
HMM is set to 1, the previous state. All these limitations motivated us to use RNNs instead.

2.4.1 RNNs: Our Toolkit for Temporal Data

RNN Although there is a widespread belief that RNNs emerged contemporary to the massive
usage of neural networks, many early works were already investigating about recurrent neural
networks (Hopfield, 1982; Jordan, 1986; Elman, 1990). However, using RNNs for learning in
temporal scenarios has always been considered difficult. RNNs offer the advantage of being fully
differentiable from end to end when considering a fixed architecture comprising nodes, edges, and
activation functions. This allows us to calculate gradients with respect to the RNN weights and
utilize gradient-based optimization techniques. However, dealing with long-range dependencies
becomes challenging (Bengio et al., 1994; Hochreiter et al., 2001). When dealing with very long
temporal series, the propagation of gradients throughout the network can lead to two distinct issues.
Firstly, the gradients may diminish and approach zero, known as the vanishing gradient problem.
Alternatively, the gradients can become excessively large, escalating continuously, which is referred
to as the exploding gradient problem. In Figure 2.7a we include a diagram for a simple RNN.
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(a) RNN. Figure extracted from Lipton et al. (2015). (b) LSTM. Figure extracted from this website5.

Figure 2.7: Basic RNN model and LSTM cell: In Figure (a), we depict a basic RNN, where at every
time step t, the activation is propagated through solid edges, similar to a feedforward network. Dashed
edges establish connections from a source node at each time t to a target node at the subsequent time
t + 1. Figure (b) depicts a LSTM cell.

The RNN general formula can be described as follows. For a given sequence x1:T =
(x1, . . . ,xT ),xt ∈ Rd, an RNN can recursively update its internal hidden state h with the following
equation

ht =fθ (xt,ht−1) , (2.29)

where f can be any non-linear function with its corresponding parameters θ and ht ∈ Rk,
with k is usually lower-dimensional. In the following we will see how fθ is implemented
for the case of the LSTM.

LSTM In a successful attempt to mitigate these problem, Hochreiter and Schmidhuber (1997)
proposed a novel RNN architecture, the so called Long Short-Term Memory (LSTM). The LSTM
addresses the vanishing and exploding gradient problems by introducing specialized memory
cells. It uses a sophisticated gating mechanism to regulate the flow of information within the
network, allowing it to selectively remember or forget information over varying time intervals.
The LSTM cell is defined by the following equations:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (Input Gate)

ft = σ(Wxf xt + Whf ht−1 + Wcf ct−1 + bf ) (Forget Gate)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (Output Gate)

c̃t = tanh(Wxcxt + Whcht−1 + bc) (Candidate Memory Cell)

ct = ft � ct−1 + it � c̃t (Memory Cell)

ht = ot � tanh(ct) (Hidden State)

In these equations, xt represents the input at time step t, ht is the hidden state at time step
t, ct denotes the memory cell state at time step t, σ represents the sigmoid activation function,
� denotes element-wise multiplication, and W and b represent the weight and bias parameters,
respectively, for the different gates and cell operations in the LSTM architecture. These equations

5http://dprogrammer.org/rnn-lstm-gru

http://dprogrammer.org/rnn-lstm-gru
http://dprogrammer.org/rnn-lstm-gru
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can be better understood with Figure 2.7b. Contemporary to Hochreiter and Schmidhuber

(1997), (Schuster and Paliwal, 1997) also proposed a bidirectional RNN to capture temporal

dependencies from past and future states.

While there is an immeasurable amount of works in the line the LSTM (e.g. the Gated

Recurrent Unit (Cho et al., 2014)), we decide to stick to the basic LSTM as out building toolkit

for modeling temporal dependencies, and we will use it later in Chapter 3.

2.4.2 RNNs Handling Missing Data in Medical Context

It is not surprising that one of the principal areas where RNNs haven been tested is in health

care applications. Medical information typically exhibits a temporal nature, either inherent in

the type of data, such as certain lab measurements, or due to the frequency at which a patient

visits the hospital. Therefore, RNNs emerge as a significant tool for capturing the temporal

correlations from medical data. However, we know from previous sections that medical data,

among from other artifacts, is often corrupted by missing data. This motivates the search of

new ways to incorporate missing data into standard RNN architectures. In the following we

will present a few works that inspired our work presented in Chapter 3, not only because they

serve as reference works for handling missing data in temporal series, but also because their

primary motivation is the direct healthcare application.

In a very first work, Lipton et al. (2016a) analyzed the effectiveness of LSTMs to recognize

patterns in multivariate time series of clinical measurements. But it is in their follow-up paper

where Lipton et al. (2016b) treat the missing data problem. They acknowledge what we have

been commenting before about medical data: the irregular spacing between measurements leads

to missingness patterns in temporally discretized sequences. Instead of imputing the missing

values prior to predictive step, they treat the missing artifacts as binary features. These binary

features can be viewed as indicator variables or gating variables, and they show that knowing

which measurement tests are can be as predictive as the results themselves.

In a similar fashion, Che et al. (2018) also exploit the missing patterns present in the data

and they propose a novel deep learning model, namely GRU-D, based on the GRU model. This

model makes use of both the binary missing mask and the time interval between missing values

and incorporates them into the GRU. This can be viewed as a next step from just incorporating

the missing mask as a binary indicator, because now we also allow the model to know how long

the last missing happened. Concurrently, Cao et al. (2018) propose BRITS, a model that handles

both the imputation and the prediction at the same time using bidirectional RNNs. In Luo et al.

(2018), they tackle the missing data imputation problem using Generative Adversarial Networks

(GAN) and in the same spirit as Che et al. (2018), they again propose a new modified version

of a GRU, namely GRUI, which incorporates the time lags between missing values to model the

decaying influence of past observations when a value has been missing for a while.
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(a) Prior (b) Generation (c) Recurrence (d) Inference (e) Overall

Figure 2.8: VRNN model with the corresponding steps: (a) Prior with Equation 2.31; (b) Generative
model with Equation 2.32; (c) RNN hidden state updates with Equation 2.30; (d) Inference model with
Equation 2.34; (e) overall VRNN graphical model. Figure from original paper (Chung et al., 2015).

2.4.3 VRNN: Our Basis for Temporal Data Handling

While the works commented above are of great interest for our problem, we would like to
incorporate the temporal modeling using RNNs into our VAE learning framework presented above.
Before we were commenting that a latent variable model allows to capture dependencies between
the data withing a lower dimensional space. Now, we want to model the inner correlations
within the data across time steps too.

Previous work already integrated stochasticity into the hidden states of the RNNs (Fabius
and Van Amersfoort, 2014; Boulanger-Lewandowski et al., 2012) or proposed generative models
for sequential data under the VAE framework (Fraccaro et al., 2016), we will mainly look at the
work by Chung et al. (2015) and their proposed model Variational RNN (VRNN). Motivated by
the succeed and flexibility of VAEs on modeling and capturing data variability for non-sequential
data, they extend VAEs using a recurrent framework where the latent space at a given instant zt

does not only depend on the data at that given time xt but also on the previous time x<t. The
latent space captures the temporal dependencies from the data and propagates it along time.

Generative Model

In order to extend the a standard VAE to handle temporal data in a simple way, we present
the approach from VRNN (Chung et al., 2015).

RNN State Update: ht = fθ (ϕx
τ (xt) , ϕz

τ (zt) ,ht−1) , (2.30)

Prior Distribution: zt ∼ N
(
µ0,t,diag

(
σ2

0,t

))
(2.31)

,where [µ0,t,σ0,t] = ϕprior
τ (ht−1) ,

Generative Distribution: xt | zt ∼ N
(
µx,t,diag

(
σ2

x,t

))
(2.32)

,where [µx,t,σx,t] = ϕdec
τ (ϕz

τ (zt) ,ht−1) ,

Let’s analyze the equations from above. First, the RNN updates follows the recurrence equation
where ϕx

τ (xt) and ϕz
τ (zt) are feature extractors for xt and st respectively. The function fθ is

the same as Equation 2.29. Next, the prior distribution is not an isotropic Gaussian like in the
standard VAE, since it needs to account for the temporal structure. This is achieved through
ϕprior

τ , which generates the Gaussian parameters based on the previous RNN state ht−1. Similarly
for xt, the parameters of the Gaussian distribution come from a NN ϕdec

τ with the current feature
from the latent variable ϕz

τ (zt) and the previous RNN state ht−1.
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The final joint distribution for all time instants t = [1, . . . , T ] has the following form:

pθ (x≤T , z≤T ) =
T∏

t=1
pθ (xt | z≤t,x<t) pθ (zt | x<t, z<t) , (2.33)

where x<t = x[1:t−1] and x≤t = x[1:t]. The same applies for zt. Notice that pθ (xt | z≤t,x<t) refers
to the likelihood of the current instant xt and depends on the past information (< t) and the current
latent code zt. And the prior pθ (zt | x<t, z<t) depends only on all the past information (< t). The
key point from this model is that we recover the past information at t using the a recurrent neural
network — the RNN remembers the temporal dependencies encapsulated in the latent space.

Inference Model

Similarly, the variational distribution must also account for the temporal structure of the data.
Therfore we can define it as

zt | xt ∼ N
(
µz,t,diag

(
σ2

z,t

))
, where [µz,t,σz,t] = ϕenc

τ (ϕx
τ (xt) ,ht−1) , (2.34)

where the Gaussian parameterse µz,t and σz,t are the output of a NN ϕenc
τ that takes as input

the features from xt (i.e. ϕx
τ (xt)) and the previous RNN state ht−1. The variational distribution

for all time instants follows the factorization

qφ (z≤T | x≤T ) =
T∏

t=1
qφ (zt | x≤t, z<t) (2.35)

Learning

With all these ingredients, the final ELBO used for training the VRNN model looks like this

E
qφ

(
z≤T |x≤T

) [ T∑
t=1

log pθ (xt | z≤t,x<t)−KL (qφ (zt | x≤t, z<t) ‖pθ (zt | x<t, z<t))
]

(2.36)

All the update functions and the overall VRNN model are depicted in Figure2.8. For further
details, we refer the reader to the original paper (Chung et al., 2015) and advance that this work
will serve as our reference work for handling the temporal dependencies in Chapter 3.

2.5 Summary of the Chapter

In this chapter we introduced VAEs, the learning framework which will be used in Chapter 3
for performing medical data wrangling. We also presented the three main problems covered in
this thesis when working with irregular observations: missing data, heterogeneous observations
and temporal data. For each problem we presented some background and related work, followed
by the basis of our work, namely:

• To tackle the handling of missing and heterogeneous data , we introduced the HI-VAE
(Nazabal et al., 2020) model, which will be used as our reference work.

• To tackle the handling temporal data, we introduced the VRNN (Chung et al., 2015) which
will be used as our reference work.
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I can’t pin it
I can’t pin it down
I can’t pin it
But I think we’ve been here once before
I think we’ve been here once before

Pin It Down — Madison Cunningham PLAY-CIRCLE
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Medical data sets are usually corrupted by noise and missing data. These missing patterns
are commonly assumed to be completely random, but in medical scenarios, the reality is

that these patterns occur in bursts due to sensors that are off for some time or data collected
in a misaligned uneven fashion, among other causes. This paper proposes to model medical
data records with heterogeneous data types and bursty missing data using sequential variational
autoencoders (VAEs). In particular, we propose a new methodology, the Shi-VAE, which extends
the capabilities of VAEs to sequential streams of data with missing observations. We compare our
model against state-of-the-art solutions in an intensive care unit database (ICU) and a dataset of
passive human monitoring. Furthermore, we find that standard error metrics such as RMSE are
not conclusive enough to assess temporal models and include in our analysis the cross-correlation
between the ground truth and the imputed signal. We show that Shi-VAE achieves the best
performance in terms of using both metrics, with lower computational complexity than the
GP-VAE model, which is the state-of-the-art method for medical records.
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Figure 3.1: Example of heterogeneous streams of data with missing values from the medical data set.
Red vertical lines correspond to missing values. Each row corresponds to a different type of data: the first
two correspond to positive real-valued data and the third to binary data. D refers to dimensionality of
the dataset, T to the temporal dimension and N to the number of samples.

Comments on contributions The results described in this chapter result from two main
contributions. First, some preliminary results were shared at the Bayesian Deep Learning workshop1

in the conference on Neural Information Processing Systems (NeurIPS) in 2020. Second, the final
work (Barrejón et al., 2021) was accepted at the IEEE Journal of Biomedical and Health Informatics.

3.1 Introduction

Since machine learning emerged, all the primary attention focused on working with homogeneous
data sets, where too few artifacts such as outliers or missing data barely appear. But real-world
data sets are quite different. Data is usually organized in databases containing incomplete, noisy,
and more critical, heterogeneous information sources. These scenarios are quite common in
medical applications. For instance, Electronic Health Records (EHR) may contain information
from monitoring sensors, different physicians’ diagnoses, or visits to the hospital. A heterogeneous
medical footprint hence defines each patient. This kind of information will exhibit missing data
due to sensors’ failures or due to temporal gaps between each visit to the hospital, to name a few.

In the literature, the common assumption is that the lost information from a data set is
Missing Completely at Random (MCAR). However, the most usual scenario is that missing
data follows some kind of pattern. For example, in human monitoring applications the sensors
tracking different sources might disconnect for some amount of time, not intermittently, generating
bursts of missing data. For medical data sets missing patterns can appear simultaneously across
different attributes as it is shown in Figure 3.1.

The recent literature on machine learning (ML) approaches to handle noise and missing data in
medical records is dominated by deep learning methods. In this regard, recurrent neural networks
(RNN) stand as one of the most popular approaches. In Lipton et al. (2016a) the authors propose
Long-Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997), to recognize
patterns in multivariate time series of clinical measurements. This work was extended in Lipton
et al. (2016b) with binary indicators of missingness as features. A different approach is proposed

1http://bayesiandeeplearning.org/2020/index.html

http://bayesiandeeplearning.org/2020/index.html
http://bayesiandeeplearning.org/2020/index.html


3. Medical Data Wrangling With Sequential Variational Autoencoders 37

in Che et al. (2018), where Gated Recurrent Units (GRU) are modified to incorporate missing
masks, hence modeling the time intervals between clinical appointments. Other works like BRITS
(Cao et al., 2018) also look into the bidirectional capabilities of RNNs and exploit this property
to impute missing values in time series with underlying nonlinear dynamics.

Although the above RNN-based methods show impressive results dealing with time series
forecasting, they do not benefit from the flexibility and the underlying data correlations inferred by
probabilistic deep generative models (DGMs). DGMs capture inner correlations that can be present
in high-dimensional data employing a low-dimensional latent space. In the framework of VAEs, the
heterogeneous incomplete variational autoencoder (HI-VAE) (Nazabal et al., 2020), the mixed VAE
(VAEM) (Ma et al., 2020b), the MIWAE (Mattei and Frellsen, 2019), the Partial VAE presented
in Ma et al. (2019) or similar works (Collier et al., 2020; Qiu et al., 2020) propose efficient methods
to jointly model different data types and missing data in a single DGM. Among DGMs able to deal
with sequential data, GP-VAE (Fortuin et al., 2020) stands out. GP-VAE implements a latent
probabilistic model in which a Gaussian process captures the correlation of the low-dimensional
latent variable along time, and this GP relies on a VAE to implement the observation model.
However, GP-VAE cannot deal with heterogeneous observations. Finally, DGM-like solutions to
deal with tabular or sequential based on generative adversarial networks (GANs), such as GAIN in
Yoon et al. (2018), the gated recurrent GAN in Luo et al. (2018), MisGAN in Li et al. (2019a) and
VIGAN (Shang et al., 2017) do not show to outperform the imputation ability of other VAE-based
methods and are harder to train due to the min-max underlying optimization problem.

In this paper, we consider modeling sequential heterogeneous data when missing data comes
in bursts, a scenario in which none of the previous DGMs have been tested to date. On the
one hand, we show that when errors come in bursts, standard error metrics such as normalized
mean-squared error (NRMSE) do not reflect well the imputation accuracy, and we study the
correlation between the ground-truth signal and the imputed one. In this setup, we demonstrate
that GP-VAE struggles to deal with long-missing data bursts since the underlying GP correlation
quickly decays, driving the GP posterior to a non-informative mean and large variance.

To better deal with bursty missing patterns, we propose the sequential heterogeneous incomplete
VAE (Shi-VAE). This model generalizes the HI-VAE model in Nazabal et al. (2020) presented in
Chapter 2.3.3, including a latent temporal structure driven by LSTMs following a similar idea
as in Chung et al. (2015), presented in Chapter 2.4.3. The extended memory properties of these
networks provide a more robust ability to cope with missing bursts, efficiently capturing into
the low-dimensional latent projection the correlation to past observations. Besides, Shi-VAE
comes with efficient training methods based on amortized variational inference that can handle
massive data sets. As a representative example of a medical database, we demonstrate the
superior ability of Shi-VAE to deal with complex time-series using two real data sets. First,
we consider the data set from the 2012 Physionet Challenge (Silva et al., 2012) which contains
measurements of 35 electrophysiological signals for 12,000 patients monitored during 48 on the
intensive care unit (ICU). Second, we consider a data set of human passive monitoring coming
from mobile devices. It contains heterogeneous attributes (distance travelled, mobile phone
usage, quality of sleep, etc.) and a challenging presence of bursty missing data. The Shi-VAE
code to reproduce our experiments can be found in https://github.com/dbarrejon/Shi-VAE.
Overall, we claim the following contributions:

https://github.com/dbarrejon/Shi-VAE
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Figure 3.2: Overall view of the human monitoring database. Each patient has a given sequence length.
Black means no record of that patient, magenta means a complete missing day and yellow that at least
there is one variable present at that day.

• We propose Shi-VAE as a robust generative model to handle heterogeneous time series
corrupted with missing data.

• We demonstrate that NRMSE is a partial metric when it comes to compare imputation
models in the presence of missing data in bursts.

• We propose to use a temporal correlation metric to compare the different models. This
metric is more sensitive to detect over-smooth solutions.

We organize the paper as follows. Firstly, Section 3.2 introduces the problem statement we
want to tackle. Section 3.3 presents Shi-VAE. In Section 3.4 we present the two data sets we have
used to validate our model and the results we have found. Section 3.5 presents our final remarks.

3.2 A human monitoring database

Through patients’ mobile phones and other wearable devices, continuous sensor data can be
collected in a non-invasive manner, providing valuable information about everyday activity
patterns. The possibility of inferring emotional states by analyzing smartphone usage data
LiKamWa et al. (2013), Mehrotra et al. (2017), GPS traces of movement Canzian and Musolesi
(2015), social media data De Choudhury et al. (2013), and even sound recordings Lu et al. (2012)
has become a growing research focus over the past decade.

One of the databases that we use in this paper was collected using the mobile application eB2
MindCare 2 in a collaboration we carried out with two public mental health hospitals in Madrid
(Hospital Universitario Fundación Jiménez Díaz and Hospital Universitario Rey Juan Carlos).
This study was approved by the Fundación Jiménez Díaz Research Ethics Committee (Study code:
LSRG-1-005 16). We periodically capture passive monitoring information from N = 170 psychiatric
patients using eB2 MindCare, thus registering different signals for every user. In particular, we
are working with daily summary representations of every variable. The seven attributes we work
with are listed in Table 3.1, along with the fraction of missing values across all patients.

Regarding the positive variables, distance, steps total, and vehicle are related to the patient’s
mobility. App usage is a positive variable that measures the total amount of active time the user
has been using the phone, with social applications, phone calls, etc. Sleep is a positive variable
that counts the total time a person has slept during a day. Regarding binary variables, sport
explains whether the person has done any sport xt = 1 or not xt = 0 during the day and steps
home states whether the person was at home xt = 1 or not xt = 0 at that particular day.

2Available at: https://eb2.tech/

https://eb2.tech/
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Variable Type Missing Percentage [%]
Distance Positive 42
Steps Home Binary 66
Steps Total Positive 22
App Usage Positive 38
Sport Binary 62
Sleep Positive 31
Vehicle Positive 44

Table 3.1: Human Monitoring data set.

Finally, we remark that, although the number D of attributes is the same for every patient
(D = 7), the signal length T per patient is very diverse. The average sequence length is 233.
Figure 3.2 illustrates the whole population and the missing pattern. From the Figure 3.2 we
can observe that almost any day comes with missing values, and hence we can expect long
bursts of missing attributes.

In this paper, we demonstrate the superior ability of the proposed Shi-VAE to capture the
non-trivial correlations among the database attributes and accurately impute missing values.

3.3 Proposed Model

We first introduce a general notation of the problem and then present the Shi-VAE model.

3.3.1 Notation

We define our data set as D = {X1, . . . ,XN}, where N corresponds to the total number of
samples in the data set. Each sample Xn ∈ RT n×d has Tn observations xt = [xt1, . . . , xtd]> ∈ Rd,
where d refers to the dimension or attribute. From now on, we use Xn = X in order to relax
notation. We consider heterogeneous attributes:

• Continuous Variables:

1. Real-valued data: Data taking real values, i.e., xtd ∈ R.

2. Positive-valued data: Data taking only positive values, i.e., xtd ∈ R+.

• Discrete Variables:

1. Binary Data: Data can only be either 1 or 0, i.e., xtd ∈ [0, 1].

2. Categorical data: Data taking values in a finite unordered set, i.e., xtd ∈ {−1, 0, 1}, orxtd ∈
{’negative, ’neutral, ’positive’}.

Furthermore, we assume that any xt can have both observed values and missing values. Let us
define Ot as the index set for the observed attributes at time t and Mt as the missing index at
the same time. Hence Ot ∩Mt = ∅. With this notation, we can split this sentence into a vector
containing observed attributes xo

t , and a complementing vector containing missing attributes xm
t .
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Figure 3.3: On a), Shi-VAE generative model. On b), Shi-VAE inference model.

3.3.2 The Sequential Heterogeneous Incomplete VAE (Shi-VAE)

This section presents the Shi-VAE probabilistic generative model, which extends the capabilities of
a standard VAE to sequential heterogeneous data streams and handles missing data. In Shi-VAE,
the temporal dependencies and shared correlations among attributes are captured by a latent
hierarchy of low-dimensional latent variables: a continuous latent variable zt ∈ RK , which follows
a Mixture of Gaussian’s (MoG) Prior distribution (Dilokthanakul et al., 2016), and a discrete
latent variable st that represents the component of the MoG3. We model the dependence between
these two latent variables and the temporal data as follows:

p(X,Z,S) =
T∏

t=1
pθx(xt|z≤t, st)pθz (zt|z<t, st)pθs(st), (3.1)

where Z = z≤T and S = s≤T . The joint probability density function is parameterized by
θ = {θx, θz, θs}. From now on, we omit this dependency to further relax notation. Following
Nazabal et al. (2020), we assume that given the latent variable zt encodes all the correlation
among attributes and hence they are all conditionally independent

p(xt|z≤t, st) =
∏

d∈Ot

p(xtd|z≤t, st)
∏

d∈Mt

p(xtd|z≤t, st). (3.2)

Notice this is the temporal extension of Equation 2.16 with the additional discrete latent variable
st. The actual expression for each of the likelihood factors p(xtd|z≤t, st) depends on the data-type
of every attribute, as we develop in the next sub-section.

Temporal continuous latent variable zt Following the VRNN motivation presented in
Section 2.4.3, the temporal dependency is encoded into the term pθz (zt|z<t, st), which implements
a RNN-based model to capture the temporal data correlation along time:

p(zt|z<t, st) = N (zt|µ0,t,Σ0,t), (3.3)

where µ0,t and Σ0,t define the parameters of the conditional prior distribution, and they are
obtained as the output of a deep neural network (DNN) ϕprior

ω (·) that extracts features from
the past hidden state ht−1 and the current discrete state st:

[µ0,t,Σ0,t] = ϕprior
ω (ht−1, st), (3.4)

3Another option for the prior would be to use a mixture of posteriors as prior also known as VampPrior
(Tomczak and Welling, 2018). However, to us it is more reasonable to use a prior that is not dependent on the
posteriors distributions, due to the implicit dependencies present in the model.
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where Σ0,t is considered a diagonal matrix. Notice this is similar to Equation 2.31 from the VRNN
model. The hidden state ht−1 encodes the information of the process z up to time t− 1, and it
is updated along time using an LSTM with the following state update recurrence

ht−1 = fτ (yt−1,ht−2), (3.5)

where yt−1 = ϕz
ω(zt−1) is the output of a DNN with input zt−1. We choose to work with LSTM

(Hochreiter and Schmidhuber, 1997) due to the ability to better cope with long sequences, but
any other RNN architectures such as GRU (Cho et al., 2014) could be used. Besides, in order to
prevent the exploding gradient problem that can arise in RNNs, we clip the gradients to 0.5.

Discrete latent variable st Finally, for the discrete latent variable st we assume an in-
formative time-independent prior:

p(st) = Categorical(st|π), (3.6)

where πk = 1/L, where L is the number of components in the mixture.

3.3.3 Heterogeneous Decoder

We propose to use a factorized decoder that can handle different data-types for each attribute.
A DNN is used to provide the likelihood parameters, e.g. mean and variance of a Gaussian
distribution, given ht−1, st, and yt. We denote the likelihood parameters for the d-th attribute at
time t as γd

t = ϕdec
ω,d(ht−1, st,yt), where ϕdec

ω,d is the decoder DNN, as it translates latent information
into the observed variable space. Hence, extending the HI-VAE heterogeneous decoder presented
in Section 2.3.3 to the temporal domain, the general likelihood expression derives as follows:

p(xtd|z≤t, st) = p(xtd|γd
t ) (3.7)

We consider the following data-types and associated likelihood forms:

1. Real-valued data: We assume a Gaussian likelihood distribution, i.e.,

p(xtd|γd
t ) = N (µd

x,t, σ
2,d
x,t ), where [µd

x,t, σ
2,d
x,t ] = ϕdec

ω,d(yt, st,ht−1). (3.8)

2. Positive real-valued data: We assume a log-Gaussian likelihood distribution, i.e.,

p(xtd|γd
t ) = logN (µd

x,t, σ
2,d
x,t ), where [µd

x,t, σ
2,d
x,t ] = ϕdec

ω,d(yt, st,ht−1). (3.9)

3. Binomial data: We assume a Bernoulli likelihood distribution, i.e.,

p(xtd|γd
t ) = Be(pd

x,t), where pd
x,t = σ

(
ϕdec

ω,d(yt, st,ht−1)
)
, (3.10)

and pd
x,t is the probability parameter of the Bernoulli distribution and σ is the sigmoid

function.

4. Categorical data: We assume a multinomial likelihood distribution where the parameters
of the likelihood are the C-dimensional output of a DNN with a log-softmax output

log p(xtd = c|γd
t ) = ϕdec

ω,d(yt, st,ht−1)|c for c = [1, . . . , C]. (3.11)

The left part of Figure 3.3 illustrates the generative model defined by Equations 3.1-3.7. From this
figure we can see the motivation of having a shared latent space on z and s but an independenent
heterogeneous decoder where each likelihood for xd

t is parameterized by γd
t .



42 3.3. Proposed Model

3.3.4 Model Training with Variational Inference

Variational training (Kingma and Welling, 2014) involves optimizing a parameterized family of
distributions qη(·) that approximate the latent posterior distribution given the observed data.
This optimization is carried out by maximizing the well-known evidence lower bound (ELBO).

Variational distribution The variational distribution for our model is defined as

qφ(xm
≤T , z≤T , s≤T |xo

≤T ) (3.12)

and it only depends on the observed attributes. Firstly, we need to define the variational
distribution over the latent variable zt

qφz
(zt|z<t, st,xo

t ) = N (µz,t,Σz,t), where [µz,t,Σz,t] = ϕenc
ω (ϕx

ω(x̃t),ht−1, st). (3.13)

x̃t denotes a D-dimensional vector where the missing dimensions have been replaced by zeros
following the zero filling approach as described in Nazabal et al. (2020), µz,t and Σz,t are the
parameters of the variational distribution and ϕx

ω and ϕenc
ω are neural networks. Σz,t is a diagonal

matrix. Notice that this derivation aligns with the variational distribution Equation 2.34 from the
VRNN. The variational distribution for the discrete latent space st is defined as

qφs(st|xo
t , z<t) = Categorical(π(ϕs

ω(x̃t,ht−1))), (3.14)

where the probability for each category is given by the output of the DNN ϕs
ω(·) followed by a log

soft-max function. The variational distribution will then be composed of the variational distribution
from Equation 3.13, the variational distribution from Equation 3.14 and p(xm

t |z≤t, st), i.e.

qφ(xm
≤T , z≤T , s≤T |xo

≤T ) =
∏T

t=1
qφz

(zt|z<t, st,xo
t )qφs

(st|xo
t , z<t)p(xm

t |z≤t, st). (3.15)

ELBO The inference model is shown at the right part of Figure 3.3. By expanding the following
expression

log p(xo) ≥
∫
q(Xo,Xm,Z,S) log p(X,Z,S)

q(Xo,Xm,Z,S)dZdSdXm, (3.16)

we obtain the ELBO objective training function

log p(Xo) ≥
T∑

t=1

[
E

q(st|xo
t ,z<t)

q(zt|xo
t ,z<t,st)

[
log p(xo

t |z≤t, st)
]

︸ ︷︷ ︸
Reconstruction

− E
q(st|xo

t ,z<t)

[
βKL

(
q(zt|z<t,xo

t , st)||p(zt|z<t, st))
]
− βKL(q(st|xo

t , z<t, )||p(st)
)

︸ ︷︷ ︸
Regularization

]

(3.17)

The first term inside the sum in Equation 3.17 is the average reconstruction log-likelihood (e.g.
how well we explain the observed data given the latent space induced by the approximated
posterior), while the other two Kullback-Leibler (KL) divergence terms act like regularizers
that penalize for posteriors far from the prior latent distributions. Although the expectation
over q(st|xo

t ) can be computed analytically, since st is a discrete variable, due to the temporal



3. Medical Data Wrangling With Sequential Variational Autoencoders 43

x1<latexit sha1_base64="dMT0jIYN/pJw+QqvkaSv9azVLxI=">AAAFynicjZRLb9NAEMenAUMJj6Zw5BI1QuLQVnHS17HimUORCiJtpaaK/NgkVvzSelMSLN848Gm4wlfhu3Dgv2NTpSlJY2s9s7Ozv3msbTv2vUTV679XSnfuGvfurz4oP3z0+MlaZf3pSRKNpCPaTuRH8sy2EuF7oWgrT/niLJbCCmxfnNrD13r99FLIxIvCz2oSi4vA6odez3MsBVO3stFRYqyYk7qWHG5J4WZpJ7DUwO6l46xrZt1Krb5d56t6UzELpUbFdRytl1rUIZcicmhEAQkKSUH3yaIE9zmZVKcYtgtKYZPQPF4XlFEZe0fwEvCwYB3i2cfsvLCGmGtmwrsdRPExJHZW6QXGOyba8NZRBfQE8g/GV7b150ZImawznEDaTMyZH7CiaACf2/YGhWe29E5dl6IeHXA9HjKM2aIrda44b7AiYRvySpXesmcfDJvnl+hBCNlGBrrP/whVrtmFtFgKpoQF0QJPQur+63zmV2eDH3F0HTFZcE4pnhJ6jKr1qY7Z97a+6R4FBTWE/UvRtYjzDeDns9T9zTA7mpotoo+vvSG5p+5Cj/snplZ1BA+7Boi8hRp9EAXH+kTv6RVrJu3h3qQG3t9cNmi/yHoe1eX3cTiX2QR1E0MztTyAXEyczrPP/dEnOpvpPkh5hk3mNjFfNtN51N0i1z3OdQf38plqojvDa1wRd8HKZXPpLP9P1Cei687PJ6+5jH+YOfvHuqmcNLZN6B93aoet4m+2Ss9pg15yPw+pRcf4whz6Tj/oJ/0yjgxpTIw0dy2tFHue0bXL+PYXSH0fzQ==</latexit><latexit sha1_base64="dMT0jIYN/pJw+QqvkaSv9azVLxI="></latexit><latexit sha1_base64="dMT0jIYN/pJw+QqvkaSv9azVLxI="></latexit><latexit sha1_base64="dMT0jIYN/pJw+QqvkaSv9azVLxI="></latexit> x2<latexit sha1_base64="Cj6Ane2GATijYs2dnmLnunTaxs8="></latexit><latexit sha1_base64="Cj6Ane2GATijYs2dnmLnunTaxs8="></latexit><latexit sha1_base64="Cj6Ane2GATijYs2dnmLnunTaxs8=">AAAFynicjZRLb9NAEMenAUMJj6Zw5BI1QuLQVonT17HimUORCiJtpaaK/NgkVvzSelMSLN848Gm4wlfhu3Dgv2NTpSlJY2s9s7Ozv3msbTv2vUTV679XSnfuGvfurz4oP3z0+MlaZf3pSRKNpCPaTuRH8sy2EuF7oWgrT/niLJbCCmxfnNrD13r99FLIxIvCz2oSi4vA6odez3MsBVO3stFRYqyYk7qWHG5J4WZpJ7DUwO6l46xrZt1Krb5d56t6U2kUSo2K6zhaL7WoQy5F5NCIAhIUkoLuk0UJ7nNqUJ1i2C4ohU1C83hdUEZl7B3BS8DDgnWIZx+z88IaYq6ZCe92EMXHkNhZpRcY75how1tHFdATyD8YX9nWnxshZbLOcAJpMzFnfsCKogF8btsbFJ7Z0jt1XYp6dMD1eMgwZouu1LnivMGKhG3IK1V6y559MGyeX6IHIWQbGeg+/yNUuWYX0mIpmBIWRAs8Can7r/OZX50NfsTRdcRkwTmleEroMarWpzpm39v6pnsUFNQQ9i9F1yLON4Cfz1L3N8PsaGq2iD6+9obknroLPe6fmFrVETzsGiDyFmr0QRQc6xO9p1esNWgP9yaZeH9zadJ+kfU8qsvv43AuswnqJoZmankAuZg4nWef+6NPdDbTfZDyDJvMbWK+bKbzqLtFrnuc6w7u5TPVRHeGZ14Rd8HKZXPpLP9P1Cei687PJ6+5jH9YY/aPdVM5Mbcb0D/u1A5bxd9slZ7TBr3kfh5Si47xhTn0nX7QT/plHBnSmBhp7lpaKfY8o2uX8e0vTcEfzg==</latexit><latexit sha1_base64="Cj6Ane2GATijYs2dnmLnunTaxs8="></latexit> x3
<latexit sha1_base64="KpVCTEY/gBT4r2vGkVAvttn3uNk=">AAAFynicjZRLb9NAEMenAUMJj6Zw5BI1QuLQVknc17HimUORCiJtpaaK/NgkVvzSelMSLN848Gm4wlfhu3Dgv2NTpSlJY2s9s7Ozv3msbTv2vUTV679XSnfuGvfurz4oP3z0+MlaZf3pSRKNpCPaTuRH8sy2EuF7oWgrT/niLJbCCmxfnNrD13r99FLIxIvCz2oSi4vA6odez3MsBVO3stFRYqyYk7qWHG5J4WZpJ7DUwO6l46xrZt1Krb5d56t6U2kUSo2K6zhaL7WoQy5F5NCIAhIUkoLuk0UJ7nNqUJ1i2C4ohU1C83hdUEZl7B3BS8DDgnWIZx+z88IaYq6ZCe92EMXHkNhZpRcY75how1tHFdATyD8YX9nWnxshZbLOcAJpMzFnfsCKogF8btsbFJ7Z0jt1XYp6dMD1eMgwZouu1LnivMGKhG3IK1V6y559MGyeX6IHIWQbGeg+/yNUuWYX0mIpmBIWRAs8Can7r/OZX50NfsTRdcRkwTmleEroMarWpzpm39v6pnsUFNQQ9i9F1yLON4Cfz1L3N8PsaGq2iD6+9obknroLPe6fmFrVETzsGiDyFmr0QRQc6xO9p1esNWgP9yY18f7mskn7RdbzqC6/j8O5TBPUTQzN1PIAcjFxOs8+90ef6Gym+yDlGZrMNTFfNtN51N0i1z3OdQf38plqojvDa14Rd8HKpbl0lv8n6hPRdefnk9dcxj+sMfvHuqmcNLcb0D/u1A5bxd9slZ7TBr3kfh5Si47xhTn0nX7QT/plHBnSmBhp7lpaKfY8o2uX8e0vUwUfzw==</latexit><latexit sha1_base64="KpVCTEY/gBT4r2vGkVAvttn3uNk="></latexit><latexit sha1_base64="KpVCTEY/gBT4r2vGkVAvttn3uNk="></latexit><latexit sha1_base64="KpVCTEY/gBT4r2vGkVAvttn3uNk="></latexit>

xT<latexit sha1_base64="ZK5bFa43axHgbs5xAR/Ti3Bw214="></latexit><latexit sha1_base64="ZK5bFa43axHgbs5xAR/Ti3Bw214="></latexit><latexit sha1_base64="ZK5bFa43axHgbs5xAR/Ti3Bw214="></latexit><latexit sha1_base64="ZK5bFa43axHgbs5xAR/Ti3Bw214="></latexit>

xrec
T<latexit sha1_base64="y1CoVHxts1jZ/PCbFVp0+WysN/g="></latexit><latexit sha1_base64="y1CoVHxts1jZ/PCbFVp0+WysN/g="></latexit><latexit sha1_base64="y1CoVHxts1jZ/PCbFVp0+WysN/g=">AAAF13icjZRLb9NAEMenAUMJr5QeuURESBzakkdfx6q8cgCpoKYtakrkxyax4pfWTkmxLG6IKwc+DVf4EHwXDvx3vFRpStLYWs/s7OxvHmvbijw3TqrV3wuFa9eNGzcXbxVv37l7735p6cFBHA6lLVp26IXyyDJj4bmBaCVu4omjSArTtzxxaA2eqfXDUyFjNwz2k7NInPhmL3C7rm0mMHVKT9uJGCXMSR1TDlalcLK07ZtJ3+qmo+xDyg6pFHaWdfazTqlSXavyVb6s1LRSIX3thUuFJrXJoZBsGpJPggJKoHtkUoz7mGpUpQi2E0phk9BcXheUURF7h/AS8DBhHeDZw+xYWwPMFTPm3TaieBgSO8v0GOMlEy14q6gCegz5B+MT23pTI6RMVhmeQVpMzJlvsJJQHz5X7fW1Zzb3TlVXQl3a5npcZBixRVVqn3OeY0XCNuCVMr1gzx4YFs9P0YMAsoUMVJ//EcpcswNpshRMCTTRBE9Cqv6rfKZXZ4EfcnQVMZ5xTimeEnqEqtWpjtj3qr6pHvmaGsD+UXct5Hx9+HksVX8zzF6PzWbRRxfekNxTdaHL/RNjqyqCi119RF5FjR6IgmO9o1e0y1qNNnGvUB3vby7rtKWznkZ1+H0cTGU2QF3BUEwltyFnE8fz7HF/1IlOZroFUp5hg7kNzOfNdBp1Q+e6ybmu454/U0V0Jnj1c+IGWLlszJ3l/4nqRFTd+fnkNRfxD6tN/rEuKwf1tRr0t+uVnab+my3SQ3pET7ifO9SkPXxhNn2nH/STfhnvjc/GF+Nr7lpY0HuW6cJlfPsLu6MmGw==</latexit><latexit sha1_base64="y1CoVHxts1jZ/PCbFVp0+WysN/g="></latexit>xrec

1<latexit sha1_base64="1XI0ZTjMfpT97+P/snDwEWuJQ2w="></latexit><latexit sha1_base64="1XI0ZTjMfpT97+P/snDwEWuJQ2w="></latexit><latexit sha1_base64="1XI0ZTjMfpT97+P/snDwEWuJQ2w=">AAAF13icjZRLb9NAEMenAUMJj6Zw5BIRIXFoS5z0dax45gBSQaQtakrkxyax4pfW25JiWdwQVw58Gq7wIfguHPjv2FRpStLYWs/s7OxvHmvbjn0vUfX674XSlavGteuLN8o3b92+s1RZvruXRMfSEW0n8iN5YFuJ8L1QtJWnfHEQS2EFti/27eFTvb5/ImTiReE7dRqLo8Dqh17PcywFU7fyuKPESDEndS05XJXCzdJOYKmB3UtH2YeUHVIpnCzrmlm3Uquv1fmqXlTMQqlRce1Gy6UWdciliBw6poAEhaSg+2RRgvuQTKpTDNsRpbBJaB6vC8qojL3H8BLwsGAd4tnH7LCwhphrZsK7HUTxMSR2Vukhxgsm2vDWUQX0BPIPxie29adGSJmsMzyFtJmYM19jRdEAPpftDQrPbO6dui5FPdrmejxkGLNFV+qccZ5hRcI25JUqPWfPPhg2z0/QgxCyjQx0n/8RqlyzC2mxFEwJC6IFnoTU/df5TK/OBj/i6DpiMuOcUjwl9BhV61Mdse9lfdM9CgpqCPvHomsR5xvAz2ep+5th9mpsNos+OveG5J66Cz3unxhb1RE87Bog8ipq9EEUHOstvaQnrJm0iXuFGnh/c9mgrSLraVSX38fhVGYT1BUMzdRyG3I2cTzPPvdHn+hkplsg5Rk2mdvEfN5Mp1E3ilw3Odd13PNnqonuBK9xRtwAK5fNubP8P1GfiK47P5+85jL+YebkH+uistdYM6G/Wa/ttIq/2SLdpwf0iPu5Qy3axRfm0Hf6QT/pl/He+Gx8Mb7mrqWFYs89OncZ3/4CA1cl+A==</latexit><latexit sha1_base64="1XI0ZTjMfpT97+P/snDwEWuJQ2w="></latexit> xrec
2<latexit sha1_base64="DOnfc8vXf87vzi7l0ulCsuTOVQg=">AAAF13icjZRLb9NAEMenKYYSHk3hyCUiQuLQljz6OlbllQNIBZG2qCmRH5vEil9aOyXFsrghrhz4NFzhQ/BdOPDf8VKlKUljaz2zs7O/eaxtK/LcOKlWfy8UFq8Z128s3Szeun3n7nJp5d5BHA6lLVp26IXyyDJj4bmBaCVu4omjSArTtzxxaA2eqvXDUyFjNwzeJWeROPHNXuB2XdtMYOqUnrQTMUqYkzqmHKxJ4WRp2zeTvtVNR9mHlB1SKews69SzTqlSXa/yVb6s1LRSIX3thyuFJrXJoZBsGpJPggJKoHtkUoz7mGpUpQi2E0phk9BcXheUURF7h/AS8DBhHeDZw+xYWwPMFTPm3TaieBgSO8v0COMFEy14q6gCegz5B+MT23pTI6RMVhmeQVpMzJmvsZJQHz5X7fW1Zzb3TlVXQl3a4XpcZBixRVVqn3OeYUXCNuCVMj1nzx4YFs9P0YMAsoUMVJ//EcpcswNpshRMCTTRBE9Cqv6rfKZXZ4EfcnQVMZ5xTimeEnqEqtWpjtj3qr6pHvmaGsD+UXct5Hx9+HksVX8zzF6NzWbRRxfekNxTdaHL/RNjqyqCi119RF5DjR6IgmO9pZe0x1qNtnCvUh3vby7rtK2znkZ1+H0cTGU2QF3FUEwldyBnE8fz7HF/1IlOZroNUp5hg7kNzOfNdBp1U+e6xblu4J4/U0V0Jnj1c+ImWLlszJ3l/4nqRFTd+fnkNRfxD6tN/rEuKwf19Rr0NxuV3ab+my3RA3pIj7mfu9SkfXxhNn2nH/STfhnvjc/GF+Nr7lpY0Hvu04XL+PYXCJsl+Q==</latexit><latexit sha1_base64="DOnfc8vXf87vzi7l0ulCsuTOVQg="></latexit><latexit sha1_base64="DOnfc8vXf87vzi7l0ulCsuTOVQg="></latexit><latexit sha1_base64="DOnfc8vXf87vzi7l0ulCsuTOVQg="></latexit> xrec

3
<latexit sha1_base64="acjUoH/qWfQbzQvebvCfPuTTaiU="></latexit><latexit sha1_base64="acjUoH/qWfQbzQvebvCfPuTTaiU="></latexit><latexit sha1_base64="acjUoH/qWfQbzQvebvCfPuTTaiU="></latexit><latexit sha1_base64="acjUoH/qWfQbzQvebvCfPuTTaiU="></latexit>

. . .<latexit sha1_base64="uymionaINI6e05psYgGq5hWkTDA="></latexit><latexit sha1_base64="uymionaINI6e05psYgGq5hWkTDA="></latexit><latexit sha1_base64="uymionaINI6e05psYgGq5hWkTDA="></latexit><latexit sha1_base64="uymionaINI6e05psYgGq5hWkTDA="></latexit>

. . .<latexit sha1_base64="uymionaINI6e05psYgGq5hWkTDA="></latexit><latexit sha1_base64="uymionaINI6e05psYgGq5hWkTDA="></latexit><latexit sha1_base64="uymionaINI6e05psYgGq5hWkTDA="></latexit><latexit sha1_base64="uymionaINI6e05psYgGq5hWkTDA="></latexit>

z1<latexit sha1_base64="aR17N6m1L6YpRFm8ACnRgjuN6+4=">AAAFy3icjZRLb9NAEMenAUMJrxaOXCIiJA5tFSd9HSueOVCpINJWaqrKdjaOFb9kb0oa4yMHPg1X+Ch8Fw78d7xUaYrT2FrP7Ozsbx5r2459L5WNxu+lyq3bxp27y/eq9x88fPR4ZfXJYRqNEkd0nMiPkmPbSoXvhaIjPemL4zgRVmD74sgevlbrR+ciSb0o/CwvYnEaWG7o9T3HkjCdrdS7Uowlc7KelQzXbX8k8qwbWHJg97NJfmbm8GpsNPiqXVdMrdRJXwfRaqVNXepRRA6NKCBBIUnoPlmU4j4hkxoUw3ZKGWwJNI/XBeVUxd4RvAQ8LFiHeLqYnWhriLliprzbQRQfI8HOGr3AeMdEG94qqoCeQv7BmLDNLY2QMVlleAFpM7Fg7mNF0gA+N+0NtGe+8E5Vl6Q+7XI9HjKM2aIqdS45b7CSwDbklRq9ZU8XDJvn5+hBCNlBBqrP/wg1rrkHabEUTAk10QIvgVT9V/mUV2eDH3F0FTGdc04Zngn0GFWrUx2z7019Uz0KNDWE/YvuWsT5BvDzWar+5ph9mJrNo4+vvCGFp+pCn/snplZVBA+7Boi8jhp9EAXH+kTv6RVrJm3jXqMm3t9CNmlHZ11G7fH7OCxltkBdw1BMJXch5xOn83S5P+pEZzPdAanIsMXcFuaLZlpG3dK5bnOum7gXz1QRezO85iVxC6xCthbO8v9EdSKq7uJ8ipqr+IeZs3+s68phc8OE/nGzvtfWf7NlekbP6SX3c4/adIAvzKHv9IN+0i9j30iNifG1cK0s6T1P6cplfPsLx8sgRg==</latexit><latexit sha1_base64="aR17N6m1L6YpRFm8ACnRgjuN6+4="></latexit><latexit sha1_base64="aR17N6m1L6YpRFm8ACnRgjuN6+4="></latexit><latexit sha1_base64="aR17N6m1L6YpRFm8ACnRgjuN6+4="></latexit> z2<latexit sha1_base64="frhMF5L7qNdn3WKuCUf0Ow31gL4="></latexit><latexit sha1_base64="frhMF5L7qNdn3WKuCUf0Ow31gL4="></latexit><latexit sha1_base64="frhMF5L7qNdn3WKuCUf0Ow31gL4="></latexit><latexit sha1_base64="frhMF5L7qNdn3WKuCUf0Ow31gL4="></latexit> z3
<latexit sha1_base64="lB5QihQ4zoLDquFEDWwrgokspBc="></latexit><latexit sha1_base64="lB5QihQ4zoLDquFEDWwrgokspBc="></latexit><latexit sha1_base64="lB5QihQ4zoLDquFEDWwrgokspBc="></latexit><latexit sha1_base64="lB5QihQ4zoLDquFEDWwrgokspBc="></latexit>

zT<latexit sha1_base64="6iYoDJ+lpJKTT9Oc6DJP5Avk3n4="></latexit><latexit sha1_base64="6iYoDJ+lpJKTT9Oc6DJP5Avk3n4="></latexit><latexit sha1_base64="6iYoDJ+lpJKTT9Oc6DJP5Avk3n4=">AAAFy3icjZRLT9tAEMeHULc0fQDtsZeoUaUeADkJryPqM4ci0YoAEkHIdjaJFb9kbyDE9bGHfppe24/S79JD/zveohDqEFvrmZ2d/c1jbduR5ybSNH8vlBbvGfcfLD0sP3r85OnyyuqzoyQcxo5oOaEXxie2lQjPDURLutITJ1EsLN/2xLE9eKvWjy9EnLhhcCivInHmW73A7bqOJWE6X6m2pRhJ5qQdKx6s295QZGnbt2Tf7qbj7Pwwg5e5YfJVua3UtFIlfR2Eq6UmtalDITk0JJ8EBSShe2RRgvuUamRSBNsZpbDF0FxeF5RRGXuH8BLwsGAd4NnD7FRbA8wVM+HdDqJ4GDF2VugVxgcm2vBWUQX0BPIPxphtvcIIKZNVhleQNhNz5j5WJPXhc9deX3tmc+9UdUnq0i7X4yLDiC2qUuea8w4rMWwDXqnQe/bsgWHz/AI9CCBbyED1+R+hwjV3IC2WgimBJlrgxZCq/yqf4ups8EOOriImM84pxTOGHqFqdaoj9r2rb6pHvqYGsF/qroWcrw8/j6Xqb4bZp4nZLProxhuSe6oudLl/YmJVRXCxq4/I66jRA1FwrC/0kd6wVqNt3GtUx/ubyzrt6KyLqB1+HweFzAaoaxiKqeQu5GziZJ497o860elMd0DKM2wwt4H5vJkWUbd0rtuc6ybu+TNVxM4Ur35N3AIrl425s/w/UZ2Iqjs/n7zmMv5htek/1m3lqL5Rg/55s7rX1H+zJXpBL+k193OPmnSAL8yh7/SDftIvY99IjLHxNXctLeg9z+nGZXz7C4AmIGk=</latexit><latexit sha1_base64="6iYoDJ+lpJKTT9Oc6DJP5Avk3n4="></latexit>. . .<latexit sha1_base64="oniLNB+97jHfxnUorJL93TlfZ54="></latexit><latexit sha1_base64="oniLNB+97jHfxnUorJL93TlfZ54="></latexit><latexit sha1_base64="oniLNB+97jHfxnUorJL93TlfZ54="></latexit><latexit sha1_base64="oniLNB+97jHfxnUorJL93TlfZ54="></latexit>

CNN CNN CNN CNN

(a) GP-VAE architecture

zt xt

GP
m(·)
k(·, ·) t ∈ {1, . . . , T }

(b) Graphical model

Figure 3.4: Overview of the GP-VAE model: In Figure (a) we show the GP-VAE architecture, where
each zt is modeled from the output of a CNN block and the GP on the latent space, and then decoded
back to x̂t using MLPs. On Figure (b) we depict the graphical model, where the prior of zt comes from a
GP with mean function m(·) and kernel k(·, ·). Figures from original paper (Fortuin et al., 2020).

dependencies encoded on the hidden state of the RNN ht we approximate such expectations at
low complexity by sampling from q(st|xo

t ) using the Gumbel-softmax trick (Jang et al., 2017).
Finally, in Equation 3.17 β is a regularization parameter that we gradually increase during training,
in a way the KL terms do not dominate over the reconstruction term during the earlier stages
of training. Upon training, data is normalized followinf the same procedure as the HI-VAE
described in Section 2.3.3: standard-scaling is used for real attributes, and also to the logarithm
of positive attributes. Categorical data is one-hot encoded.

3.3.5 The GP-VAE Probabilistic Model

As discussed in the introduction, GP-VAE (Fortuin et al., 2020) stands out as the state-of-the-art
VAE to handle temporal series. Before addressing the experimental section, it is relevant to
compare at this point the GP-VAE probabilistic model with respect to Shi-VAE. In GP-VAE, the
latent temporal variable zt is modeled with a Gaussian Process (GP) (Rasmussen et al., 2006),
i.e., zt ∼ GP (mz(·), kz(·, ·)) (Figure 3.4b). The GP prior on the latent space is flexible and robust
but it comes at the cost of inverting the kernel matrix, which has a time complexity of O(T 3).
In contrast, the RNN-based correlation model in Equation 3.3 comes with a computational cost
that grows linearly in T . Moreover, designing a kernel function for GP-VAE that accurately
captures correlations in feature space and also in the temporal dimension is challenging. For
this contribution (Barrejón et al., 2021) we compared to the GP-VAE from Fortuin et al. (2020).
However, new followup works for the GP-VAE (Ashman et al., 2020; Jazbec et al., 2021b,a) ,based
mainly on inducing points, have overcome the presented issues.

As in Shi-VAE, in GP-VAE given zt all the attributes are conditionally independent. Indeed,
the GP-VAE and its inference machinery (Fortuin et al., 2020) does not consider heterogeneous
observations, and all observations are modelled with real-valued Gaussian distributions. An
overview of the GP-VAE model is depicted in Figure 3.4. Notice that the GP-VAE inference model
is composed of CNN blocks which are more complex than our inference networks, only composed of
basic MLP layers. Plus, these CNN blocks correlate neighboring samples, not only xt, which brings
extra capabilities to the model. In the following experimental section we show how we obtain
competitive results with our proposed Shi-VAE model in terms of error metrics for the reconstructed
signals, but also how we obtain more correlated imputations with respect to the original signals.
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(a) Burst of artificial missing.
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Figure 3.5: Description of bursts of missing data and Physionet missing rates: In Figure (a) we show
how we generate missing artificial bursts for different sequences. The red masks and the corresponding
missing entries (black markers) indicate the bursts of missing data. In Figure (b) we include the missing
rates for Physionet. Notice that most of the variables are almost completely missing. The average missing
rate is already 85% approximately.

3.4 Experimental Results

In this section we test the ability of Shi-VAE to exploit hidden correlations between attributes
and infer trustworthy reconstructions in the presence of missing bursts. The following models
are tested against Shi-VAE in the different experiments:

• Mean: We replace the missing values with the mean corresponding to the subsampled
signal.

• Last Obs Carried Forward (LOCF): We impute using the last observed value for a
given attribute.

• KNN: We use k-nearest neighbor with normalized Euclidean distance to find similar samples,
and then impute with a weighted average of the neighbors.

• Matrix Factorization (MF): We subsample and factorize the data into two low-rank
matrices and impute the missing entries with matrix completion Friedman et al. (2001).

• MICE: We use Multiple Imputation by Chained Equations (MICE), a very common method
for missing value imputation which imputes those missing values from multiple imputations
with chained equations White et al. (2011).

• GP-VAE: The GP-VAE described in Section 3.3.5.

We remark that both MF and MICE are “genie-aided" in the sense that they observe
future values of the signal with-in a window to impute the results. The rest of the algorithms
perform missing data imputation in an on-line fashion. Both GP-VAE and Shi-VAE reconstruct
missing values by projecting the observed sequence to the latent space and then reconstruct
the missing values using the generative model. The following python packages were used in
order to implement the following methods: fancyimpute for Mean, KNN and MF; autoimpute
for LOCF and scikit-learn for MICE 4.

4autoimpute(0.12.1), fancyimpute(0.5.5), mice(0.23.2) (Pedregosa et al. (2011))

https://pypi.org/project/autoimpute/
https://github.com/iskandr/fancyimpute
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
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Datasets We show results for three data sets. First, a synthetic data set generated by a
heterogeneous HMM (Hidden Markov Model) with large hidden space, the human monitoring
database described in Section 3.2, and the well known medical data set Physionet Silva et al.
(2012). While in the first database, the generated data set does not contain any missing data,
note that both Physionet and the human monitoring database have quite a lot of missing
observations. We evaluate performance over artificial missing data that we further incorporate
into the data streams in all cases.

Bursts of missing data We introduce missing sequences of random length for every variable
to emulate missing bursts. A visual example can be seen in Figure 3.5a. Each burst is generated
sampling a random length from a uniform distribution U(3, 10) and placing the burst in a random
position given by an observed value. For every case (database and % introduced missing data),
we create 10 random masks with a different missing pattern each, that we use to compute average
errors and standard deviations around them. All masks implemented in the experiments are
accessible in the code repository https://github.com/dbarrejon/Shi-VAE.

Experimental setup We used the default setups for all the baselines model except for the
GP-VAE, where we set the latent dimension to 2 in the synthetic data set, to 35 for Physionet and
to 5 for the other two databases, since these values provided optimized results after cross-validation.
The cross-validated parameter configuration for the Shi-VAE is described in Table 3.2.

Parameter Synthetic Physionet Human Monitoring
Epochs 100 100 100
Annealing Epochs 20 20 50
Dimension z 2 35 5
Dimension h 10 10 10
L 3 10 3
T 100 48 -
Optimizer Adam Adam Adam
Learning Rate 5e− 3 5e− 3 5e− 3
Activation Layers ReLU ReLU ReLU
Split Train/Val/Test 800/100/100 4K/4K/4K 135/15/17
Batch Size 64 64 64

Table 3.2: Parameter configuration for the different experiments.

3.4.1 Evaluation Metrics

In our experiments we found out that baseline models, even without explicitly modeling temporal
dynamics, were able to obtain competitive results in terms of error metrics. However, when we
compared our model with these baselines we notice their imputations were not faithfully correlated
with respect to the original signal. Therefore, we will use two different types of metrics to compare
our models: standard error metrics and cross-correlation metrics between the ground-truth sequence
x and the reconstructed one x̂. Before presenting the evaluation metrics, we will introduce some
basic notation. Let us define Xd as a N × T matrix where we compact the d-th attribute across
all data points and time. This is the matrix before introducing the artificial missing bursts. The
imputed matrix for such attribute is defined as X̂d (equal to Xd for non-missing entries). Therefore,
xn

td is the entry at time t and data point n of Xd. Nd is the number of missing entries in Xd.

https://github.com/dbarrejon/Shi-VAE
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Error metrics We use a different type of error depending on the type of data:

• Continuous data, i.e. real and positive: we consider the normalized root mean squared
error (NRMSE) evaluated only at missing entries

err(d) =
√

1/Nd

∑
n

∑
t(xn

td − x̂n
td)2

max(Xd)−min(Xd) . (3.18)

• Binary data and categorical data: we consider the classification accuracy error evaluated
at the missing entries.

err(d) = 1
Nd

∑
n

∑
t

I(xn
td 6= x̂n

td), (3.19)

where I(·) is the indicator function.

The average imputation error for all the attributes is given by Error = 1/D
∑

d err(d), where
D is the number of attributes.

Cross correlation On temporal data sets, evaluating the performance of a given model based
on standard error metrics might not be conclusive enough, as our experiments demonstrate. We
augment our experiments by analyzing φ(d), which is defined as the sum of the cross correlation
between any missing burst in Xd (a portion of a given row) and its corresponding imputation
in X̂d, normalized by the total number of missing entries Nd. To simplify notation, assume w
and ŵ are the true and imputed values of a missing burst respectively in Xd, then we accumulate
in c(w, ŵ) the maximum value of the normalized cross correlation, i.e.

c(w, ŵ) = max[(w− µw) ? (ŵ− µŵ)], (3.20)

? is the cross correlation operator, and µw is the average signal value during the burst. Hence

φ(d) =

∑
w,ŵ∈Xd

c(w, ŵ)

Nd
(3.21)

We also report the average correlation across all attributes, i.e. Cross. Corr = 1/D
∑

d φ(d).

3.4.2 Synthetic Data set

This data set is composed of N = 1000 samples of length T = 100 from a three-state HMM
model. At each time instant the HMM produces four outputs of different nature: real, positive,
binary and categorical. Each state is characterized by different emission distribution for each
data type. The transition probabilities have been forced to be smooth, so that really abrupt
changes are not likely to happen. Over the clean database, we generate missing masks with
overall missing rates of 10%, 30% and 50%. This missing rates per variable, that is, for each
variable we will have e.g. 10% missing on variable d. Therefore, the total missing per sample is
the aggregated missing rate, which makes the problem more challenging. For all the baselines,
including the GP-VAE, we work with subsampled slots of length T = 50 of every individual
signal. For the Shi-VAE, we consider the whole signal.

In Figure 3.6 we display both reconstruction errors per attribute at different missing rates
(a) and cross correlation for the real and positive attributes (b). In terms of reconstruction
error, GP-VAE obtains the best results for the continuous variables by a small margin compared
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Figure 3.6: Shi-VAE results for the synthetic data set: On Figure (a) we show the imputation error for
each variable and on Figure (b) the cross correlation for the continuous variables at different missing rates.

to Shi-VAE. This is due to the GP-VAE assuming a fully Gaussian distribution. However, for
the binary and categorical view their performance is the same. Their distance with respect to
the other baselines is remarkable. On the other hand, in terms of cross correlation, observe in
Figure 3.6 (b) that Shi-VAE is able to reconstruct signals that are more correlated to the true
distribution of the data. This raises an important question on how temporal models that are
explicitly designed to impute missing values should be analyzed, whether it is more important
to just focus on standard error metrics, or metrics considering temporal dependencies should
be used when assessing the validity of temporal models.

We further illustrate that our model captured the temporal dynamics of the HMM state in
Figure 3.7. The left-most figure depicts the real variable, in the center we show the HMM states
and the latent space s and the right-most figure shows the HMM states (3 possible states) and
the two dimensions of the continuous latent embedding z. The discrete latent variable s is able to
faithfully capture the HMM transitions, as well as the continuous latent variable z, which only
needs one dimension of the embedding to capture it. We argue that the continuous space in this
case is well defined with one dimension since the latent space is already capable to discriminate
between different types of dynamics within the sequences. Also notice that we successfully learnt
for the discrete space because we obtain non-uniform probabilities for the categories of s, and
there is a clear structure directly related to the HMM states.

Figure 3.7: HMM states versus continuous zt and discrete st latent variables: On the left, a real variable
from the synthetic dataset. On the middle, a heatmap showing the probability for each mixture component
from s versus the hidden states of the HMM. On the right, the evolution of the continuous latent variable
z again versus the hidden states of the HMM. The non-identifiability problem comes from being an
unsupervised problem of course.
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Figure 3.8: Shi-VAE and GP-VAE : Shi-VAE and GP-VAE example reconstruction for different attributes
over the Physionet dataset (upper row) and the human monitoring database (bottom row). Missing values
are indicated by black markers in the true signal.

3.4.3 Physionet

In this section, we compare both GP-VAE and Shi-VAE over the Physionet database (Silva et al.,
2012). The data set contains 12,000 patients which were monitored on the intensive care unit
(ICU) for 48 hours each. Each signal is sampled once an hour, hence their length is T = 48. At
each hour, there is a measurement of 35 different variables5 (heart rate, blood pressure, etc.),
any number of which might be missing. Plus, we further introduce artificial bursts of missing
data up to an overall fraction of 10%. Note that the dataset already contains a large fraction of
missing values (see Figure 3.5b, where most variables are almost completely missing).

In Table 3.3 we report GP-VAE and Shi-VAE average reconstruction error and average cross
correlation. Observe that, as in the previous case, GP-VAE slightly improves the Shi-VAE in
terms of average imputation error. However, Shi-VAE achieves a larger cross-correlation with
respect to the ground-truth. To illustrate why reconstruction error can be a missleading metric
when it comes to missing bursts, in the first row of Figure 3.8 we display the imputation of both
methods for different missing bursts located at different Physionet attributes. Missing values are
indicated by markers in the true signal. Observe that, while GP-VAE tends to impute missing
burst with smooth solutions, Shi-VAE imputations certainly follow the true dynamics of the
signal. But this discrepancy is not reflected in the average reconstruction error. In addition,
observe that the Shi-VAE uncertainty (shaded area around the imputed signal) is informative
and varies along time, allowing to identify regions of large and small uncertainty. On the other
hand, the GP-VAE uncertainty does not show such a desired behaviour.

Model Avg. Error Cross. Corr
Shi-VAE 0.064 ± 0.003 38.061 ± 5.000
GP-VAE 0.060 ± 0.002 31.414 ± 1.016

Table 3.3: Physionet database results on the test set. For average error, lower is better. For cross
correlation, larger is better.

5The list and definition of the attributes can be found in Silva et al. (2012).
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Figure 3.9: Shi-VAE and GP-VAE histogram: Comparison of Shi-VAE (blue) and GP-VAE (oragnge)
using histograms and the evaluation metrics on missing and observed data. For RMSE (lower is better)
and for cross-correlation metric (larger is better). On both signals DiasABP and NIMAP, our model is
able to better capture the distribution of the real data (green), even multimodalities as depicted on the
histograms for NIMAP variable. While empirically demonstrate how RMSE can be a misleading metric
when assessing the performance of temporal models.

Similar conclusions can be drawn from the next related experiment. In Figure 3.9 we show one
signal from the Physionet dataset, the real signal in green, the imputation from the Shi-VAE in
blue and the imputation from the GP-VAE in orange. The first column on the right of each signal
shows the distribution of the data with a histogram for the observed values of the signal, and the
second column the distribution for the missing values (shown with black markers on the plot).
The first row corresponds to the histogram that Shi-VAE produces, obtained by sampling from the
model at each point. In the second row we do the same for the GP-VAE. We use the average of 10
samples produced by the models for the results. Below each histogram we show the corresponding
average RMSE between the real samples and the imputed samples for each model. Observe that,
while GP-VAE struggles to fit the real distribution even in the observed values, Shi-VAE provides
a reasonably better result, being able to fit the two modes of the real distribution. This issue is not
clearly reflected in the RMSE metric, which is not indeed very different between both models. On
the contrary, the temporal correlation metric clearly shows the superior performance of Shi-VAE.

3.4.4 Human Monitoring Database

Finally, we reproduce the experiment for the human monitoring database described in Section
3.2. The average fraction of artificially introduced missing rate per attribute is 15%. In this
case the length of the temporal sequences for each patient is different. For Shi-VAE and GP-
VAE, we pad with zeros to the right those sequences with a length smaller than the maximum
sequence length in a batch. As described in Section 3.3.5, the GP-VAE complexity badly scales
with the sequence length. To run GP-VAE in reasonably time, any sequence larger than 50
time steps is subsampled to fit this maximum length. Note that Shi-VAE does not suffer from
such penalization with respect to sequence length.

In Table 3.4, we report the error and cross correlation per attribute (seven of them, as described
in Table 3.1), and the overall average values. Observe that, systematically, Shi-VAE achieves the
largest correlation per attribute. In the second row of Figure 3.8 we show the imputation of both
methods for different missing bursts located at different attributes. The robustness of the Shi-VAE
can be observed in terms of the correlation between the imputed signal and the true one and in
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terms of the uncertainty along time, which tends to be larger for those points in time for which
the Shi-VAE mode is far from the true value. Again, such a behavior is not provided by GP-VAE,
which produces more average imputations not correlated to the real dynamics of the data.

Variable Model Error Cross Correlation
Average Shi-VAE 0.200 ± 0.038 0.369± 0.140

GP-VAE 0.184 ± 0.022 0.157 ± 0.031

Distance Shi-VAE 0.201 ± 0.012 0.783 ± 0.249
GP-VAE 0.205 ± 0.014 0.389 ± 0.092

Steps home Shi-VAE 0.170 ± 0.054 0.010 ± 0.009
GP-VAE 0.151 ± 0.016 0.011 ± 0.009

Steps total Shi-VAE 0.269 ± 0.046 0.444 ± 0.181
GP-VAE 0.268 ± 0.044 0.205 ± 0.038

App usage Shi-VAE 0.113 ± 0.014 0.088 ± 0.045
GP-VAE 0.115 ± 0.013 0.039 ± 0.008

Sport Shi-VAE 0.216 ± 0.086 0.013 ± 0.005
GP-VAE 0.121 ± 0.030 0.009 ± 0.004

Sleep Shi-VAE 0.063 ± 0.010 0.034 ± 0.016
GP-VAE 0.059 ± 0.010 0.013 ± 0.003

Vehicle Shi-VAE 0.372 ± 0.043 1.215 ± 0.477
GP-VAE 0.370 ± 0.028 0.436 ± 0.064

Table 3.4: Results for each variable for the human monitoring data set.

3.5 Discussion

In this work we propose Shi-VAE, a deep generative model that handles temporal and heterogeneous
streams of data in the presence of missing data. While GP-VAE badly scales with long time
series, Shi-VAE handles long term dependencies by encapsulating the temporal information into
the continuous latent code z by using RNN architectures. Having a hierarchical latent model
with an additional discrete latent embedding s provides a more flexible understanding of the data
and benefits the latter process of modeling the heterogeneous distributions.

We have shown with a synthetic data set and two real-world medical data sets that standard
error metrics are not completely informative to fully assess the performance of temporal models.
We remark the importance of analyzing the temporal correlation in these type of studies by using
sequences of missing data along time instead of fully random missing masks as it is normally
done in similar works. In this scenario, Shi-VAE emerges as a robust solution to impute missing
data bursts and perform dimensionality reduction.



Part II

Learning to Defer to
Multiple Experts



52



Saudade, saudade
Nothing more that I can say
says it in a better way
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4
Learning to Defer

Contents
4.1 General Classification Problem . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Binary Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Multiclass Classification: Cross-entropy loss . . . . . . . . . . . . . . . 58
4.1.3 Multiclass-to-binary reduction: Code Based Surrogates . . . . . . . . . 59
4.1.4 Can we abstain to predict? A motivating example towards L2D . . . . 60

4.2 Learning to Defer Background and Related Work . . . . . . . . . . . 61
4.2.1 Learning to Defer within Rejection Learning . . . . . . . . . . . . . . 62
4.2.2 Learning to Defer in the Context of Human-Machine Collaboration . . 63

4.3 Learning to Defer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Softmax Surrogate Loss: Single Expert . . . . . . . . . . . . . . . . . . 67
4.3.3 One-vs-All Surrogate Loss: Single Expert . . . . . . . . . . . . . . . . 68
4.3.4 Realizable-Surrogate Loss: Complement when deferring . . . . . . . . 68
4.3.5 Toy example for Learning to Defer surrogate losses . . . . . . . . . . . 69

4.4 Confidence Calibration in Learning to Defer . . . . . . . . . . . . . . 70
4.4.1 Our Notion of Confidence Calibration . . . . . . . . . . . . . . . . . . 71
4.4.2 Softmax Parametrization: Single Expert . . . . . . . . . . . . . . . . . 72
4.4.3 One-vs-All Parameterization: Single Expert . . . . . . . . . . . . . . . 73

4.5 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 75

In the first part of the thesis we focused on the development of unsupervised machine learning
models (in our case VAEs) able to find hidden correlations in temporal data for recovering or

imputing missing data. After carefully validating these temporal models, or any machine learning
model in general, these models can be deployed in real-world scenarios. For example, imagine a
classifier that has been trained on chest x-ray images to detect whether a person has lung cancer
or not. If we used this system in practice, the first thing we would like to account is uncertainty
quantification: we would like to know how certain the classifier is about its prediction.

Machine learning models are being deployed in a wide range of different fields, including
healthcare (Zoabi et al., 2021; Codella et al., 2018), criminal justice (Zhong et al., 2018), ethical
concerns in minority groups (Birhane et al., 2022; Tomasev et al., 2021), climate change (Lam et al.,
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2022), and autonomous driving (Grigorescu et al., 2020). However, in these scenarios, it is essential
to have trustworthy and safe systems (Hendrycks and Dietterich, 2019; Nguyen et al., 2015).

It is clear that technology has attained an unprecedented level of advancement, demonstrating
its utmost capabilities and potential. Related to the chest x-ray example, Irvin et al. (2019)
showed how a machine learning model was able to outperform 2 out of 3 expert radiologists.
But this read is a bit simplistic of course: in a skin cancer experiment, Tschandl et al. (2020)
wondered how can we leverage from human-machine collaboration. The findings revealed that
even when they were confident, less experienced physicians showed a tendency to accept AI-
based assistance that contradicted their initial diagnosis. The presumed benefits of integrating
human and AI cooperation are also questioned by Jacobs et al. (2021). In a scenario involving
antidepressant selection, they discover that AI recommendations can potentially negatively affect
clinician treatment decisions. Also Schemmer et al. (2022) corroborate in a similar study that
humans over-rely on AI advice and struggle to ignore incorrect advice. This raises an important
question on how should we design algorithms that effectively enable human-machine collaboration?
This question has fallen under the umbrella of hybrid-intelligence (Kamar, 2016a; Dellermann
et al., 2019; Akata et al., 2020) approaches.

One option we can consider is allowing the model to “abstain” from making certain predictions.
The decision not to predict can be based on the model’s confidence level. For example, a self-driving
car might feel uncertain about stopping at a poorly visible traffic light. In a reliable system, this
would lead to the human driver taking control in such situations and then returning control to the
car after passing the traffic light. In such cases, we want the system to act responsibly (Madras
et al., 2018) by referring the decision to the human, not just because the model’s confidence is low,
but also because the system can assess the human’s confidence in that situation. This concept
of not only abstaining from prediction (rejection learning) but also understanding the human’s
knowledge has been explored in a recent theory known as Learning to defer (L2D). In L2D we
are interested on both the machine’s and human’s confidence, and we will defer when the human
is more likely to be correct than the machine. While achieving high accuracy in classification
is crucial, it is essential to emphasize that these systems will be employed in critical scenarios.
Hence, it is imperative that these systems offer consistent estimations that effectively convey the
uncertainty and associated risks involved in decision-making based on their predictions. In simpler
terms, we desire our systems to be appropriately calibrated, meaning that the system’s output
should align with the true uncertainty for both the model and the human involved.

Outline In the following chapter we will try to go through the learning to defer framework:
In Section 4.1, we will first outline a general classification problem – both binary and multiclass
– and provide a motivating example of why using only the model is not a right option in
some problems. We continue with Section 4.2 setting the context and background of L2D,
followed by Section 4.3 which presents the L2D framework and the main contributions from
the literature so far, together with a practical example. Finally, we introduce the concept of
confidence calibration in Section 4.4, specially the expert’s confidence calibration, which is our
prime interest, and comment on how different L2D approaches deal with this issue. Mainly,
how the Mozannar and Sontag (2020)’s formulation is not well calibrated and how Verma and
Nalisnick (2022)’s formulation tries to solve this issue.
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4.1 General Classification Problem

This section presents the common notation that will be assumed for the rest of this thesis, and
remind the reader that, while in Chapters 2 and 3 we were facing a fully unsupervised problem,
now the landscape completely drifts to fully supervised learning. We continue with the derivations
of standard surrogate losses for general classification problems, linking the common equations used
in such problems with the common probabilistic machine learning equations (maximum-likelihood
estimation). Once the classification problem is outlined, we describe binary classification and multi-
class classification, with their appropriate surrogate losses and common parametrizations and briefly
outline how multi-class classification can be decomposed in multiple binary problems in a one-vs-all
(a.k.a one-vs-rest) scheme. We conclude with a toy example where an AI system alone fails at
fully describing a data distribution, and how rejection learning might be an interesting solution.

Data Consider the feature space denoted as X ⊆ Rd and the label space denoted as Y . We assume
that Y represents a categorical encoding of multiple classes (K classes), i.e. Y = {1, 2, ...,K}. In
this context, xn ∈ X represents a feature vector, e.g. an image or text encoded as a vector, and
yn ∈ Y represents the associated class, defined within the label space Y (one out of K classes),
e.g. whether a patient is sick or not (Y = {sick,not sick}). The training sample, consisting of
N elements, is represented as D = {(xn, yn)}N

n=1, where xn ∈ X , yn ∈ Y, and both xi and yi

are sampled from the dataset D. In a machine learning classification problem, the objective
is to learn a mapping h : X → Ŷ. We refer to h as a prediction function, and we assess its
performance using a loss function ` : Y × Ŷ → R+.

Learning Denote the classifier as h : X → Y, and we will denote as θh the parameters of the
classifier h. Therefore, our goal is find the optimal parameters θh to fit the model to the data
distribution D. We will follow the derivations from Murphy (2022). Parameter estimation in
statistical learning often relies on maximum likelihood estimation (MLE), which involves selecting
the parameter values that maximize the probability of the observed training data. To formally
define MLE, we denote it as θ̂MLE and express it as:

θ̂MLE = arg max
θ

p(D|θ). (4.1)

1https://mlhcmit.github.io/2023/lectures/Human-AI%20interaction.pdf
2https://enalisnick.github.io/Calibrated_L2D_talk.pdf

https://github.com/dbarrejon/thesis-l2d
https://mlhcmit.github.io/2023/lectures/Human-AI%20interaction.pdf
https://enalisnick.github.io/Calibrated_L2D_talk.pdf
https://mlhcmit.github.io/2023/lectures/Human-AI%20interaction.pdf
https://enalisnick.github.io/Calibrated_L2D_talk.pdf
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It is common to assume that the training samples are independently and identically distributed (iid)
from the same underlying distribution. Under this assumption, the likelihood function becomes:

p(D|θ) =
N∏

n=1
p(yn|xn; θ). (4.2)

To simplify calculations, it is often more convenient to work with the logarithm of the likelihood,
denoted as L(θ), given by:

L(D; θ) =
N∑

n=1
log p(yn|xn; θ). (4.3)

The MLE can then be expressed as:

θ̂MLE = arg max
θ

N∑
n=1

log p(yn|xn; θ). (4.4)

Since many optimization algorithms aim to minimize cost functions, it is common to redefine
the objective function as the negative log-likelihood (NLL):

NLL(D,θ) = −
N∑

n=1
log p(yn|xn; θ). (4.5)

In a more general framework called empirical risk minimization (ERM), the MLE can be
extended by replacing the (conditional) log loss term with any other loss function. Again,
following Murphy (2022), the empirical risk, denoted as L(θ), is then defined as the average
loss over the training samples:

L(D, θ) = 1
N

N∑
n=1
L(yn,xn; θ), (4.6)

where L(yn;xn; θ) represents the chosen loss function. ERM aims to minimize this empirical
risk by adjusting the parameters θ. In a classification problem, the 0-1 loss function can be
employed to measure misclassification rate. This loss function assigns a value of 0 when the
predicted label matches the true label, and a value of 1 otherwise.

`0-1 (yn,θ; xn) =
{

0 if yn = h (xn; θ)
1 if yn 6= h (xn; θ)

(4.7)

The empirical risk from Equation 4.6 then corresponds to the empirical misclassification rate on the
training set

L0-1(θ) = 1
N

N∑
n=1

`0-1(yn,θ; xn). (4.8)

Surrogate Losses Regrettably, the 0-1 loss from Equation 4.7 exhibits non-smooth behavior
characterized by a step function, as depicted in Figure 4.1, thereby posing challenges for
optimization. In fact, it is NP-hard, as demonstrated by Ben-David et al. (2003). To overcome this
limitation, we explore the adoption of a surrogate loss function (Bartlett et al., 2006). Typically,
the surrogate is carefully chosen to be a convex upper bound that tightly approximates the 0-1
loss, facilitating the optimization process. The choice and design of surrogate losses depends
on the nature of the problem, and it is not a straight-forward task.
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Classifier 
AI System

: No Pneumonia

Patient X-ray

(a) AI system for chest x-ray diagnosis. Inspired by Mozannar and
Sontag (2020) (website figure)3.

(b) Figure courtesy of Murphy (2022).
Generated from this notebook4.

Figure 4.1: Example of AI system predicting pneumonia using softmax. Canonical 0-1 loss and associated
binary surrogate losses: Given a patient’s x-ray, an AI system decides whether the patient has pneumonia
by selecting the output with higher probability (Figure (a)). Figure (b) depicts `0-1 (Equation 4.7) and
binary surrogate losses that are feasible to optimize. In this thesis, we will focus on the log loss.

Consistent surrogate losses The majority of machine learning practices involve optimizing
surrogate loss functions instead of the true loss functions of interest. Surrogate loss functions
are selected to ensure that optimizing them leads to the optimization of the true loss functions.
Additionally, surrogate loss functions are preferred to be differentiable, allowing for efficient
optimization. The concept of consistency encompasses the first property mentioned above.
Throughout this chapter we will present consistent surrogate losses that have been proposed in
the literature for the learning to defer framework, and this will set the ground for our contribution
of extending these consistent surrogate losses to the multiple expert scenario in learning to defer.
However, it must be noted that in practice one can relax the strong assumptions commonly made
for consistent surrogate losses and still achieve great performance (Mozannar et al., 2023).

In the following Subsections we will briefly introduce which surrogate losses can be utilized for
binary and multiclass classification problems in machine learning, and also outline how one can
translate a multiclass problem to a multi-binary problems using code based surrogates.

4.1.1 Binary Classification

In the context of binary problems, an alternative notation can be used to express the misclas-
sification rate. Let y ∈ Y = {−1,+1} represent the true label, and ŷ ∈ Ŷ = {−1,+1} denote
our prediction h(x; θ), the 0-1 loss is defined as:

`0-1(y; ŷ) =
{

0, if y = ŷ

1, if y 6= ŷ
= I[y 6= ŷ] (4.9)

The corresponding empirical risk, in terms of the misclassification rate, is given by:

L(θ) = 1
N

N∑
n=1
L0-1(yn; ŷn) = 1

N

N∑
n=1

I[y 6= ŷ] (4.10)

In this formulation, the dependence on xn and θ is implicit. However, the above equation is
not a convex loss and we need a proper surrogate loss.

3https://husseinmozannar.github.io/publication/mozannar-2020-consistent/
4https://github.com/probml/pyprobml/blob/auto_notebooks_md/notebooks.md#hinge_loss_plot.ipynb

https://husseinmozannar.github.io/publication/mozannar-2020-consistent/
https://github.com/probml/pyprobml/blob/auto_notebooks_md/notebooks.md#hinge_loss_plot.ipynb
https://husseinmozannar.github.io/publication/mozannar-2020-consistent/
https://github.com/probml/pyprobml/blob/auto_notebooks_md/notebooks.md#hinge_loss_plot.ipynb
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Logistic Loss We need a binary surrogate loss φ : {±1} × R 7→ R+. Some suitable surrogate
binary loss we may use is the logistic loss (also known as log loss). Let’s consider a probabilistic
binary classifier that generates a label distribution as follows:

p(y|x; θ) = σ(yg(x)) = 1
1 + e−yg(x) , (4.11)

where g(·) defines a prediction function g : X 7→ R for for the log odds and σ(·) is the sigmoid or
logistic function which maps the real line to values between 0 and 1 , i.e. σ : R→ (0, 1), hence
providing values that can be interpreted as probabilities. We can further view these functions
as g(x) as the log probabilities, often called logits, output by a machine learning model. For the
remainder of this thesis, we relax notation and think that the parameters we want to fit θ come
from the predictor functions g(x), or in other words, the optimization problem will be focused
on finding the Bayesian optimal functions g(x). Following with the derivations, if we apply the
negative log likelihood to the above equation we obtain the logistic loss

φlog(g; x, y) = − log p(y|g(x)) = log(1 + e−yg(x)), (4.12)

where y denotes the true label5. Equation 4.12 can be simplified as φ(y, u) = log(1 + exp{−yu})
, where u are the predictions from the model u = g(x). Figure 4.1(b) demonstrates that the
proposed function provides a smooth upper bound to the 0-1 loss. It represents the relationship
between the loss and the margin, denoted as yg(x), which measures the "margin of safety" away
from the threshold value of 0. Minimizing the negative log likelihood is therefore equivalent
to minimizing a tight upper bound on the empirical 0-1 loss. For a more in depth analysis
of surrogate losses in the context of binary classification we recommend the following works
(Bartlett et al., 2006; Reid and Williamson, 2010).

Prediction The logistic loss function is a strictly proper composite loss (Reid and Williamson,
2009, 2010; Buja et al., 2005) with a well-defined inverse link function γ−1 which maps the
predictions g(x) to the label space Y. Such inverse function is the sigmoid function presented
before, i.e γ−1(g(x)) = σ(g(x)) = 1/(1 + exp{−g(x)}). As it has been shown in the literature, we
know that γ−1(g(x)) can be used as an estimator of the class probability γ−1(g(x) = p(y = y|x).
Hence, in practice the final predictor can be calculated as follows6:

ŷ = h(x) = sign(p(y = y|x)) = sign
(
γ−1(g(x))− 1

2

)
(4.13)

4.1.2 Multiclass Classification: Cross-entropy loss

Now, our label space can have multiple classes Y = 1, . . . ,K. We wish to find a surrogate loss
that we can use, and such loss is the cross-entropy (CE) loss, which is actually the logistic loss
extended to the multiclass problem ψ : Y × R 7→ R+.

5We could also formulate the problem using an alternative binary notation y ∈ Y = {0, 1}. In this case:
φlog(g; x, y) = y log(σ(gy(x))) + (1 − y) log(1 − σ(gy(x))).

6We need the sign(·) operator because y ∈ Y
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Cross-entropy Loss Let gk : X 7→ R for k ∈ [1,K] where k denotes the class index. Again,
one may think of gk as the logits or log probabilities output by a machine learning model.
Now we will consider a classifier assuming a softmax parameterization producing the resulting
probability distribution on the label space

pθ(y|x) = p(y|g(x)) = softmax(gy(x)) = exp{gy(x)}∑
y′∈Y exp{gy′(x)} . (4.14)

pθ(y|x) is a confidence estimate of the probability of the true label, but the true probability
is often denoted as P(y = y|x). This will be extremely important along the rest of the thesis.
However, we can still interpret pθ(y|x) as some kind of probability measure. We will see that
for our problem of interest related to learning to defer (Section 4.3) this no longer applies.
Similarly as in the binary problem, θ come from the functions g(x) = {g1(x), . . . , gK(x)} that
define the classifier h(x). Combining these K functions in the following softmax-base we obtain
point-wise surrogate loss for multiclass classification:

ψCE(g1, . . . , gK ; x, y) = − log p(y|g(x)) = − log
(

exp{gy(x)}∑
y′∈Y exp{gy′(x)}

)
, (4.15)

where y is the true class. By minimizing the cross entropy loss, the model learns to assign
higher probabilities to the correct class and lower probabilities to the incorrect classes, effectively
driving the model towards better classification performance.

Prediction Since the softmax(·) function described in Equation 4.14 provides valid proba-
bility estimates, it is trivial to see that the decoding function to obtain the final prediction
ŷ will be the arg max function

ŷ = h(x) = arg max
y∈Y

p(y = y|x) = arg max
y∈Y

gy(x) (4.16)

In Figure 4.1(a) we included an intuitive example where a classifier using a softmax parametrization
might predict for a given chest x-ray if a patient has pneumonia or not. This AI prediction
is obtained applying Equation 4.16.

4.1.3 Multiclass-to-binary reduction: Code Based Surrogates

One reasonable approach one could think would be apply a divide-and-conquer strategy to the
multi-class problem: instead tackling the multi-class problem altogether, we could decompose it
into multiple binary classification problems. One possible solution for this approach would be
applying error-correcting coding algorithms (Dietterich and Bakiri, 1995; Langford et al., 2005;
Allwein et al., 2001). But we will follow the idea proposed by Ramaswamy et al. (2014), and
refer the reader to the original paper for full details. Further more, we follow the explanation
from Verma and Nalisnick (2022).

The objective of a code-based mechanism is to decompose a classification problem with K̂

classes into K̂ binary classification problems using a code matrix M = {−1, 1, 0}K×K̂ (notice that
the original label space L can be different to the prediction space Ŷ). In this approach, the training
sample S = {(xi, yi)}N

i=1 is split into K̂ training subsets S̃j (for j ∈ [K̂]) by replacing the original
class labels with binary labels based on 4.1.2. Each subset S̃j is used to train a binary classifier
gk : X → RK̂ . Consequently, for any input x ∈ X , the predictions g(x) = [g1(x), . . . , gK(x)]
are obtained, the same way as in Section 4.1.2.
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OvA loss Then, the learning process involves minimizing a surrogate multiclass classification
loss ψ : Y × R → R+ making use of individual binary surrogate losses φ : {±1} × R → R+

using the binary labels obtained from M . If we choose the logistic loss φ (Equation 4.12)
we can write the loss function as

ψ(g1, . . . , gK ; x, y) =
K̂∑

k=1
I[My,k = 1]φ[gk(x)] + I[My,k = −1]φ[−gk(x)], (4.17)

where we express φ[gy(x)] = φ(1, gy(x)) and similarly φ[−gy(x)] = φ(−1, gy(x)). For the specific
case that Y = Ŷ and Myk = 1 and otherwise Myk = −1 then

ψ(g1, . . . , gK ; x, y) = φ[gy(x)] +
∑

y′∈Y′

y′ 6=y

φ[−gy′(x)], (4.18)

It is easy to see that Equation 4.18 can be rewritten as the well-known one-vs-all (OvA)loss
for multiclass classification

ψOvA(g1, . . . , gK ; x, y) = φ[gy(x)] +
∑

y′∈Y′

y′ 6=y

φ[−gy′(x)]

= − log
(

1
1 + exp{−gy(x)}

)
−
∑

y′∈Y′

y′ 6=y

log
(

1
1 + exp{gy′(x)}

)

= − log (σ(gy(x)))−
∑

y′∈Y′

y′ 6=y

log (σ(−gy′(x))) ,

(4.19)

Prediction To map these predictions g(x) back to the original class labels Y, we can follow
the same procedure as described in Section 4.1.1 since for each class y ∈ Y we are solving a
binary classification problem. However, in practice one may also apply the arg max function to
g1, . . . , gK , i.e. ŷ = arg maxy∈Y gy(x) as in the softmax parametrization.

This multi-class to binary reduction approach has been shown to be rather interesting in
terms of calibration (Gupta and Ramdas, 2022) and will be of great relevance along the thesis,
specially for our reference work (Verma and Nalisnick, 2022). This section just served as a short
introduction to the multiclass-to-binary reduction problem. We refer the reader to some studies
on binary proper composite losses (Reid and Williamson, 2009, 2010; Buja et al., 2005).

4.1.4 Can we abstain to predict? A motivating example towards L2D

So far we have presented two commonly used parameterization for solving multi-class classification
problems: the softmax parametrization for the cross-entropy surrogate loss, and the OvA
parametrization for the OvA surrogate loss. In Figure 4.2 we show with a toy dataset of
Mixture of Gaussians (MoG) how the OvA formulation (softmax results are similar) behaves
when trying to fit a binary classification task. With this example we aim to motivate the
reader how a machine learning model can fail to fit the data distribution and how this could
be passed to an external source, such as an auxiliary model with additional information, or
our problem of interest, to a human expert.

First we check under the simplest setup: two class-independent and well-separated clusters.
As depicted in Figure 4.2a the separation of the orange and blue classes is simple and can be
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Figure 4.2: Toy example for binary classification with and without overlapping between classes: Binary
classification example with two classes: orange (◦) and blue (+). Figure (a) presents two non-overlapping
clusters, while Figures (b) and (c) add a new extra cluster with overlap between the classes. Figure (a)
shows an easy example with evident separation between classes. Figures (b) and (c) show how neither
a linear classifier nor a complex model (MLP classifier) are able to data distribution with the new
overlapping cluster. This motivates the idea of rejecting the samples for the overlapping cluster. Example
available here7.

easily done using a linear model minimizing φOvA. However, when we include a new cluster where
50% of the samples are orange, and 50% are blue, the problem becomes trickier. When a linear
model (Figure 4.2b) tries to solve the problem, we see that not only we fail to separate the two
previous clusters, but also fail to separate the overlapping samples from the third cluster. With a
complex model we recover the separation of the two previous clusters, but again, we are not able
to separate the samples in the third cluster. By complex, we refer to a model with non-linear
activations, e.g. a MLP classifier with three layers with a non-linear activation function.

The reader might be driven to think that instead of giving up into the design of an optimal
model able to fit difficult distributions and pass the job to an additional source of information,
one could obviously lucubrate about possible improvements of the base model. That is, one
could incorporate Bayesian reasoning and include informative priors which favor a more spread or
separation of the classes; one could also apply kernel methods such as SVM and try to solve the
problem in the dual space, etc. However, we remind the reader that the aim of the thesis is to pursue
the optimal human-machine interaction, and we want to design frameworks which are trust-worthy
and safety in critical applications. Therefore, we suggest the reader to pause and think about the
following suggestion: what if, instead of relying on our model to fit the whole data distribution, we
can have the option to abstain when needed? This will be presented in the next section under the
research field of rejection learning and will serve as common thread for the rest of the thesis.

4.2 Learning to Defer Background and Related Work

The concept of learning to defer (L2D) represents a significant advancement beyond the traditional
learning to reject paradigm in machine learning. Learning to reject (L2R), or rejection learning,
enables classifiers to abstain from making predictions and incurs a fixed cost, whereas learning
to defer, known as L2D, takes the notion further by considering the interaction between the
classifier and downstream decision-makers. Therefore, we can picture learning to defer as a
more generalized framework of rejection learning.

7https://github.com/dbarrejon/thesis-l2d

https://github.com/dbarrejon/thesis-l2d
https://github.com/dbarrejon/thesis-l2d
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a) b) c)

Positive (+) Negative (-) Ambiguity Reject (+) Ambiguity Reject (-) Novelty Reject

Figure 4.3: Example of rejection in a binary classification scenario with overlapping: The dotted lines
represent the rejector region. Figure (a) depicts the ambiguity region, (b) compares the solution of an the
ideal (solid line ) vs. a linear rejector (dashed-dotted) and Figure (c) illustrates rejection for novel samples.
Figures (a),(b) depict the case where samples inside the rejection region are rejected, and (c) the case
where samples outside the rejector (stars) are rejected. Figure extracted from Hendrickx et al. (2021).

4.2.1 Learning to Defer within Rejection Learning

Rejection Learning Rejection Learning is a learning framework in which a system can choose
not to predict for some samples. The system can choose not to make a prediction for samples
that are far away from the training data (distance rejection), or the samples on which the model
is not confident enough (ambiguity rejection). These two intuitions of rejection are exemplified
in Figure 4.3 (Hendrickx et al., 2021)8, where the samples which are in the overlapping region
could be rejected, as well as those samples very far from the data distribution. The origins of
this problem can be traced back to the work developped by Chow (1957), where he studied the
optimal rejection rule for a fixed cost τ , commonly referred to as the Chow rule:

h∗(x) =
{

reject if maxy∈Y P(y = y|x) ≤ τ
arg maxy∈Y P(y = y|x) otherwise.

(4.20)

From this equation we can read that we will reject if the model is not confident enough (with
respect to the cost τ). In following works, Chow (1970) investigated the trade-off between accuracy
and the rejection rate, highlighting the benefits of rejection learning in consequential decision-
making applications with high costs for incorrect predictions. This set the path to new follow-up
approaches which can be categorized in two types: 1) confidence-based (Bartlett and Wegkamp,
2008; Yuan and Wegkamp, 2010; Jiang et al., 2018; Grandvalet et al., 2009; Ramaswamy et al.,
2018; Ni et al., 2019) and 2) classifier-rejector (Cortes et al., 2016a,b).

Confidence-based Algorithms Confidence-based methods are mainly based on taking into
account the uncertainty in predictions and abstaining from making a prediction when the classifier’s
confidence falls below a certain threshold. In this case the design of the rejector becomes
simpler: finding the optimal threshold. Regarding binary classification, Yuan and Wegkamp
(2010) demonstrate that standard binary classification algorithms, which rely on strictly proper
composite losses like logistic loss, exponential loss, and least squares loss, provide consistent
algorithms for rejection learning. However, designing such algorithms for general multiclass
classification problems is not a straightforward task and requires additional considerations.

8The authors highlight the work by Hendrickx et al. (2021) as a starting reference read for rejection learning.
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Ramaswamy et al. (2018) further expand upon these findings and offer consistent algorithms
for a general classification scenario.

The first intuitive approach would be, from a standard classifier (Section 4.1), use the
uncertainty captured by the model to defer to an expert. This idea is used by Raghu et al.
(2019), where they present a method which involves training a classifier model and using its
predictive uncertainty to defer to an expert. This classifier is trained in a standard manner without
any additional procedures for deferral. The next step would be incorporating in some way the
expert’s uncertainty. This is the path that Bansal et al. (2021) followed: a confidence method
that begins by estimating the probability of the expert being correct, p(y = m). However, this
estimate is independent of the input sample x, meaning that p(m = y|x) = p(m = y).

Classifier-Rejector Algorithms Instead of learning one function which provides uncertainty
estimates and an optimal threshold that determines whether a sample is dangerous to be predicted
by the system, we could simultaneously learn two distinct functions: a classifier and a rejector
altogether. This intuition has been coined in the rejection learning literature as classifier-rejector
algorithms. In Cortes et al. (2016a) and Cortes et al. (2016b), the authors link the two presented
rejection learning approaches by arguing that classifier-rejector methods offer a broader scope
than confidence-based methods, resulting in more robust algorithms; and also theoretically prove
the viability of these approaches in binary classification. However, extending this theory to the
more general case of multi-class classification has proven challenging, as discovered by Ni et al.
(2019). This motivates the search of new surrogate losses for general classificaiton that can be
used in rejection learning for Charoenphakdee et al. (2021).

4.2.2 Learning to Defer in the Context of Human-Machine Collaboration

It should be a de facto believe that the supreme goal of machine learning is not to be an independent
agent by rather a complimentary agent to humans. So the dichotomy of either human or machine
should not be considered. Hopefully, several works have explored human-in-the-loop learning with
decision makers in mind, e.g.(De et al., 2021, 2020; Bansal et al., 2021). Raghu et al. (2019) show
that algorithms designed for both prediction and triage can outperform systems composed of just
machine or just humans. This pursue of human-AI complementarity has been also considered
as an objective itself, and several works investigated on the difficulties of these problems. In De
et al. (2020) the authors prove that ridge regression under human-assistance is NP-hard and then
derive a new objective function as a difference of nondecreasing submodular functions. In their
following-up, work De et al. (2021) prove NP-hardness on margin-based classifiers. In general,
the primary goal of all these works is to promote human-machine collaboration. Bansal et al.
(2021) also followed this line by optimizing a the expected utility of the machine and the expert
working as a team. using a confidence-based method. From all these works we can tall that
having a well-defined notion of uncertainty in the predictions of machine learning systems is
a critical factor in establishing trust in their accuracy and reliability. But these systems can
further leverage from human uncertainty to be more robust (Peterson et al., 2019). Kerrigan
et al. (2021) worry about how combining the model probabilities with the human predictions
affects calibration, and propose a solution using confusion matrices. Furthermore, Steyvers et al.
(2022) follow a Bayesian approach to investigate human-AI collaboration.
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Human-AI complementarity can be viewed under different definitions. Similar to the L2D spirit,
Meresht et al. (2020) investigate on how we can learn to switch between human and machines to
allow existing reinforcement learning agents to operate under different automation levels. Also
Okati et al. (2021) studied the problem of L2D in more general settings than classification, and
derived the optimal deferral policy. But designing algorithms that enable human and machine
collaboration is a hard task. Donahue et al. (2022) investigated the theoretical conditions for
the achievement of complementarity in human-AI systems. They presented impossibility results
that demonstrate scenarios where complementarity cannot be achieved by a human-AI system.
Notably, their findings indicate that achieving complementarity is more attainable when there is
substantial variation in errors between the human and algorithm across different samples. Also
Liu et al. (2022) introduce a new extension of learning to defer, so called Learning to Defer
with Uncertainty (LDU), which is based on a two-stage algorithm that involves training an
ensemble of classifiers in the first stage and using an L2D system in the second stage, which
incorporates the predictions and uncertainties of the classifiers to determine whether to rely
on the classifier’s prediction or defer to the expert.

These findings shed light on how the learning to defer framework facilitates the natural
emergence of complementarity and the division of labor. With knowledge of the human’s expertise,
the model can adapt accordingly to complement the human’s abilities. This allows the model
to focus on providing predictions for samples with lower error rates than the human, thereby
fostering complementarity in the human-AI system.

4.3 Learning to Defer

Rejection learning has emerged as a promising paradigm for safety-critical applications. However,
traditional rejection learning approaches tend to overlook the crucial role of downstream experts,
who ultimately bear the responsibility of making decisions for the rejected samples. Furthermore,
these experts might also fail in the decision task. In addressing this limitation, Madras et al.
(2018) introduced a novel adaptive rejection learning framework known as learning to defer (L2D).

Learning to Defer is a promising learning system for high-stake decision making as both experts
and the machine learning systems can work together based on their strengths and weaknesses,
thereby alleviating some trust and predictability issues in decision making. Specifically, building
upon the prior work of Cortes et al. (2016a), Madras et al. (2018) incorporate a rejector function r(x)
to model the decision of whether to defer to the expert r(x) = 1 or not (r(x) = 0). The elegance of
the L2D framework is in its ability to model the expert’s knowledge without having to replicate the
expert’s predictive performance. Instead of having a fixed cost for deferring as the confidence-based
approaches presented before, L2D allows the system not just reject but also learns to adapt itself
to some downstream expert. L2D falls under the umbrella of classifier-rejector approaches we
commented before: we have a single system that can both behave as a classifier or a rejector,
which can also be seen as a meta-classifier deciding which samples should be passed to the expert.

However, the learning objective for learning to defer is a difficult optimization problem. The
first work to provide a consistent surrogate loss in the L2D literature was Mozannar and Sontag
(2020). Mozannar and Sontag (2020) study the multi-class classification problem and theoretically
prove that the loss proposed by Madras et al. (2018) is inconsistent. Other L2D approaches did

8https://husseinmozannar.github.io/publication/mozannar-2020-consistent/

https://husseinmozannar.github.io/publication/mozannar-2020-consistent/
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Figure 4.4: L2D diagram. We augment the label space Y⊥ = Y ∪ {⊥}, where ⊥ is the deferral dimension.
In practice, g⊥ can serve as a proxy estimate of the expert’s decision probability. If the deferral dimension
⊥ is greater than the class dimensions g1, . . . , gK , then we defer to the expert; in the opposite case, the
decision is taken by the classifier. Figure adapted from Mozannar and Sontag (2020) website figure9.

not come with consistency guarantees (Raghu et al., 2019; Wilder et al., 2020; Pradier et al.,
2021; Okati et al., 2021; Liu et al., 2022). The next work to propose a proper consistent surrogate
loss for L2D is the work done by Verma and Nalisnick (2022). Motivated by the importance of
calibration in hybrid intelligence systems, Verma and Nalisnick (2022) analyze the validity of the
loss presented by Mozannar and Sontag (2020) and find out that their proposal is not guaranteed
to produce valid probabilities due to the use of softmax parametrization. Hence, they propose
a new consistent surrogate loss for L2D based on one–vs-all classifiers.

In the following sections we will provide the technical background of L2D and comment
how the two parametrizations: 1) softmax parametrization (Mozannar and Sontag, 2020) and
2) one-vs-all (OvA) parametrization (Verma and Nalisnick, 2022) behave with respect to ex-
pert’s confidence calibration.

4.3.1 Preliminaries

Data We first define the data for multiclass L2D with one expert. Let X denote the feature
space, and let Y denote the label space, which we assume to be a categorical encoding of multiple
(K) classes. xn ∈ X denotes a feature vector, and yn ∈ Y denotes the associated class defined by
Y (1 of K). The L2D problem also assumes that we have access to (human) expert demonstrations.
Denote the expert’s prediction space as M, which is usually taken to be equal to the label
space: M = Y. Expert demonstrations are denoted mn ∈ M for the associated features xn.
The combined N-element training sample is D = {xn, yn,mn}N

n=1, where xi ∈ X , yi ∈ Y and
xi, yi ∼ D, and mi ∈ M,mi ∼ P. It is often assumed that the human has prior training
or access to additional information not available to the classifier (Z) apart from input X , i.e.
mi ∼M |X,Z. Compared to the standard classification setup we presented in Section 4.1, notice
D is the same with the addition of the expert’s predictions.

9https://husseinmozannar.github.io/publication/mozannar-2020-consistent/

https://husseinmozannar.github.io/publication/mozannar-2020-consistent/
https://husseinmozannar.github.io/publication/mozannar-2020-consistent/
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(a) Binary problem with labels {+, ◦}. Ex-
tracted from Mozannar and Sontag (2020).

(b) Description of a L2D system. Adapted from Mozannar
et al. (2023).

Figure 4.5: Intuitive example of binary classification using L2D and description of an L2D system:
Figure (a) shows a binary problem with labels {+, ◦}. The expert’s region is colored in red, so the classifier
is expected to fit the data in the blue region, which is linearly separable. The dashed-black line represents
the rejector separating both groups. Figure (b) depicts the standard L2D pipeline: the rejector r(x)
decides who should predict, the classifier h(x) or the expert M(z). Notice that the expert predicts using
side information z.

Intuition In Section 4.1.4 we saw that both a linear and a complex classifier alone could not fit
some data distribution. In Figure 4.5a we show how L2D would tackle that problem. Assume we
have two populations: the blue (A = 0) and the red (A = 1); and also two classes: {+, ◦} = Y.
The data X is generated conditional on the target y and the population A: x|(y = y,A = 0) is
normally distributed N (µy,0,Σ), and x|(y = y,A = 1) consists of two clusters: cluster (1) normally
distributed, but with non-separable means and (2) only separable by complex non-linear boundaries.
We assume that the expert can find the nonlinear boundary for cluster (1) and has side information
Z to separate cluster (2). The optimal behavior for our L2D framework would be to learn a rejector
r that can effectively separate populations A = 1 and A = 0, hence allowing the expert to predict
at region A = 1 where the expert is more likely to be correct and allowing the classifier predict at
region A = 0. However, we must say that in practice there are trade-offs as we will show later.

Models and Learning Mozannar and Sontag (2020)’s and Verma and Nalisnick (2022)’s L2D
frameworks compose two models: a classifier and a rejector (Cortes et al., 2016a,b). Denote
the classifier as h : X → Y and the rejector as r : X → {0, 1}. When r(x) = 0, the classifier
makes the decision. When r(x) = 1, the system defers the decision to the human. When the
classifier makes the prediction, then the system incurs a loss `(h(x), y). When the human makes
the prediction (i.e. r(x) = 1), the system incurs a loss `exp(m, y). Using the rejector to combine
these losses, we have the overall classifier-rejector loss:

L(h, r) = Ex,y,m [(1− r(x)) `(h(x), y) + r(x) `exp(m, y)] , (4.21)

where the rejector is acting as an indicator function that controls which loss to use. The
rejector can be interpreted as a meta-classifier, determining which inputs are appropriate to
pass to h(x). While this formulation is valid for general losses, the canonical 0-1 loss is of
special interest for classification tasks:

L0-1(h, r) = Ex,y,m [(1− r(x)) I[h(x) 6= y] + r(x) I[m 6= y]] , (4.22)
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where I denotes an indicator function that checks if the prediction (either from the classifier h
or the expert m) and label are equal. Upon minimization, the resulting Bayes optimal classifier
and rejector satisfy (Mozannar and Sontag, 2020; Verma and Nalisnick, 2022):

h∗(x) = arg max
y∈Y

P(y = y|x), (4.23)

r∗(x) = I
[
P(m = y|x) ≥ max

y∈Y
P(y = y|x)

]
, (4.24)

where P(y|x) is the probability of the label under the data generating process, and P(m = y|x)
is the probability that the expert is correct. The expert likely will have additional knowledge
not available to the classifier, which possibly allows the expert to outperform the Bayes optimal
classifier. When the aforementioned conditions are satisfied, the rejector and classifier can be
considered Bayes optimal, indicating that they are the classifiers that exhibit the lowest expected
error. Essentially, the classifier selects the label that has the highest posterior probability of
being accurate, while the rejector chooses between the classifier and the expert based on the
one with the highest posterior probability of being correct.

4.3.2 Softmax Surrogate Loss: Single Expert

Mozannar and Sontag (2020) proposed the first consistent surrogate loss for L0−1, meaning that
its minimizers agree with the Bayes optimal solutions in Equation 4.23. They accomplish this by
first unifying the classifier and rejector via an augmented label space that includes the rejection
option. Formally, this label space is defined as Y⊥ = Y ∪ {⊥} where ⊥ denotes the rejection
option. Secondly, Mozannar and Sontag (2020) use a reduction to cost sensitive learning that
ultimately resembles the cross-entropy loss for a softmax parameterization. Let gk : X 7→ R for
k ∈ [1,K] where k denotes the class index, and let g⊥ : X 7→ R denote the rejection (⊥) option.
These K+ 1 functions are then combined in the following softmax-based, point-wise surrogate loss:

φSM(g1, . . . , gK , g⊥; x, y,m) =− log
(

exp{gy(x)}∑
y′∈Y⊥ exp{gy′(x)}

)

− I[m = y] log
(

exp{g⊥(x)}∑
y′∈Y⊥ exp{gy′(x)}

)
.

(4.25)

The intuition is that the first term aims to maximize the function gk associated with the true
label. Then, the second term maximizes the rejection function g⊥ but only if the expert is correct.
When the expert makes a mistake (I[m = y] = 0), the loss is based on the cross-entropy (CE)
loss with the target. In such cases, if the predicted probability of the defer option g⊥(x) is high,
the predicted probability of the correct option gy(x) must be lower, resulting in a higher loss.
On the other hand, when the expert agrees with the target (I[m = y] = 1), the learner faces a
dilemma of whether to trust the expert’s judgment or make its own prediction.

At test time, the classifier is determined by selecting the maximum value among k within the
range [1,K]; and the rejector decides to defer if the deferral dimension g⊥ is greater than
any other label dimension gk

ŷ = h(x) = arg max
k∈[1,K]

gk(x) (4.26)

r(x) = I[g⊥(x) ≥ max
k

gk(x)]. (4.27)

These Equations are similar to Equations 4.23, but notice now that we use the confidence estimates
gk output by the system, not the true underlaying probabilities P(y|x), since these latter ones
are attained at the true Bayesian optimal point.
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Comments on the α parameter In the original paper, Mozannar and Sontag (2020) propose
the incorporation of a hyperparameter α ∈ R+ to modify the weighting of the classifier loss when
the expert is correct so that the classifier can focus on the samples when the expert makes a
mistake. For instance, in a clinical scenario where clinicians are pressed for time, we would like
that our model focuses on those regions where the clinicians are more prone to fail. We can view
the α parameter as a modulator of the degree of responsibility we want to assign to the expert, e.g.
by choosing α < 1. However, the desired consistency property for the surrogate loss is lost for all
α 6= 1. In practice this hyperparameter is searched to maximize system accuracy on a validation set.

For the rest of the thesis, we will always assume that α = 1 to hold consistency and we refer
the reader to the original softmax formulation paper (Mozannar and Sontag, 2020) or other works
who have studied the influence of the α parameter (Gantzert, 2021).

4.3.3 One-vs-All Surrogate Loss: Single Expert

With the information we presented in Section 4.1.3, we can now turn our attention to our next
surrogate loss of interest. Verma and Nalisnick (2022) proposed an alternative consistent surrogate
for multiclass L2D based on a one-vs-all (OvA) formulation. Again assume we have K + 1
functions g1(x), . . . , gK(x), g⊥(x) such that g : X 7→ R. Their one-vs-all (OvA) surrogate
loss has the point-wise form:

ψOvA(g1, . . . , gK , g⊥; x, y,m) = φ[gy(x)] +
∑

y′∈Y,y′ 6=y

φ[−gy′(x)]

+ φ[−g⊥(x)] + I[m = y] (φ[g⊥(x)]− φ[−g⊥(x)]) ,
(4.28)

where φ : {±1} × R 7→ R+ is a binary surrogate loss. For instance, when φ is the logistic loss, we
have φ[f(x)] = log(1+exp{−f(x)}) (as comment in Section 4.1.1). The classifier and rejector can
be computed following the same scheme as the softmax formulation, namely Equations 4.26 and
4.27 respectively. The motivation for this loss is that it produces better calibrated systems than
those produced by the softmax-based loss. The softmax loss has a degenerate parameterization
that causes it, in practice, to overestimate the experts probability of correctness (Verma and
Nalisnick, 2022). This is an important issue, specially in sensitive scenarios where confidence
estimates must be trust-worthy. We will address this in Section 4.4.

4.3.4 Realizable-Surrogate Loss: Complement when deferring

The surrogates φSM and ψOvA have been proven to satisfy consistency. However, recently a
new extension of φSM has been proposed by Mozannar et al. (2023). In this work the authors
show how previous works fall short in achieving a human-AI system with low misclassification
error, even when a linear classifier and rejector with zero error exist (the realizable setting).
This motivates the proposal of a new surrogate loss for learning to defer, namely the realizable
surrogate loss. This formulation is a realizable-consistent surrogate loss and not fully consistent
because it is differentiable but non-convex for g, where g = [g1, . . . , gK ]. However, it is convex
in gk∀k = [1, . . . ,K] . The surrogate is defined as

φRS(g1, . . . , gK , g⊥; x, y,m) = −2 log
(

exp(gy(x)) + I[m = y] exp(g⊥(x))∑
y′∈Y⊥ exp{gy′(x)

)
(4.29)
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When the expert is incorrect, i.e. I[m = y] = 0, the loss incentivizes the classifier to be correct (loss
is the same as φSM in Equation 4.25) . However, now if the expert is i.e. I[m = y] = 0, the learner
can choose between fitting the target or deferring, with no penalty for choosing one or the other.
The classifier can still learn on those regions where the expert is correct, which was before penalized
in the softmax surrogate loss φSM. As stated by Mozannar et al. (2023), this allows the classifier
to complement the expert, rather than penalizing for not fitting the target even when deferring.

Allowing the classifier to complement the expert comes at a cost: the classifier could predict
wrongly for the samples deferred to the human (recall the red region in Figure 4.5a where the
classifier would fail in the cluster t(2) for region A = 1) and hence resulting in high errors
for certain regions of the data domain. We can alleviate this by incorporating a cross-entropy
term for the classifier in the following way:

φα
RS(g1, . . . , gK , g⊥; x, y,m) = −α log

(
exp(gy(x)) + I[m = y] exp(g⊥(x))∑

y′∈Y⊥ exp{gy′(x)

)

− (1− α) log
(

exp{gy(x)}∑
y′∈Y exp{gy′(x)}

)
.

(4.30)

This new proposal with the new hyperparameter α ∈ [0, 1] is a convex combination of φRS and
the cross-entropy of the classifier (notice the denominator only involves the label space Y, rather
than Y⊥). This new loss, a part from the commented behavior above, also permits using linear
models and still be able to accommodate complex classification tasks. We just presented this new
surrogate loss here for the sake of completeness and literature review of consistent surrogate losses
in L2D; for further details and theoretical proofs we refer to the original paper.

4.3.5 Toy example for Learning to Defer surrogate losses

Reusing the MoG dataset from Section 4.1.4, we showcase in Figure 4.6 how softmax, OvA and
Realizable surrogate losses perform under this task. Again, we have a binary classification problem
with labels {×, ◦} with three clusters: two clusters with no class overlap (lower left and centered
cluster) and one third cluster with class overlap (upper right cluster). For the experiment, we
design an oracle is an oracle, i.e. predicts perfectly, on the third cluster, and randomly in clusters
0 and 1. The intuition is that, given this complex binary task, the expert has side information
that allows him to predict perfectly the region of the space where the classifier would fail. For
the OvA and softmax surrogates we used a complex model consisting on a linear model with a
ReLU layer before the last linear layer, and for the Realizable surrogate a linear model consisting
of the same model as OvA and softmax without the ReLU layer. We show in blue the regions
of the space that are not deferred, or in other words, the regions where the classifier will be
responsible for predicting, and in orange the deferred regions where the expert will predict. We see
that OvA (Figure 4.6a) and Realizable (Figure 4.6c) surrogate losses behave similarly, effectively
deferring to the expert the correct samples, while softmax (Figure 4.6b) also defers those regions
of the space that will be considered as ambiguous or novel.
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(a) OvA (Verma and Nalisnick,
2022) using a complex model.
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(b) Softmax (Mozannar and Son-
tag, 2020) using a complex model.
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(c) Realizable surrogate (Mozan-
nar et al., 2023) using a linear
model.

Figure 4.6: Comparison of L2D surrogate losses in a MoG example: For a binary task with labels {×, ◦}
and samples distributed in three clusters: clusters A and B for each class and linearly separable; and
cluster C with class overlap between the samples. The expert predicts perfectly on cluster C and random
elsewhere. We show how OvA (a), softmax (b) and Realizable surrogate (c) solve the task. While OvA
and softmax use complex models (with a liner model they do not succeed), the new Realizable surrogate
can separate the expert region with a linear model. Example available here10.

Which formulation to use? Not that obvious In terms of system accuracy we see that
these three losses behave similarly: we end up deferring to the expert the samples that we
would like the expert to predict. However, it is very interesting the difference between OvA and
Realizable surrogate with respect to softmax. First, OvA and Realizable permit the classifier
to account for responsibility in novel regions of the space, while softmax surrogate exhibits a
more cautious behavior and also defers samples that approximate the intersection between the
two linearly separable classes. In this case, the optimal choice of which L2D we should use
is not evident, and will be constrained to the kind of problem we are solving. For example,
we could pose two situations in medical scenarios:

1. If the problem we are facing is sensible, meaning that false negatives could lead to egregious
mistakes, such as misdiagnosing if a given patient has cancer, then one could argue that the
softmax formulation (Figure 4.6b) would be the right choice, since the gap between the two
linearly-separable clusters could be also deferred.

2. If deferring to an expert shall be also associated to a cost of deferring, due to the availability
of a doctor to diagnose a patient for example, then we could opt for the OvA or Realizable
formulations, and trust the classifier in those novel regions.

Of course, this is just an example with the sole purpose of motivating the reader to think that
the performance of each formulation is completely tied to the nature of the problem.

4.4 Confidence Calibration in Learning to Defer

When we want to assess the performance of a machine learning model on multi-class classification
problems, the most usual metrics to report are accuracy, precision, recall, confusion matrix, just
to name a few. But when the problem of interest is to be deployed in critical applications, such as
autonomous driving or medical scenarios, we require not just a point estimate but we are also
interested on quantifying the uncertainty of such estimate. For example, if an L2D system is being

10https://github.com/dbarrejon/thesis-l2d

https://github.com/dbarrejon/thesis-l2d
https://github.com/dbarrejon/thesis-l2d
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used for medical diagnosis, then a doctor will want to inspect the system’s probabilities, at least
for purposes of sanity checking. Even more interesting, recent studies (Benz and Rodriguez, 2023)
show that humans struggle to trust predictions based on confidence values. Therefore, if these
confidence values, a part from being misjudged a priori by the experts, do not really reflect good
probability estimates, then the whole human-machine collaboration pipeline becomes degenerate.

To help prevent such scenarios, we want our systems to be well calibrated. The output
probabilities should reflect the true uncertainties of the model and human. In other words, the
L2D system should be a good forecaster. If the system says the expert has a 70% chance of being
correct P(m = y|x0) = 0.7, then the expert should indeed be correct in about 70 out of 100 cases for
samples similar to x0. In order to achieve optimal decision making in scenarios with varying class
distributions and misclassification costs, it is crucial for a classifier to generate accurately calibrated
posterior probability estimates Kull et al. (2017). For a proper human-machine collaboration,
certain factors such as transparency, trust, and fairness are essential (Cramer et al., 2008; Madras
et al., 2018; Schmidt and Biessmann, 2020; Zhang et al., 2020). Bhatt et al. (2021) argue that
we should pay special attention to uncertainty for fairness, transparency, decision-making, and
trust in automated-AI systems. Calibration should be a must-have property in critical scenarios,
even more important than accuracy (Sayin et al., 2022). In this study, (Tschandl et al., 2020)
found that AI systems can mislead physicians into incorrect diagnoses, even when the doctor is
originally confident. This further highlights the need of calibrated estimates.

Furthermore, calibration has gained significant attention in recent machine learning literature
(Guo et al., 2017; Kull et al., 2019; Vaicenavicius et al., 2019; Nixon et al., 2019; Gupta and Ramdas,
2022; Minderer et al., 2021). The dominant methodology is to apply post-hoc calibration: fitting
additional parameters on validation data to re-calibrate the formerly mis-calibrated model (Guo
et al., 2017; Yu et al., 2022). These methods could potentially be applied in the L2D framework
–such as, by adding a temperature parameter to the expert terms in our surrogate losses—but we
are primarily interested in the native, ‘out-of-the-box’ calibration properties of the losses.

4.4.1 Our Notion of Confidence Calibration

For this thesis we adopt the notion of confidence calibration presented by Guo et al. (2017) a
well-studied measure of the quality of confidence estimates in machine learning literature. However,
given that calibration is a very hot topic in the machine learning community, one may find different
definitions of calibration, such as the one proposed by Gupta and Ramdas (2022), where they
propose using top-label calibration instead of confidence calibration in multi-class problems.

L2D literature has mainly focused on the overall performance of the system. However, we have
made clear that calibration should also be studied in L2D framework. In the following section we
present how the two consistent surrogate losses – softmax and OvA– find confidence estimates,
with more emphasis on the estimates for the expert’s correctness probability P(m = y|x) and we
use calibration as a measurement of goodness of such estimates. We also present the degenerate
behavior that the softmax formulation exhibits (Mozannar and Sontag, 2020) and how it results
in expert’s confidence estimates greater than one, as pointed out by Verma and Nalisnick (2022).
We do the same for the OvA formulation Verma and Nalisnick (2022).
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Calibration We next define the relevant notion of calibration. Throughout this thesis we will
use confidence calibration (Dawid, 1982). This applies to any confidence estimate, but in the
thesis we will mainly focus on the expert’s correctness probability. For an estimator of expert
correctness t⊥(x) : X 7→ (0, 1), we call t calibrated if, for any confidence level c ∈ (0, 1), the
actual proportion of times the expert is correct is equal to c:

P(m = y | t⊥(x) = c) = c. (4.31)

This statement should hold for all possible instances x with confidence c. We can denote as
ty the confidence estimate of our true probability ty(x) ≈ P(y = y|x) and t⊥ as the confidence
estimate of the expert’s correctness probability t⊥(x) ≈ P(m = y|x). However, we will see next
if this actually holds for softmax and OvA formulations. Since expert correctness is a binary
classification problem, distribution calibration, confidence calibration, and classwise calibration
all coincide (Vaicenavicius et al., 2019). We can measure the degree of calibration using expected
calibration error (ECE). In this case, the relevant ECE is defined as

ECE(t⊥) = Ex|P (m = y | t⊥(x) = c)− c|, (4.32)

where Ex is usually approximated with samples. Typically, the ECE is calculated by dividing
predictions into bins of equal width based on their confidence levels. . This measure is commonly
represented graphically as reliability diagrams. For each bin, we examine whether the calibration
equation (Equation 4.32) holds true. The disparity between the bin’s confidence and the observed
accuracy is plotted, and the average of these differences is referred to as ECE (see Figure 4.7).

4.4.2 Softmax Parametrization: Single Expert

As commented above, we want that our confidence are well calibrated so that they reflect the
true probabilities of our distribution. Therefore, we need to answer two questions: 1) how to get
those confidence estimates and 2) are these confidence estimates well calibrated?.

How do we obtain the confidence estimates t⊥ and ty for φSM? For our calibration
study we need to find the confidence estimates ty and t⊥. One could initially think that these
estimates are just the softmax outputs of the model

t⊥(x) = exp{g⊥(x)}∑
y′∈Y⊥ exp{gy′(x)} (4.33)

ty(x) = exp{gy(x)}∑
y′∈Y⊥ exp{g′

y′(x)} . (4.34)

However, as pointed out by Verma and Nalisnick (2022), and following (Mozannar and Sontag,
2020)’s Theorem 1, we know the Bayes optimal functions g∗

1 , . . . , g
∗
⊥,J relate to the true

probabilities in the following way. For P(m = y|x) we get

P(m = y|x)
1 + P(m = y|x) = exp{g∗

⊥(x)}∑
y′∈Y⊥ exp{g∗

y′(x)} = t∗⊥(x), (4.35)

and for P(y = y|x) we get

P(y = y|x)
1 + P(m = y|x) =

exp{g∗
y(x)}∑

y′∈Y⊥ exp{g∗
y′(x)} = t∗y(x). (4.36)
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Rearranging the above equations obtain

P(m = y|x) = t∗⊥(x)
1− t∗⊥(x) = exp{g∗

⊥(x)}∑
y′∈Y exp{g∗

y′(x)} (4.37)

P(y = y|x) = 1
1− t∗⊥(x)

exp{g∗
y(x)}∑

y′∈Y⊥ exp{g∗
y′(x)} =

exp{g∗
y(x)}∑

y′∈Y exp{g∗
y′(x)} . (4.38)

Notice that, in the denominator in Equations 4.37 and 4.38 and , we don’t have Y⊥, but Y, i.e.
we use the label space without the deferral dimension. It is easy to check that ty(x) ≈ P(y = y|x)
provides valid estimates since

∑
y′∈Y P(y = y′|x) = 1 and also P(y = y|x) ∈ [0, 1]. However,

as t⊥(x) approaches 1, P(m = y|x) goes to infinity, i.e. the expert’s correct probability gets
unbounded P(m = y|x) ∈ [0,∞). Of course, the fact that this probability estimate goes to
infinity will have consequences with respect to calibration.

How good are the confidence estimates for expert’s correctness t⊥? Now we are
concerned about how good our expert’s correctness estimates are under the softmax parametrization.
The goal is to empirically prove that effectively P(m = y|x) can go to infinity. Luckily, Verma
and Nalisnick (2022) already proved this. We decided to include Figure 3.2. a),b) from the
original paper in this thesis under Figure 4.7 and we refer the reader to their work for more details.
From Figure 4.7a we can see how the estimate of the expert’s correctness probability can be
bigger than one P(m = y|x) > 1 and Figure 4.7b validates the hypothesis: the calibration results
are very poor for the softmax parametrization. The average ECE for the expert’s correctness
estimate is very high and the red-shaded region shows how, for confidence values from 0.9
to 1 the expected accuracy is smaller.

A part from the intrinsic limitation of the softmax parametrization in the context of L2D,
many other works worry about the generalized and default usage of the softmax parametrization in
multi-class classification problems. In Pearce et al. (2021) the authors investigate the contradiction
between neural networks’ inability to effectively increase uncertainty for out-of-distribution data
and the limited success of using softmax confidence as a proxy for uncertainty. Wang et al. (2021)
show that simply using the largest model output under a softmax paramterization can be limiting,
specially in OOD applications. In Sensoy et al. (2018) authors show that softmax provides unreliable
uncertainty estimation and propose using a dirichlet distributions to quantify uncertainty instead.

4.4.3 One-vs-All Parameterization: Single Expert

The softmax parameterization has been shown to exhibit poor calibration properties, which are
not only desirable in learning to defer algorithms, but in any machine learning framework. The
unbounded estimate for the expert’s correctness probability was effectively found by Verma and
Nalisnick (2022), who proposed the OvA parameterization to account for the miscalibration
problem of the softmax. Next, we follow the same strategy as before, we show 1) how are the
confidence estimates t⊥ and ty found under this parameterization and 2) check if these estimates,
specially the expert’s correctness estimate t⊥ are calibrated.
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(a) Empirical distribution of
P(m = y|x), denoted as pm(x).
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(b) Reliability diagram and ECE
for softmax formulation.
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(c) Reliability diagram and ECE
for OvA formulation.

Figure 4.7: Calibration of Softmax and OvAparamerization Subfigure (a) reports the empirical values
for P(m = y|x) for the CIFAR-10 dataset, where we corrobarate that for certain samples the expert
probability is bigger than 1 (denoted in red). Subfigures (b) and (c) show the reliability diagram and
the ECE for softmax and OvA respectively, when P(m = y|x) is caped to (0, 1]. The red-shaded region
represents the proportion of samples on the bin (the darker, the more samples it has). We see that
the degenerate behavior of softmax effectively results in worse calibration results (bigger ECE is worse).
Results from original paper (Verma and Nalisnick, 2022).

How do we obtain confidence estimates from φOvA? As effectively proved by Verma and
Nalisnick (2022) (Appendix C.2 from the original paper), we know that the OvA parametrization
provides valid probability estimates for P(m = y|x) and for P(y = y|x) for all labels y ∈ Y

P(m = y|x) = t∗⊥(x) = σ (g∗
⊥(x)) = 1

1 + exp{−g∗
⊥(x)} (4.39)

P(y = y|x) = t∗y(x) = σ
(
g∗

y(x)
)

= 1
1 + exp{−g∗

y(x)} (4.40)

This holds true because the sigmoid function σ(·) is the inverse-link function for the logistic loss
φ (Reid and Williamson, 2010) and because now both estimates ty and t⊥ have valid ranges
between [0, 1]. Therefore, P(m = y|x) ≈ t⊥(x) and P(y = y|x) ≈ ty(x).

How good are these confidence estimates? In Figure 4.7c we included the results from
Verma and Nalisnick (2022) using the new OvA parametrization for L2D. Now the expected
accuracy is much closer to the real confidence estimate and the ECE drops about 50% compared
to the softmax parametrization (Figure 4.7b), 7.58% for softmax versus 3.01% for OvA.

However, one significant drawback of the suggested one-vs-all formulation is that it restricts
us from computing normalized probabilities for all classes. Instead, we can only estimate the
probability of each output label in isolation. Consequently, while we can assess the confidence
calibration of the OvA classifier, we are unable to evaluate its distribution calibration. However,
as pointed out in the original paper (Verma and Nalisnick, 2022), in real-world scenarios, it’s
nearly impossible to achieve perfect distribution calibration Zhao et al. (2021). Hence using the
One-vs-All (OvA) formulation can be a practical trade-off. It allows us to have a reliable estimator
for the expert’s correctness probability P(m = y|x) and helps achieve confidence calibration.
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4.5 Summary of the Chapter

This chapter introduced the Learning to Defer framework under a multi class classification problem

1. We presented the notation for a general multicalss classification problem, together with
a motivating example where only a classifier fails on the classification task.

2. We presented the background and related work for learning to defer.

3. We introduced learning to defer (L2D) and the two main consistent surrogate losses yet
proposed: the softmax formulation (Mozannar and Sontag, 2020) and the OvA (Verma and
Nalisnick, 2022) formulation.

4. We introduced the concept of confidence calibration, particularly focusing on expert’s
confidence calibration. We discuss how the softmax formulation can lead to miscalibrated
solutions and explain how the OvA approach helps overcome this problem
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But on a bright fall morning, I’m with it
I stood a little while within it
Man, you have to know
Know the way

iMi — Bon Iver PLAY-CIRCLE
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Solving complex problems often requires the involvement of multiple experts (Fay et al.,
2006). For example, in healthcare, serious illnesses require the patient be treated by multiple

specialist and such task requires multiple opinions, as when a team of doctors consults on a
difficult medical diagnosis. These experts may have non-overlapping specialties, such as in a
large construction project that requires the advice of engineers, architects, geologists, lawyers,
etc. Synthesizing information from these various experts creates an additional challenge—even for
humans—as it can be unclear how to combine the information from the disparate sources.

In Chapter 4 we presented the Learning to defer (L2D) framework where a rejector model
acts as a meta-classifier, predicting whether the downstream classifier or human is more likely
to make the correct decision for a given input. Yet existing L2D frameworks do not obviously
accommodate additional experts. For instance, the rejector’s job becomes more challenging
when there are multiple experts. In human-machine collaboration, the primary challenge is
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Figure 5.1: Learning to Defer to Multiple Experts diagram: For a given input, now we have the option to
defer not only to either the classifier or one expert, but to a set of experts. Figure from Verma, Barrejón,
and Nalisnick (2023) AISTAT’s poster1.

often thought to be when to rely on the machine vs the human. Yet when there are multiple
experts, there are two decisions to be made: when to defer and to whom to defer. Some
experts may perform better than the model but perhaps others will not. Thus assessing and
monitoring expert quality is an important sub-task.

Contribution In our work (Verma, Barrejón, and Nalisnick, 2023) we develop the statistical foun-
dations of multiclass L2D with multiple experts. Specifically, we address the following open
problems:

1. Deriving a consistent surrogate loss under the multiple expert setting.

2. Studying whether these systems are confidence calibrated.

3. Developing a principled technique for ensembling expert decisions.

The first and second contributions ensure the soundness of the optimization problem and resulting
downstream decision making. For the first contribution, we derive two consistent surrogates—one
based on a softmax parameterization, the other on a one-vs-all (OvA) parameterization—that are
analogous to the single expert losses proposed by Mozannar and Sontag (2020) and Verma and
Nalisnick (2022), respectively. We then study the frameworks’ ability to estimate P(mj = y|x),
the probability that the jth expert will correctly predict the label for x. Theory shows the
softmax-based loss causes mis-calibration to propagate between the estimates while the OvA-based
loss does not (though in practice, we find there are trade offs). Our third contribution, expert
ensembles, follows from our study of calibration, as we propose a conformal inference procedure
for selecting a subset of experts. We empirically validate our methods on the tasks of image
classification, galaxy categorization, skin lesion diagnosis, and hate speech detection. We find
that our consistent losses result in superior accuracy and calibration when compared to existing
systems based on (inconsistent) mixtures of experts (Hemmer et al., 2022).

Notes on the contributions: This chapter is based on two contributions: the first
contribution (Verma, Barrejón, and Nalisnick, 2022) [ICML 2022 Workshop on Human-Machine
Collaboration and Teaming], where we extended softmax and OvA surrogate losses to multiple
experts and analyze their calibration properties, and the second (Verma, Barrejón, and Nalisnick,
2023) [Artificial Intelligence and Statistics (AISTATS), 2023] where expanded the work to more
real-world dataset, and incorporated the conformal ensemble of experts. However, the toy example
for multiple experts described in Section 5.1.3 did not appear in the mentioned contributions.

1https://virtual.aistats.org/media/PosterPDFs/AISTATS%202023/5689.png?t=1681813237.7885134

https://virtual.aistats.org/media/PosterPDFs/AISTATS%202023/5689.png?t=1681813237.7885134


5. Learning to Defer to Multiple Experts 79

5.1 L2D To Multiple Experts

In the previous chapter we present the two consistent surrogate losses for L2D that haven
been proposed so far in the literature. We now turn to the multi-expert setting, deriving two
consistent surrogate losses that are analogous to Mozannar and Sontag (2020)’s and Verma
and Nalisnick (2022)’s single-expert loss functions.

Data We first define the data for multiclass, multi-expert learning to defer (L2D). Following
the same reasoning as in the single expert setup (4.3.1), let xn ∈ X and yn ∈ Y be the feature
and label respectively. The L2D problem ssumes that we have access to (usually human) expert
demonstrations. Now let there be J experts, and denote each expert’s prediction space as Mj

(which again we will assume is equal to the label space: Mj = Y ∀j). The expert demonstrations
are denoted mn,j ∈Mj for the associated features xn. The combined N-element training sample
is then denoted D = {xn, yn,mn,1, . . . ,mn,J}N

n=1.

Models Again we use the classifier-rejector formulation (Cortes et al., 2016a,b). Remember that
the goal is to learn two functions: the classifier, h : X → Y , and the rejector. The classifier (h) is
unchanged from the single-expert setting. The rejector, on the other hand, must be modified. In
L2D with one expert, the rejector makes a binary decision—to defer or not. In multi-expert L2D,
the rejector also must choose to which expert to assign the instance. Hence let the rejector be
denoted r : X → {0, 1, . . . , J}. When r(x) = 0, the classifier makes the decision. When r(x) = j,
the classifier abstains, hence resulting in the system deferring the decision to the jth expert.

Learning Again the learning objective is the 0 − 1 loss. We can re-write Equation 4.22
for the multi-expert setting as:

L0−1(h, r) = Ex,y,{mj}J
j=1

[
I[r(x) = 0] I[h(x) 6= y] +

J∑
j=1

I[r(x) = j] I[mj 6= y]
]
. (5.1)

The corresponding Bayes optimal classifier and rejector are:

h∗(x) = arg max
y∈Y

P(y = y|x), (5.2)

r∗(x) =
{

0 if P(y = h∗(x)|x) > P(mj′ = y|x) ∀j′

arg maxj∈[1,J] P(mj = y|x) otherwise,
(5.3)

where P(y|x) is again the probability of the label under the data generating process and P(mj = y|x)
is the true probability that the jth expert is correct. We provide the derivation of this rule in
Section B.1. Recall that, by assumption, the expert likely will have additional knowledge not
available to the classifier. This assumption is what allows the expert to possibly outperform
the Bayes optimal classifier.
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5.1.1 Softmax Surrogate Loss: Multiple Experts

Given the preceding definitions, we can now define the multi-expert analog of the softmax-
based surrogate loss (Mozannar and Sontag, 2020). Define the augmented label space as Y⊥ =
Y ∪ {⊥1, . . . ,⊥J} where ⊥j denotes the decision to defer to the jth expert. Let the classifier be
composed of K functions: gk : X 7→ R for k ∈ [1,K] where k denotes the class index. Then let the
rejector be implemented with J functions: g⊥,j : X 7→ R for j ∈ [1, J ] where j is the expert index.
We propose to combine these K+J functions via the following softmax-parameterized surrogate loss:

φJ
SM (g1, . . . , gK , g⊥,1, . . . , g⊥,J ; x, y,m1, . . . ,mJ) =

− log
(

exp{gy(x)}∑
y′∈Y⊥ exp{gy′(x)}

)

−
J∑

j=1
I[mj = y] log

(
exp{g⊥,j(x)}∑

y′∈Y⊥ exp{gy′(x)}

)
.

(5.4)

The intuition is that the first term maximizes the function gk associated with the true label.
The second term maximizes the rejection function g⊥,j but only if the jth expert’s prediction
is correct. At test time, the classifier is obtained by taking the maximum over k ∈ [1,K]:
ŷ = h(x) = arg maxk∈[1,K] gk(x). The rejection function is similarly formulated as

r(x) =
{

0 if gh(x) > g⊥,j′ ∀j′ ∈ [1, J ]
arg maxj∈[1,J] g⊥,j(x) otherwise.

(5.5)

Our proof of the soundness of Equation 5.4 follows the same approach that Mozannar and Sontag
(2020) employed—specifically, a reduction to cost-sensitive learning that ultimately resembles
the cross-entropy loss for a softmax parameterization.

Theorem 5.1.1. ψJ
SM (Equation 5.4) is a convex (in g), calibrated surrogate loss for the 0− 1

multi-expert learning to defer loss (Equation 5.1).

The complete proof can be found in Appendix B.2. The result guarantees that the mini-
mizers g∗

1 , . . . , g
∗
K , g

∗
⊥,1, . . . , g

∗
⊥,J correspond to the Bayes optimal classifier and rejector given

in Equation 5.2 and Equation 5.3 respectively.

5.1.2 One-vs-All Surrogate Loss: Multiple Expert

We next turn to the OvA surrogate loss. Let the label space Y⊥ and the functions g1, . . . , gK , g⊥,1, . . . ,

g⊥,J be defined just as above for the softmax case. The OvA-based multi-expert L2D surrogate is
then:

ψJ
OvA(g1, . . . , gK , g⊥,1, . . . , g⊥,J ; x, y,m1, . . . ,mJ) =

φ[gy(x)] +
∑

y′∈Y,y′ 6=y

φ[−gy′(x)] +
J∑

j=1
φ[−g⊥,j(x)]

+
J∑

j=1
I[mj = y] (φ[g⊥,j(x)]− φ[−g⊥,j(x)])

(5.6)

where φ : {±1} × R 7→ R+ is again a binary surrogate loss. For instance, when φ is the logistic
loss, we have φ[f(x)] = log(1 + exp{−f(x)}). The g-functions are entirely the same, and the
classifier and rejector are computed exactly as in the softmax case.
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We cannot construct our consistency proof in the same direct manner used in the softmax
case. Like Verma and Nalisnick (2022), we proceed by the method of error correcting output
codes (Dietterich and Bakiri, 1995; Langford et al., 2005; Allwein et al., 2001; Ramaswamy et al.,
2014), a general technique for reducing multiclass problems to multiple binary problems. We
prove the consistency of ψJ

OvA by way of the following two results.

Theorem 5.1.2. For a strictly proper binary composite loss φ with a well-defined continuous
inverse link function γ−1, ψJ

OvA (Equation 5.6) is a calibrated surrogate for the 0−1 multi-expert
learning to defer loss (Equation 5.1).

The complete proof is in Appendix B.3. Assuming minimizability (Steinwart, 2007)—i.e. that
our hypothesis class is sufficiently large (all measurable functions)—the calibration result from
Theorem 5.1.2 implies consistency.

Corollary 5.1.3. Assume that g ∈ F , where F is the hypothesis class of all measurable
functions. Minimizability (Steinwart, 2007) is then satisfied for ψJ

OvA, and it follows that
ψJ

OvA is a consistent surrogate for the 0− 1 multi-expert learning to defer loss (Equation 5.1).

Thus, the minimizers of ψJ
OvA (over all measurable functions) agree with the Bayes optimal

classifier and rejector (Equation 5.2 and Equation 5.3 respectively).

5.1.3 Toy example with Multiple Experts L2D

For the sake of completeness, and expanding the single expert example from Section 4.6 to
the multiple expert setup, we showcase the two propose surrogate losses presented in Verma,
Barrejón, and Nalisnick (2023), and also add the Realizable surrogate loss from Mozannar et al.
(2023) in this new multiple expert setup.2

Multi-expert Realizable Surrogate We can intuitively extend the realizable surrogate loss
presented in Section 4.3.4 to the multiple expert setup as

φmulti-RS(g1, . . . , gK , g⊥; x, y,m) = −2 log
(

exp(gy(x)) +
∑J

j=1 I[mj = y] exp(g⊥,j(x))∑
y′∈Y⊥ exp{gy′(x)

)
, (5.7)

where the reader may notice that we just included the the summation over the J experts on
the contributions for each expert. The evaluation of the validity of this new surrogate loss
under the same theoretical premises as the single expert surrogate loss derived in Mozannar
et al. (2023) is left as an exercise for the reader.

Proof-of-concept with MoG dataset In Figure 5.2 we retrieve the same MoG dataset we
had before, but now we add a new cluster D where a second expert is an oracle. We showcase the
performance the multi-expert formulation of OvA (Figure 5.2a), softmax (5.2b) and realizable
surrogate (5.2c). We see that the behavior for every surrogate the intuitive result one would
expect. Again, we see the behavior for OvA and realizable surrogate is rather similar, while
softmax still delegates more responsibility in the experts.

2The derivations for Realizable Surrogate loss from Mozannar et al. (2023) were not included in the original
paper Verma, Barrejón, and Nalisnick (2023) since they were presented concurrently in the same conference.
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(a) OvA Verma and Nalisnick
(2022) using a complex.
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(b) Softmax Mozannar and Sontag
(2020) using a complex model.
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(c) Realizable surrogate Mozannar
et al. (2023) using a linear model.

Figure 5.2: Comparison of Multiple Expert L2D surrogate losses in a MoG example: For a binary task
with labels {×, ◦}, we have four clusters: clusters A and B which are linearly separable; and clusters B
and C where two experts predict correctly in one of the clusters respectively. As expected, the classifier
fits those regions where the expert are not oracle (blue) and the rejector is able to discriminate the regions
for expert 1 (orange) and for expert 2 (green) accordingly. Complex model differes from the linear model
just by a non-linear activation at the output. Example available here3.

5.1.4 Inconsistency of Mixture of Experts

While we are the first to propose a consistent surrogate loss, previous work has proposed a mixture
of experts (MoE) approach to multi-expert L2D. Hemmer et al. (2022) formulated the following
model of the probability of the label under the whole team (of J experts and one classifier):

p (y|x,m1, . . . ,mJ ; θw,θh) = w0(x; θw) · p(y|x; θh) +
J∑

j=1
I[mj = y] · wj(x; θw), (5.8)

where p(y|x; θh) denotes the classifier’s probability. The function w(x; θw) ∈4J+1—where 4J+1

is the (J +1)-dimensional simplex—defines the mixture weights. w0 assigns weight to the classifier,
and wj for j ∈ [1, J ] denotes the weight given to the jth expert. At test time, the index of the
maximum weight determines to which downstream decision maker to assign responsibility. Hemmer
et al. (2022) fit this MoE model using the negative log-likelihood of p(y|x,m1, . . . ,mJ ; θw,θh);
denote their loss LMoE(θw,θh). In Appendix B.4.1, we show that LMoE(θw,θh) is inconsistent.
We provide a full discussion of related work in Section 5.4.

5.2 Confidence Calibration of Expert Confidence

We next turn to the calibration (Dawid, 1982) properties of multi-expert L2D. While training with
a consistent loss should produce models that are well-calibrated, previous work on the single-expert
setting found that the underlying parameterizations can strongly influence calibration in practice.
Specifically, Verma and Nalisnick (2022) show that the softmax formulation’s estimators can be
unbounded, resulting in ‘probability’ estimates above one. As for the calibration of the classifier,
Verma and Nalisnick (2022) found that there is to systemic issue and can be improved with standard
post-hoc techniques like temperature scaling (Kull et al., 2019), if necessary. Their findings also
apply to the multi-expert scenario, and thus we consider only the rejector going forward.

We are particularly interested in the rejector’s ability to estimate P(mj = y|x), the conditional
probability that the jth expert is correct. If the L2D system says that P(mj = y|x0) = 0.8, then

3https://github.com/dbarrejon/thesis-l2d

https://github.com/dbarrejon/thesis-l2d
https://github.com/dbarrejon/thesis-l2d
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the jth expert should be correct 80% of the time for inputs very similar to x0. This quantity is
crucial not only for the system’s ability to correctly defer but is also useful for interpretability
and safety—to quantify what the model thinks that the human knows.

Therefore, we will extend the notion of calibration defined for the single expert setup in
Section 4.4 to the multi-expert setup. Now, for an estimator of expert correctness t⊥,j(x) :
X 7→ (0, 1), we call t⊥,j calibrated if, for any confidence level c ∈ (0, 1), the actual proportion
of times the expert is correct is equal to c:

P(mj = y | t⊥,j(x) = c) = c. (5.9)

Analogously to the formulation of the ECE for the single expert case (as represented by Equa-
tion 4.32), we can now define the expression for the multi-expert ECE as follows:

ECE(t⊥,j) = Ex|P (mj = y | t⊥,j(x) = c)− c|. (5.10)

where Ex is usually approximated with samples.

5.2.1 Softmax Parameterization: Multi-Expert

For the softmax formulation, the estimator of the probability that the jth expert is correct can be
derived as follows; see Appendix B.2 (Equation B.11). The Bayes optimal functions g∗

1 , . . . , g
∗
⊥,J

have the following relationship with the underlying probability of expert correctness:

P(mj = y|x)
1 +

∑J
j′=1 P(mj′ = y|x)

=
exp{g∗

⊥,j(x)}∑
y′∈Y⊥ exp{g∗

y′(x)} = t∗⊥,j(x). (5.11)

Denote the RHS of Equation 5.11 as t∗⊥,j(x). Since we have J equations, one for each expert,
we can uniquely solve for P(mj = y|x) as:

P(mj = y|x) =
t∗⊥,j(x)

1−
∑J

j′=1 t
∗
⊥,j′(x)

=
exp{g∗

⊥,j(x)}∑
y′∈Y exp{g∗

y′(x)} . (5.12)

Equation 5.12 exhibits the same pathology as the single expert setting: it is unbounded from
above. For t⊥,j(x) > 0, as

∑J
j′=1 t⊥,j′(x) approaches one, the estimate of P(mj = y|x) will go

to infinity. Moreover, the estimator for the jth expert depends on the estimators for the other
experts due to the denominator involving the quantity t∗⊥,j(x) for all experts (Equation 5.11).
Thus, if one t⊥,j(x) is mis-calibrated, this error will likely propagate to the other estimators. In
the experimental section we will test if this degeneracy can occur in practice.

Following the same intuition as the rejector — fully detailed in Appendix B.2 (Equation B.10)
— the estimates of the classifier can be described as follows:

P(y = y|x = x)
1 +

∑J
j=1 P(mj = y|x = x)

= exp{gy(x)}∑
y′∈Y⊥ exp{gy′(x)} . (5.13)

Rearranging the equations we finally get

P(y = y|x) = 1
1−

∑J
j′=1 t

∗
⊥,j′(x)

exp{g∗
y(x)}∑

y′∈Y⊥ exp{g∗
y′(x)} =

exp{g∗
y(x)}∑

y′∈Y exp{gy′(x)} . (5.14)

Similarly as for the single expert case for the softmax formulation, it is easy to see that
∑

y′∈Y P(y =
y′|x) = 1 and also that the classifier probability is bounded P(y = y|x) ∈ [0, 1].
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5.2.2 One-vs-All Parameterization: Multi-Expert

For the OvA formulation (Verma and Nalisnick, 2022), the probability that the j-th expert is
correct is directly modeled by the jth deferral function. In the same spirirt as for the single expert
case, and assuming we are using the logistic binary loss φ, we have:

P(mj = y|x) = σ
(
g∗

⊥,j(x)
)

= 1
1 + exp{−g∗

⊥,j(x)} (5.15)

P(y = y|x) = σ
(
g∗

y(x)
)

= 1
1 + exp{−g∗

y(x)} . (5.16)

The complete proof is described in Appendix B.3. The expert’s correctness estimator has the
correct range of [0, 1] for any setting of g⊥,j ∈ R. Moreover, there is no dependence across expert
deferral functions g⊥,1, . . . , g⊥,J , unlike the softmax case. In the experimental section (5.5) we
will test these properties to result in better calibration in practice.

5.3 Ensembling Expert with Conformal Inference

Multi-expert L2D, as defined above, operates by selecting just one expert upon deferral. This
approach is sensible if querying each expert results in an independent expense (such as a consulting
fee). However, in other settings, the cost incurred by deferring may just be that of time and
efficiency (i.e. a lack of automation). In this case, the cost of querying additional experts would
be negligible; for example, we could send multiple experts simultaneous messages asking for their
decisions. Given the estimators of P(mj = y|x) presented in the previous section, it is then natural
to ask how we might ensemble experts according to these estimates of correctness. Below we present
a methodology based on conformal inference for obtaining dynamic, minimal ensembles of experts.

5.3.1 Conformal Inference

Conformal Inference Conformal inference (CI) (Shafer and Vovk, 2008)4 constructs a confi-
dence interval (or set) for predictive inference. In the traditional multiclass classification setting,
given a new observation xn+1, we wish to determine the correct associated label yn+1 = y∗

n+1,
where y∗

n+1 denotes the true class label. CI allows us to construct a distribution-free confidence
set C(xn+1) that will cover the true label with marginal probability 1 − α:

P
(
y∗

n+1 /∈ C(xn+1)
)
≤ α ∀ P ∈ P

where P represents the space of all distributions—hence the ‘distribution-free’ quality. Denote the
test statistic as S(x, y;D). It is known as a non-conformity function: a higher value of S means
that (x, y) is less conforming to the distribution represented (empirically) by D. Despite this
guarantee, CI is only as good as its test statistic in practice. For instance, the marginal coverage
is naively satisfied if we construct the set randomly by setting C(x) = Y with probability 1− α
and returning the empty set otherwise. CI is implemented by calculating the non-conformity
function on a validation set and computing the empirical 1− α quantile q̂α (with a finite sample
correction). At test time, elements are added to the set until the non-conformity function passes
the previously-computed quantile. Conformal inference has gain much attention in the recent
years, both in regression (Romano et al., 2019) and classification tasks (Romano et al., 2020;
Angelopoulos et al., 2020; Sadinle et al., 2019).

4We also suggest to newcomers in conformal inference the introduction to conformal inference by Angelopoulos
and Bates (2021).
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5.3.2 Conformal Inference on Sets of Experts

Conformal Sets of Experts We propose applying CI to perform uncertainty quantification
for the experts. Thus, here, C(x) represents a set of experts. Firstly, we assume there is a best
expert: for a new observation xn+1, let j∗

n+1 denote the best expert such that

P(mj∗
n+1

= y|xn+1) > P(me = y|xn+1) ∀e 6= j∗
n+1. (5.17)

We would then like to construct a set such that j∗
n+1 is covered with marginal probability 1− α:

P
(
j∗

n+1 /∈ C(xn+1)
)
≤ α ∀ P ∈ P (5.18)

where C(xn+1) again denotes the conformal set and P is the same as above. The set will
have a dynamic size that changes with x, ensuring our ensemble makes efficient use of expert
queries. Unlike in most applications of CI, we can use the procedure to form an ensemble by
aggregating the predictions of all experts in the set.

Naive Statistic We start by adapting a score function from multiclass classification. Let
sj(x) denote the estimator that the jth expert is correct. For the softmax case, sj(x) =
t⊥,j(x)/(1 −

∑
j′ t⊥,j′(x)) (Equation 5.12), and for OvA, sj(x) = φ(g⊥,j(x)) (Equation 5.15).

Let π1, . . . , πJ denote the indices for a descending ordering of the estimators sj(x), i.e. sπ1 is
the expert who has the best chance of being correct (according to the rejector). The resulting
non-conformity function and test statistic are:

S (x, y,m1, . . . ,mJ ;D) =
E∑

e=1
sπe(x) (5.19)

where πE is the index of the expert who has the lowest score sπE
of all correct experts (m = y).

This expression means that we will keep adding the correctness scores s in descending order
until we include all experts who correctly predict the given instance. Hence E = J only when
all experts are correct and E < J otherwise.

Regularized Statistic A problem with the statistic above is that multiple experts can be
correct, resulting in noise that obscures the identity of the best expert. In this case, since the we
are using the estimates for the experts’ correctness probability as our pseudo soft labels for the
conformity scores calculations, one might view this similar to a multilabel classification problem,
where more than one expert can be correct. As shown by Cauchois et al. (2021), these scenarios
result in bigger predicted sets. Also, since the experts predictions are not fixed, but the experts
have a certain probability of being correct, we can also see that these predictions will have noise,
and this also results in bigger sets (Einbinder et al., 2022). In the experiments, we effectively
show that this ‘naive’ statistic is not robust to noise, resulting in inflated set sizes (which are
sometimes vacuous). Similar problems are discussed by Angelopoulos et al. (2020). To address
this issue, we employ conformal risk control (Angelopoulos et al., 2022) to directly control the
false negative rate. We create regularized prediction sets as follows:

Cλα
(x) = {j : sj(x) + β (sj(x)− κ) > 1− λα} (5.20)

where β and κ are the parameters of the regularization and λα is chosen to have 1− α coverage
guarantees. In the following subsection, we describe λα and how we choose the regularization
parameters. The general idea is to choose κ so that confidences lower than this threshold can
happen with probability at most α. We choose β to optimize the size of the sets.
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5.3.3 Choice of Hyperparameters for Regularized Conformal Ensembles

We begin by giving a brief introduction to the procedure of conformal risk control. For detailed
exposition, we refer the reader to the original paper (Angelopoulos et al., 2022).

Conformal risk control (Angelopoulos et al., 2022) is a generalized form of conformal prediction
which aims to control any bounded monotone loss function `(·) in expectation. In our work, we are
interested in False Negative Rate (FNR) as a specific loss function which satisfies the monotonicity
property as a function of λ (Equation 5.20). Given access to the calibration data {xn, yn}N

n=1,
the goal in conformal risk control is to find λ̂ so that the following coverage guarantee holds:

E
[
`
(
Cλ̂(xn+1

)]
≤ α.

Without loss of generality, we consider ` to be a non-increasing function of λ and bounded
by a constant B. Procedurally, it works by defining S (x1:N;λ) = 1

N
∑N

i=1 ` (Cλ (xi)). For
α ∈ (−∞, B], λ̂ is then defined as

λ̂ = inf
{
λ : n

n+ 1S (x1:N;λ) + B

n+ 1 ≤ α
}
.

Assuming exchangeability on `(Cλ(xi)), this results in the desired coverage guarantees for Cλ̂(xn+1).
In our work, we use a grid of equally spaced 1500 values in [0, 1] to pick λ̂. We have two
hyperparameters κ and β in the regularized conformal ensemble procedure discussed in Section
5. In Algorithm 1 we detail the procedure to choose κ.

Algorithm 1 Choice of κ
Data: Error rate: α, # Experts: J, Data: {si(x), ei(x)}N

i=1 with expert’s confidence si(x) ∈ [0, 1]J
and true expert predictions ei(x) ∈ {0, 1}J

B ← H·I
for i ∈ [1, N ] do

for j ∈ [1, J ] do
if I

{
ei

j(x) == 1
}

then
B ← B ∪ {si

j(x)}
end

end
S ← sort (B) s.t. ui, uj ∈ S, i ≤ j, then ui ≥ uj

κ∗ ← 1− α quantile of S
end

We can employ corrections to account for finite sample size N on line 9. Given this procedure
to choose κ∗, one may argue that our choice of κ∗ can give us meaningful prediction sets
by designing a prediction set as:

C2(x) = {j : sj(x) ≥ κ∗}.

However, our next proposition establishes that Cλ(x) results in prediction sets at most as large as
C2(x).

Proposition 5.3.1. Define the prediction sets Cλ(x) = {j : sj(x) + β (sj(x)− κ∗) > 1− λ}
and C2(x) = {j : sj(x) ≥ κ∗}, where κ∗ is defined as above, β ≥ 0, 0 ≤ λ ≤ 1, then it trivially
holds that

Cλ(x) ⊆ C2(x).
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We tune β in a grid-search manner. The grid size for β is [3.5, 1e−3] with steps of 50 samples.
We split the total number of deferred samples into two portions: one for tuning hyperparameters
β and κ, another for the regular conformal procedure. 30% of the deferred samples are used
to tune the ensembling hyperparameters.

5.4 Related Work

Multi-Expert Models There have been several works that use models to improve the decision
making of multiple experts (Benz and Rodriguez, 2022; Straitouri et al., 2023) and to fuse decisions
from models and humans (Keswani et al., 2021; Kerrigan et al., 2021). In the context of L2D,
we already presented in Section 5.1.4 the work by Hemmer et al. (2022), who proposed the
only existing model for multi-expert L2D. Yet their approach does not have any supporting
theoretical guarantees, such as consistency (like ours). Another MoE model related to L2D was
proposed by Pradier et al. (2021). They propose a novel MoE model called Preferential MoE
which augments human expertise in decision making only when necessary — hence similar to
the learning to defer motivation. Again, this model does not account for consistency. Keswani
et al. (2021) also proposed an MoE-based model for the multi-expert scenario but not for the
standard L2D setting that we consider. Rather they allow for responsibility to be passed to
multiple downstream sources—specifically, to any of the 2J+1 possible sets involving the experts
and/or model. An important difference with our work is that here each expert has its own domain
of expertise. In a similar flavor to our work, Benz and Rodriguez (2022) present a counterfactual
inference mechanism to infer when and to whom we should ask for second opinions to improve
allocation of resources in automated decision support systems.

Learning to Defer Previous L2D extensions did not come with consistency guarantees (Raghu
et al., 2019; Wilder et al., 2020; Pradier et al., 2021; Okati et al., 2021; Liu et al., 2022). Verma
and Nalisnick (2022) proposed the second provably consistent surrogate for multiclass L2D based
on a one-vs-all formulation. Charusaie et al. (2022) further studied the L2D optimization problem,
proving results for complementarity and active learning. Our work extends Mozannar and Sontag
(2020)’s and Verma and Nalisnick (2022)’s results to the multi-expert setting—for which no
one has yet to propose a consistent surrogate loss.

Calibration in L2D Verma and Nalisnick (2022) motivate their OvA surrogate from the
standpoint of calibration and thus is the only other work that studies the confidence calibration
of L2D systems. We extend their work to the multi-expert setting. Calibration has received
much attention of late in the wider machine learning literature (Guo et al., 2017; Kull et al.,
2019; Vaicenavicius et al., 2019; Gupta and Ramdas, 2022). The dominant methodology is to
apply post-hoc calibration: fitting additional parameters on validation data to re-calibrate the
formerly mis-calibrated model. These methods could potentially be applied here—such as, by
adding a temperature parameter to the per-expert terms in the OvA loss—but we are primarily
interested in the native, ‘out-of-the-box’ calibration properties of the losses.
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Conformal Inference for Human-AI Collaboration In the last years, more interest is
appearing on the adoption of conformal inference as an uncertainty quantification tool in the
context of human-AI collaboration. As theoretically and empirically proved by Babbar et al.
(2022), it may be more beneficial to recommend a subset of options rather than a single option.
Babbar et al. (2022) study a similar work flow (apply CI then pass to a human) and also propose
applying CI only to non-deferred samples, which results in smaller set sizes. Straitouri et al. (2023)
apply CI to a classifier and then pass the prediction set to a human to make the final decision. To
the best of our knowledge, no previous work has applied CI to obtain sets of experts.

5.5 Experiments

Our experimental setup closely follows that of Verma and Nalisnick (2022)—but extended to
multiple experts. For all runs, we report the mean and standard error across 3 random seeds. We
perform three types of experiments. In the first, we check the system accuracy of the derived
consistent surrogate losses in three consequential tasks (Subsection 5.5.1): galaxy classification,
skin lesion diagnosis, and hate speech detection. We find that the OvA-trained model often
outperforms both the softmax variant and MoE baseline. Secondly, we investigate the confidence
calibration properties of the surrogates (Subsection 5.5.2). As hypothesized, the OvA loss results
in less calibration error on both simulated and real data (possibly explaining its superior accuracy).
Lastly, we investigate the efficacy of our conformal ensembling procedure (Subsection 5.5.3). For
the naive statistic, the OvA loss’ superior calibration results in appropriately smaller sets. For
the regularized statistic, both losses perform equally well. Our implementations are publicly
available at https://github.com/rajevv/Multi_L2D.

5.5.1 Overall System Accuracy

Data Sets We report the overall system accuracy for three real-world data sets: HAM10000
(Tschandl et al., 2018) for skin lesions diagnosis, Galaxy-Zoo (Bamford et al., 2009) for galaxy
classification, and HateSpeech (Davidson et al., 2017) for hate speech detection. The train-
validation-test split is 60% − 20% − 20%. Following Verma and Nalisnick (2022), we down-
sample Galaxy-Zoo to 10, 000 instances.

Models We use a 34-layer residual network (ResNet34) and a 50-layer residual network
(ResNet50) as base models for HAM10000 and Galaxy-Zoo respectively. For HateSpeech, we
use a 100-dimensional fasttext (Joulin et al., 2016) representation of each input and a ConvNet
(Kim, 2014) as the base model. We refer the reader to Verma and Nalisnick (2022) for more
details on the training and hyperparameter selection, as we follow their setup.

Experimental Setup We train the systems with an increasing number of experts, ranging
from 2 to 10. We comment the details of how we simulate the experts below. For each run, we
enlarge the pool by adding increasingly accurate experts, and this process is repeated 3 times
with different random seeds. We keep the base model fixed across these runs except for the
additional output dimensions required by the expanded expert pool. Below you can find the
description of the experts’ configurations for the studied datasets.

Galaxy-Zoo consists of a large number of galaxy images that were classified into three main
morphological classes: spiral, elliptical, and irregular. The HateSpeech dataset is a benchmark

https://github.com/rajevv/Multi_L2D
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dataset for hate speech classification, consisting of tweets labeled as hate speech, offensive language,
or neither, with hate speech involving offensive language and discriminatory expressions, offensive
language including profanity, and neither containing non-offensive content. For Galaxy-Zoo
and HateSpeech, we define the following experts using the human annotations available in the
datasets and using various perturbations of these predictions:

1. Human expert: we sample predictions from the provided human annotations.

2. Flipping human expert: Expert who flips the given prediction with some probability pflip.

3. Probabilistic expert: Expert who makes use of the annotations with some probability
pannotator, or predicts randomly otherwise.

The whole expert configuration is described in Table 5.1.

Table 5.1: Hate Speech and Galaxy-Zoo experts configuration.

Expert configuration pflip[%] pannotator[%]
1 Random Expert - -
2 Probabilistic Expert - 10
3 Flipping Human Expert 50 -
4 Probabilistic Expert - 75
5 Flipping Human Expert 30 -
6 Flipping Human Expert 20 -
7 Probabilistic Expert - 85
8 Human Expert - -
9 Probabilistic Expert - 50

10 Human Expert - -

The HAM10000 dataset (Tschandl et al., 2018) is composed of dermatoscopic images corre-
sponding to 7 diagnostic categories in the realm of pigmented lesions. These 7 categories can
be further decomposed into benign: melanocytic nevi (nv), benign keratinocytic lesions (bkl),
dermatofisbromas (df) and vascular lesions (vasc); and malign: melanomas (mel), basal cell
carcinomas (bcc) and actinic keratoses and intraepithelial carcinomas (akiec).

Table 5.2: HAM10000 experts configuration.

Expert configuration pin [%] pout [%] Diagnostic Category [in]
1 Random Expert - - [nv, bkl, df, vasc, mel, bcc, akiec]
2 Dermatologist for malign 25 15 [mel, bcc, akiec]
3 Dermatologist for benign 25 15 [nv, bkl, df, vasc]
4 Specialized dermatologist in nv 50 15 [nv]
5 Specialized dermatologist in vasc 70 15 [vasc]
6 Specialized dermatologist in mel 75 15 [mel]
7 Dermatologist for benign 75 25 [nv, bkl, df, vasc]
8 MLP Mixer - - [nv, bkl, df, vasc, mel, bcc, akiec]
9 Experienced dermatologist 80 50 [nv, bkl, df, vasc, mel, bcc, akiec]

10 Experienced dermatologist 80 60 [nv, bkl, df, vasc, mel, bcc, akiec]

In contrast to the Galaxy-Zoo and Hatespeech dataset, for HAM10000 we do not have individual
annotators predictions, but just the ground truth label. Further information can be found in
the original dataset description (Tschandl et al., 2018). In order to recreate a setup comparable
to a real-world scenario, we create different experts configurations:
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1. Random expert: This expert predicts randomly among all classes.

2. Dermatologist expert: These experts will be specialized in a set of categories, and will
predict with probability pin. Out of that set, they will predict with probability pout.

3. MLPMixer: We derive HAM10000’s expert predictions from the predictions of an 8-layer
MLPMixer (Tolstikhin et al., 2021), which has access to additional metadata such as age,
gender, and diagnosis type.

As it can be seen in Table 5.2, we gradually add experts from a random expert to a final expert
which simulates an experienced dermatologist. From Kittler et al. (2002) we know that clinical
diagnosis of cutaneous melanoma with the unaided eye is only about 60% accuracy, and that
dermatologists equipped with dermatoscope can achieve accuracies of 75%−84%. That is the reason
why we chose for the simulated dermatologist experts to have those probabilities pin and pout.

Models We use a 34-layer residual network (ResNet34) and a 50-layer residual network
(ResNet50) as base models for HAM10000 and Galaxy-Zoo respectively. For HateSpeech, we use a
100-dimensional fasttext (Joulin et al., 2016) representation of each input and a ConvNet (Kim,
2014) as the base model. We refer the reader to Verma and Nalisnick (2022) for more details on the
training and hyperparameter selection, as we follow their setup. Ideally, the L2D systems should
exhibit strictly increasing accuracy due to adding experts of increasing quality. We compare our
models against three baselines: one classifier consisting on the same base model used by the other
methods; the best expert from the pool of experts and Hemmer et al. (2022)’s MoE described before.

Results The top row of Figure 5.3 reports the mean and standard error of the system accuracy as
the number of experts increases. While the OvA, softmax, and MoE models perform comparably
on HateSpeech (left), OvA’s performance (blue) is notably better on HAM10000 (center) and
Galaxy-Zoo (right) as its accuracy never falls below the one classifier baseline (red), while the
others’ accuracies do. From this results we validate one hypothesis usually claimed during
this thesis: human-AI collaborating systems outperform only humans or only AI models, as it
can be seen on the average behavior of the all human-AI models compared to the best expert
(purple) or only classifier (red) baselines.

5.5.2 Confidence Calibration

In Section 5.2, we found that the two surrogates have very different estimators of P (mj = yi|xi),
the probability that the jth expert is correct. We now test if these theoretical differences have
consequences for practice. To ensure ECE is well-defined for the softmax loss, we cap any
confidences greater than 1 at 1. In addition to reporting calibration for the preceding experiment
(system accuracy), we also perform simulations using the standard splits of CIFAR-10 (Krizhevsky,
2009). We use a 28-layer wide residual network (Zagoruyko and Komodakis, 2016), following
Verma and Nalisnick (2022). Our results suggest that systems trained with the softmax surrogate
exhibit degradation in calibration as the number of experts increases. Furthermore, other experts
in the committee significantly affect the calibration of other experts.
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Figure 5.3: System Accuracy and Calibration. The figures above report the system accuracy (top row)
and calibration error (bottom row) as experts of increasing ability are added (from 2 to 10). One classifier
(red), best expert (purple), and a mixture of experts (green) (Hemmer et al., 2022) serve as baselines. We
see that the OvA-trained model (blue) performs well in every case. On the other hand, the softmax-trained
model (orange) falls below the one classifier baseline for both HAM10000 and GalaxyZoo.

Simulation #1: Increasing Experts We perform a simulation to see how the methods
perform under an increasing number of experts. We generate a synthetic expert with a correctness
probability of 70% over the first five classes and random across all other classes. We then
replicate that expert and add it to the expert pool, ranging from 4 to 20 total experts. Figure
5.4a reports the average ECE across experts as the pool increases. The OvA method (blue)
is roughly stable at about 2% ECE as experts are added. The softmax method (orange) has
roughly double the ECE (∼ 4.5%). In Figure 5.4b, we report the overall system accuracy to
see if these calibration differences have an effect. We see some positive effects, with OvA (blue)
having a better accuracy for 12 and fewer experts. However, the softmax (orange) has the best
accuracy at 20 experts, despite its calibration still being worse.

Simulation #2: Expert Dependence We next perform a simulation to see how calibration
error can propagate across the estimators. We simulate four experts with one always being random
and the other three having a probability of correctness that increases from 20% to 95% on the first
five classes (random for others). We hypothesize that the softmax’s ECE for the random expert will
increase when the probability of correctness for the other three experts increases due to the tied
parameterization. Figures 5.4c and 5.4d report the results, with the former reporting average ECE
and the latter the ECE of just the random expert. Firstly, from Figure 5.4c, we see that again the
OvA method is better calibrated across all experimental settings. Then from Figure 5.4d, we see
that our hypothesis is confirmed: OvA (blue) is able to model the random expert well no matter
the other experts’ abilities, but the softmax (orange) is not. The softmax’s ECE increases almost
in-step with the expert correctness, except for some cancellation effect happening at 80%. This is
clearly an undesirable behavior from the standpoint of safety since any ECE above zero means
that the system is reporting that the expert is better than random and thus misleading the user.
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Figure 5.4: Confidence Calibration Simulations. The figures above report the results for confidence
calibration simulations performed on CIFAR-10. The first and second subfigures show calibration error
(a) and system accuracy (b) as the number of experts increases from 4 to 20. We see that the OvA
formulation (blue) has better calibration across all runs, but this translate to better accuracy only for 16
or fewer experts. The third and forth subfigures show calibration error as experts’ abilities increase (a)
and when one expert is kept at random chance (b). OvA (blue) shows better calibration in both metrics.

Hate Speech, HAM10000, and Galaxy-Zoo Lastly we report the calibration error of the
models trained for the experiments reported in Section 5.5.1. The results are in the bottom row
of Figure 5.3. The trend we observe in the CIFAR-10 simulations is also observed here, with OvA
(blue) having the best calibration. This may explain why OvA has the best system accuracy.
Unsurprisingly, the MoE has extremely poor calibration, which is likely due to its inconsistent
optimization objective which allows for sub-optimal models (as we prove in Proposition B.4.1).

5.5.3 Conformal Ensembles

Lastly, we study our proposal of using CI to ensemble multiple experts. We first analyze the two
proposed statistics, demonstrating the regularized version’s superior ability to recover the experts
who are oracles. We then report the downstream effect on the overall system accuracy, comparing
performance to that of a fixed-size ensemble of experts. We finish with an additional experiment
where we test each CI formulation on on a pool of experts with increasing overlapping expertise.

Experts and Setup We experiment with two settings on CIFAR-10, each with 10 total experts.
In the first (no noise), we synthesize experts such that they are an oracle on an increasing subset
of the classes and guaranteed to be wrong on the classes not in that set. In the second (with
noise), the experts are oracles in the same way but now have a (uniformly) random chance of
being correct for the non-oracle classes. The theory of CI guarantees that the sets marginally
cover all oracle experts. Yet, ideally, we wish the sets to contain only the experts who are oracles.
We use α = 0.1 for Equation 5.18 in all experiments.

Expert Identification The CI results are reported in Figures 5.5a and 5.5b. The number of
oracles is on the y-axis, and the average set size is on the x-axis. Optimal performance would
be the y = x line. The results for the no-noise setting are reported in Figure 5.5a. The naive
statistic (solid lines) considerably inflates the set size for both softmax and OvA. Yet OvA is
much closer to y = x, which suggests superior calibration leads to better CI. The performance
of the regularized statistic is shown by the dashed lines. Both softmax and OvA perform nearly
perfectly. Figure 5.5b reports the with-noise setting, and we find that the naive statistic performs
terribly for both losses. The regularized statistic, on the other hand, performs well for both
softmax and OvA. Softmax demonstrates slight superiority for 2 − 5 oracles.
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Figure 5.5: Conformal Sets of Experts. The figures above report our analysis of the two statistics
proposed in Section 5. Subfigures (a) and (b) show the ability of the two statistics to select the correct
number of experts as the number of oracle experts increases—so optimal performance is the y = x line.
Subfigure (a) reports the no-noise setting (so experts are either perfectly incorrect or correct), and we see
that the naive statistic (solid lines) overestimates the set size. The problem is even worse in Subfigure (b).
However, the regularized statistic (dashed lines) is able to do well in both cases. Subfigure (c) shows how
ensembling the set affects system accuracy. The conformal approach is able to out-perform a fixed size of
5 experts for a small number of oracles and is equivalent at higher numbers.

Overall System Accuracy We next investigate using the conformal set as an ensembling
strategy. Upon deferral, we use majority voting across the set to generate the final prediction. We
compare this with the baseline of using a fixed ensemble size—specifically, the top five ranked
experts. We show the results for CIFAR-10 in Figure 5.5c. The crucial settings are for one and two
oracles since using a fixed ensemble size is guaranteed to fail—as is confirmed by the plot (< 80%
accuracy). We see that the conformal ensembles are clearly superior here, achieving around 90%
accuracy. For three or more oracles, both methods have equal performance. This is expected since
only three oracles are needed to form a correct majority. We emphasize that CI’s adaptivity is
highly desirable so that the best experts can be identified with transparency and queried efficiently.

Overlapping expertise among experts For this experiment we have 10 experts for the
CIFAR-10 dataset, each of them being an oracle on a specific class out of the 10 classes from
the dataset, and we will increase the overlapping probability of these experts being correct on
the other classes where the experts are not oracle from 10% to 95% overlap. That is, we will
vary from specialized experts to fully overlapped experts. We hope to see that the average
set size for specialized experts is close to 1 and for fully overlapped experts close to the total
number of experts. We report the results in Figure 5.6.

First of all, we look at the average set size provided by each CI statistic. It is worth noticing
from Figure 5.6a that the average set size for the naive conformal method, both for softmax
and OvA, is always close to the total number of experts, for specialized and overlapped experts.
If we remember, the naive test statistic is calculated among all correct experts. This is a very
important point, because if an expert happens to be correct outside of their expertise domain,
this results in a very big non-conformity score because of the low confidence of such expert. That
is, imagine for certain sample x and class y = 3, for low overlapping probabilities, we might
have E = 3, where e = 1 could be the oracle for class y = 3 and e = 2, e = 3 two experts that
were correct by chance. From Equation 14 in the manuscript, we can expect that, best-case
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Figure 5.6: Gradual overlapping expertise results. The figures above report the average set size (a)
and system accuracies under the naive conformal method (b) and regularized conformal method (c) for
increasing expertise overlap for CIFAR-10. From Figure (a) we see that the regularized conformal method
is more dynamic than the naive method for both OvA and softmax. System accuracies for the naive
conformal method (b) are slightly better than fixed-size ensemble because we ensemble all experts, whereas
for the regularized conformal method (c) we see a slightly drop due to the adaptivity of the conformal sets

scenario sπ1 > sπ2 > sπ3 , or even worse sπ1 > · · · > sπ8 > sπ2 > sπ3 , because other experts’
confidences could be also greater than confidences from correct experts by chance. Therefore,
we will obtain bigger test-statistics that result in very larger conformal sets. This problem has
already been addressed in Angelopoulos et al. (2022). However, notice how the regularized
test statistic is capable of producing smaller sets. The idea is that now we optimize additional
parameters (described in Section 5 in the manuscript) to ensure that confidences lower than a
certain threshold are filtered out for the calculation of the test statistic.

Finally, we report in Figures 5.6b and 5.6c the system accuracies for the naive conformal
method and the regularized conformal method respectively. For the naive conformal method we
obtain better results than using a fixed-size ensemble of experts of size 5. Because set sizes are
almost always close to the total number of experts, and we do majority voting, then as long as
the is a correct expert plus an expert correct by chance, we will predict correctly. However, for
the regularized conformal method we notice a drop in the system accuracy for lower overlapping
probabilities. Since for such cases now the set sizes are smaller, we have smaller number of experts
in the set and therefore less chance of having correct experts by chance in the ensemble. Despite
this drop in the accuracy, we clearly have a more dynamic and less conservative ensembling method.

5.6 Conclusions

We have extended the L2D framework to support multiple experts. We proposed two optimization
objectives and proved that they are both consistent. Our proposed optimization objectives
are simple to use in practice and could be embedded into any empirical risk minimization
framework. Additionally, we also studied their potential to be confidence calibrated, showing
that the softmax-based objective can result in mis-calibrated models in practice. Lastly, we
considered a principled procedure for selecting minimal sets of experts to ensemble. For future
work, we aim to improve the data efficiency of our method by extending the active learning
results of Charusaie et al. (2022) to the multi-expert setting.



AI [alone] would have the capacity to write a good song.
But not a great one.
It lacks the nerve.

— Nick Cave Newspaper
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The doctoral manuscript is structured into two primary sections, focusing on medical data
wrangling using variational autoencoders and learning to defer to multiple experts. Chapter 2

and Chapter 4 provide an overview of the problem, motivation, background information, and
relevant references concerning variational autoencoders and learning to defer, respectively. In
the current chapter, we present a summary of our key contributions discussed in Chapter 3 and
Chpater 5, and propose potential directions for future research.

6.1 Summary of Methods and Contributions
6.1.1 Part I: Medical Data Wrangling using VAEs

This first part opens with an introductory chapter, Chapter 2, which does not include any original
contribution. We begin by explaining the VAE learning framework and then proceed to discuss
three significant challenges associated with handling irregular observations: missing data, diverse
data types, and temporal data. For each challenge, we provide the rationale behind it and refer
to relevant reference works that influenced our contribution outlined in Chapter 3.

Firstly, we present our proposed model, the Sequential Heterogeneous Incomplete Variational
Autoencoder (Shi-VAE), which extends the capabilities of Variational Autoencoders (VAEs) to
address the aforementioned challenges. Our evaluation focuses on missing data in sequences, as
real-world scenarios often exhibit bursts of missing data, such as sensor failures in a hospital
setting. Additionally, we identify that standard error metrics like Root Mean Square Error (RMSE)
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are insufficient for assessing temporal models. Therefore, we incorporate the cross-correlation
between the ground truth and the imputed signal as part of our analysis.

We conducted a comparative analysis of our method against several common baselines for
missing data imputation, as well as the GP-VAE model proposed by (Fortuin et al., 2020) which is
regarded as a state-of-the-art approach for handling missing data in temporal series. The GP-VAE
model utilizes a Gaussian Process (GP) in the latent space to capture the temporal dynamics
of the sequences. To evaluate the performance of our model, we utilized two distinct databases.
The first is a human monitoring database comprising data collected from a mobile app used
by psychiatric patients from two hospitals: Hospital Universitario Fundación Jiménez Díaz and
Hospital Universitario Rey Juan Carlos. This database encompasses heterogeneous data sources,
including variables such as steps, app usage, distance, and more. The data exhibits temporal
characteristics, and the rate of missing values is significant. Additionally, we evaluated our method
on a common intensive care unit (ICU) database, specifically the Physionet database (Silva et al.,
2012). This database contains measurements of 35 electrophysiological signals for 12,000 patients
who were monitored for 48 hours in the intensive care unit. Through our empirical analysis, we
demonstrate how our Shi-VAE model achieves competitive results with the GP-VAE method.
Moreover, we observe a higher correlation between the imputed signals and the ground truth.
These findings emphasize the effectiveness and suitability of our model in effectively addressing
the challenges presented by real-world scenarios involving diverse and missing data.

This thesis contribution demonstrates two key aspects. Firstly, it showcases the viability of
using deep generative models for addressing the data wrangling challenges in medical scenarios.
Secondly, it outlines a pathway for aggregating diverse data streams into a shared latent space.
This latent space serves a dual purpose: it allows for the propagation of information across
time and enables the generation or imputation of missing data by leveraging a deeper and
more generalized conceptual space.

6.1.2 Part II: Learning to Defer to Multiple Experts

The structure of the second part of the thesis mirrors that of the first part. Chapter 4 acts
as an introductory chapter to the theory of learning to defer, without contributing anything
novel. Initially, we introduce the notation for a general classification problem and illustrate
with an example that human-machine collaboration can be a viable solution in certain scenarios.
Subsequently, we provide the background on learning to defer and proceed to present two main
surrogate losses referenced in this thesis: the softmax (Mozannar and Sontag, 2020) loss and
the OvA (Verma and Nalisnick, 2022) loss. We also discuss the issue of softmax generating
invalid probability estimates for expert confidence, as identified by (Verma and Nalisnick, 2022),
and how the OvA formulation circumvents this issue. This chapter establishes the foundation
for our original contribution in Chapter 5.

Chapter 5 introduces the second contribution of this thesis, which involves extending the
concept of learning to defer to multiple experts. Initially, we propose two novel surrogate losses
derived from the softmax and OvA formulations, taking into account the scenario where there
are multiple experts to defer to, as opposed to just one. Theoretical analysis demonstrates the
consistency of these surrogate losses. Furthermore, we investigate whether the issue of confidence
calibration observed in the single expert setting also persists in the multi-expert setting. Our
findings confirm that this problem indeed persists: the softmax surrogate loss generates unreliable
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confidence estimates for expert confidences, leading to miscalibration issues, whereas the OvA
formulation addresses this issue to some extent, albeit with practical trade-offs.

Additionally, we contribute to the effective performance of expert ensembling by proposing a
conformal inference technique applied to sets of experts during the deferring process. Initially, we
present a naive conformal inference technique, which, under certain expert settings, fails to identify
all the correct experts and results in larger conformal sets. We discover that this is attributed
to experts not consistently predicting the same output due to the inherent probability of their
correctness. To address this issue, we propose a regularized version of the technique that successfully
identifies all the correct experts. To validate our approach, we conduct empirical experiments
on various classification tasks, including standard image classification, galaxy classification,
skin lesion classification, and hate speech classification. Our regularized conformal ensemble
procedure demonstrates its capability to accurately identify the experts who have a higher
likelihood of making correct predictions, even when considering variations in the individual
experts’ probabilities of being correct.

This final contribution holds twofold significance. Firstly, it enriches the learning to defer
literature by providing a valuable reference for dealing with multiple experts, which is a common
situation in real-world contexts. The theoretical and empirical validation across diverse datasets
and classification tasks enhances its practical relevance. Secondly, the contribution highlights
the importance of a conformal inference procedure for effectively identifying the most accurate
experts and filtering out those with lower probabilities, thus ensuring reliable predictions and
mitigating potential misleading or adversarial outcomes.

6.2 Suggestions for Future Research
Given the comprehensive coverage of the two main parts discussed throughout the manuscript,
we now delve into new research ideas within these areas. By presenting these future research
directions, our goal is to stimulate further exploration, foster innovation, and address critical
concerns within the domains encompassed by this thesis.

6.2.1 Next Steps in VAEs for Irregular Data

Firstly, we explore future research ideas for variational autoencoders that address challenges
such as handling heterogeneous likelihoods, missing data, and temporal data. These areas offer
opportunities for developing innovative approaches to enhance the capabilities and effectiveness
of variational autoencoders.

Heterogeneous Likelihoods

More flexible distributions In this thesis we tackle the problem of likelihood penalization
when working with likelihood from different domains, i.e.continuous and discrete likelihoods. For
the discrete case, we worked with binary and categorical distributions. One idea we has in mine
is to use more flexible discrete distributions, such as the continuous Bernoulli Loaiza-Ganem
and Cunningham (2019) or the categorical distribution Gordon-Rodriguez et al. (2020). The
support for the Bernoulli distribution is {0, 1}, but, for example, pixel data is [0, 1].The continuous
Bernoulli (Loaiza-Ganem and Cunningham, 2019) is a new parameter distribution with [0, 1]-
support. The continuous categorical distribution (Gordon-Rodriguez et al., 2020) represents the
nontrivial multivariate generalization of the continuous Bernoulli. These two distributions could
help to prevent potential issues and alleviate the heterogeneous likelihood problem.
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Exponential families Another next step in handling heterogeneous likelihoods is to develop a
framework that enables the mapping of diverse domain-specific likelihoods onto a common space,
allowing for fair and balanced comparison between them. One way is to express well-used statistical
distributions (e.g.normal, gamma, beta, Bernoulli, Categorical, etc) as exponential families. With
this approach we are able fit different distributions using the same parametrization formula, where
only the fitted parameters change (natural parameters). Also, the likelihood imbalance problem is
circumvented this way. The concept of expressing distributions as exponential families and the
related challenge of likelihood balancing have been addressed in a study by Javaloy and Valera
(2020). They propose a novel data preprocessing technique known as Lipschitz standardization,
which aims to balance the likelihoods across variables. By applying this preprocessing step, the
likelihood imbalance problem can be effectively circumvented. Also the theory of energy based
models (EBM) (LeCun et al., 2006) could be another interesting path to follow. In a recent
work, Wu et al. (2021) propose a conjugate energy based models (CEBM), where among others
proposals, we find interesting the idea of using these methods for modeling the data not at pixel
level (for the case of images) but at the level of latent representations.

Modeling data-relationship, rather than data itself

The concept of not directly modeling the data itself, but instead focusing on the latent repre-
sentation, introduces a promising paradigm where the objectives or training methods need not
be solely based on the data level. Instead, we can concentrate on modeling the relationships or
correlations between data samples that consist of various likelihoods or modalities, aiming to
learn these relationships directly. This approach involves designing a framework that captures
the dependencies between the samples.

This novel idea aligns well with the principles found in Gaussian process literature and
kernel methods more broadly. In particular, we draw inspiration from the emerging field of
Deep Kernel Learning (Wilson et al., 2016; Heaukulani and van der Wilk, 2019; Aitchison et al.,
2021). Deep Kernel Learning (DKL) is a framework that merges the power of deep learning
with the flexibility of kernel methods. It involves learning a data-dependent kernel function
using a neural network, known as the kernel network, which replaces the traditional fixed kernel
functions used in kernel methods. By doing so, DKL enables the modeling of complex relationships
and the capture of non-linear dependencies within the data. We believe, as modeling data is
important, properly modeling the relationship itself is important too. We believe that discovering
a principled framework for generating data relationships rather than just data could potentially
address challenges in various domains, including healthcare.

Advanced Techniques for Temporal Data

The Shi-VAE model effectively handled temporal data streams by utilizing a continuous latent
space that captured the temporal dynamics of the sequences. In our approach, we opted to employ
the LSTM architecture, a simplex yet effective recurrent neural network (RNN) architecture, for
handling the temporal data. It is worth noting that there exist more recent or enhanced versions of
RNN architectures that could have been utilized. For instance, bidirectional LSTM (Schuster and
Paliwal, 1997) could have been employed to leverage information from both the past and future.
However, due to the autoregressive nature of our VAE model, incorporating the bidirectional
scheme presents challenges in terms of derivation. Also the architectures proposed in other works
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dealing with missing data and temporal data could also be explored (Lipton et al., 2016b; Che et al.,
2018; Cao et al., 2018). For next steps we could also think on incorporating attention mechanisms
using Transformers (Vaswani et al., 2017) or similar architectures. However, it should be noted
that integrating such architectures may not be straightforward, similar to the bidirectional case.

In the context of temporal sequences, our sequences had missing data and varying lengths,
which added complexity to the problem. However, it is worth exploring how irregular time
intervals can be incorporated and addressed in future works. Recent studies, such as the work by
Schirmer et al. (2022), have tackled this issue and may provide interesting insights and approaches
to solving the problem of irregular time intervals.

Active Learning

Imagine a situation in which we are tasked with making a drug prescription based on a patient’s
clinical history. However, the clinical records may contain missing values due to irregular patient
visits or other factors. Those missing values could be retrieved from different labs or hospitals,
but with an associated cost. This example sparked our interest in utilizing our Shi-VAE model
to determine which variables to retrieve and when, aiming to optimize decision-making. This
concept aligns with the principles of active learning, which is a machine learning approach that
involves strategically selecting informative data points to label and incorporate into the training
process, thereby improving model performance with fewer labeled examples.

We found inspiration in the work of Ma et al. (2019), who proposed the EDDI framework,
a VAE-based model with an acquisition function that maximizes expected information gain
for a set of target variables. Our aim was to extend the EDDI model within our Shi-VAE
framework, allowing us to not only identify the most valuable information-providing variable
but also determine the optimal timing for retrieval. Although this idea was under development
during the writing of the thesis, conclusive results were not yet sufficiently robust to draw
firm conclusions about the proposal.

6.2.2 Next Steps in Learning to Defer

We explore new directions for learning to defer, including novel ideas, practical applications, and
addressing concerns related to human-machine collaboration and reliance on AI systems.

Application of Learning to Defer to Multiple Experts

Our contribution (Verma, Barrejón, and Nalisnick, 2023) was tested across various tasks, including
galaxy classification, skin lesion identification, and hate speech classification. This work not
only strengthens existing L2D approaches to handle multiple experts but also introduces new
possibilities for its application in different fields, where it can be effectively deployed in real-
life scenarios. In our manuscript we mainly motivated the L2D framework within the medical
context, where an L2D system could be employed to assign ’easy’ tasks to doctors while seeking
their expertise for more challenging and high-risk scenarios. On the other hand, the conformal
ensembling procedure described in our work allows us to have the flexibility to identify and filter
experts based on their expected reliability. Once we obtain the pool of experts, we can make
decisions on how many experts to query, considering that this process can be costly.

Furthermore, this system could be incorporated into forums or chat platforms to address
situations where individuals who promote hatred and are challenging to identify could be referred
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to an team of administrators. This feature would also be particularly valuable in social media
platforms, where algorithms often operate without human intervention, and striking the right
balance between preventing harmful content and preserving freedom of speech is a sensitive issue.
Therefore, incorporating human control becomes essential.

The application of conformal ensembling of experts as a filtering procedure extends to various
scenarios. For instance, in a law firm, it can be implemented to delegate different legal processes to
the most reliable lawyers specialized in their respective fields. This approach effectively mitigates
the biases that ma y naturally be present in other lawyers. In summary, there is a wide range
of possibilities where the multi-expert setting of L2D could be applied.

Temporal L2D with Conformal Guarantees

Another interesting venue of research is extending L2D to deal with temporal sequences, as studied
by Joshi et al. (2023), but incorporating the application of conformal procedures. However, when
dealing with sequential data, the application of conformal inference is not straightforward due to
the violation of the exchangeability assumption. Therefore, it is worth exploring new approaches
proposed by Barber et al. (2023) or Stankeviciute et al. (2021) to address this issue.

New Forms of Calibration

In this thesis, we worried about calibration following the definition of confidence calibration
proposed by Guo et al. (2017). But for future works, it would be interesting applying the notion of
calibration proposed by Gupta and Ramdas (2022), where they propose using top-label calibration
instead of confidence calibration in multi-class problems. The concept of top-label calibration
aligns perfectly with our goal of generating more trust-worthy outputs from machine learning
ML models to facilitate decision-making. Additionally, the authors of the original work suggest
a framework for reducing multiclass problems to binary ones, making the comparison with the
One-vs-All (OvA) approach a promising initial step.

Conformalize L2D

An additional idea is to extend the application of conformal inference to L2D by not only ensuring
reliable ensembles of experts, as demonstrated in our previous work (Verma et al., 2023), but
also by applying it to the model’s output, as demonstrated by Babbar et al. (2022). In a real
case study, Babbar et al. (2022) validated that conformal predictions provide superior benefits
to humans compared to top-1 predictions. Likewise, (Straitouri et al., 2023) introduced a novel
method that uses an adaptive conformal inference algorithm to propose a subset of output labels
from a classifier to a human expert, and they demonstrated that experts achieve greater prediction
accuracy under this approach as well. These findings clearly indicate that employing conformal
techniques is an effective approach for incorporating reliability and trust in algorithms facilitating
human-machine collaboration, besides the additional benefit of quantifying uncertainty.
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Access to Real Experts’ Correctness Probabilities

So far, most works on learning to defer tasks have used different datasets from different domains,
where the experts’ probabilities of correctness are manually designed (in most cases). It would
be beneficial to the field having benchmark datasets that not only provide access to the experts’
predictions as hard ground-truth labels but also as soft labels. However, this presents challenges
as curating such datasets is time-consuming, requires a substantial statistical population to ensure
fairness, and, importantly, requires a substantial financial cost. Nonetheless, some authors have
started releasing datasets or making expert probabilities available. For instance, Collins et al.
(2022) released CIFAR10-S, a version of CIFAR10 with soft labels, and (Tschandl et al., 2018)
made available the skin lesion dataset we used in our experiments, which now includes access
to both human and machine learning probabilities.

Balancing Reliance on AI

In the context of L2D, it is imperative to enhance the collaboration between artificial intelligence
and humans in decision-making by developing a deep comprehension of how humans perceive
machines. While machine learning outputs like saliency maps, LIME (Local Interpretable Model-
agnostic Explanations) or t-SNE plots can offer valuable insights for data understanding, it is
worth noting that there are cases where these interpretable outputs can have the opposite effect
(Lipton, 2018). Furthermore, in practice, these interpretable outputs can potentially mislead
professionals in their decision-making process Arun et al. (2021).

Hence, it is imperative to investigate how humans comprehend the functioning of AI and the
impact of their actions on it. This concept is commonly referred to as the mental model, and
exploring this area holds great promise for research. In a study conducted by Gaube et al. (2021),
radiologists and physicians were presented with eight instances of advice, which could either
originate from humans or AI. Their task was to evaluate the quality of the advice. However, the
trick was that all the advice came from humans, and only four cases were correct. The findings
revealed that experts were able to distinguish between good and poor advice, but they rated
human advice significantly higher in quality, thus showing a clear underreliance on AI.

Consider now the scenario where a clinician is informed that the AI assistant occasionally
outperforms humans. In such a situation, there is an incentive to rely more on the AI system.
Consequently, it becomes necessary to develop algorithms that can address these inherent biases.
As pointed out by Buçinca et al. (2021), if individuals can be encouraged to engage in more
analytical thinking when processing AI recommendations and explanations, the tendency to
overly rely on AI will diminish.

Closing Statement

We started the thesis with the question: How can humans leverage machine learning?. Throughout
this thesis, our focus revolved around exploring the interaction between humans and machine
learning methods to achieve better results. Firstly, we regarded AI as a valuable tool for alleviating
the data processing burden. Secondly, we recognized AI as an automated system capable of
discerning situations where human involvement is necessary. From our findings, we can conclude
that humans can leverage machine learning. And also that AI systems can achieve great goals
and produce valuable information. But one thing is certain: not alone.
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A
ELBO Derivation for Shi-VAE

A.1 Shi-VAE without discrete latent space st
The joint probability is described by the following equation.

p(x≤T , z≤T ) =
T∏

t=1
p(zt|z<t)p(xt|z≤t) (A.1)

We consider that data xt can be divided into observed data and missing data, such that

p(xt|z≤t) =
∏

d∈Ot

p(xtd|z≤t)
∏

d∈Mt

p(xtd|z≤t) = p(xo
t |z≤t) p(xm

t |z≤t). (A.2)

The variational distribution can be defined as

q(xm
≤T , z≤T |xo

≤T ) =
T∏

t=1
q(zt|xo

≤t, z<t) p(xm
t |z≤t) (A.3)

Generative

p(xt|z<t) =
D∏

d=1
p(xtd|zt) =

D∏
d=1

p(xtd|γtd = hd(yt,d,ht−1)) (A.4)

Notice we have one DNN per dimension of the input sample xt, i.e, ηd(·) for each dimension d

and Yt = [yt,1, . . . ,yt,d] = ϕz
ω(zt) This allows to cope with heterogeneous data.

Inference
q(zt|xo

t , z<t) = N (µq(x̃t),Σq(x̃t)), (A.5)

where x̃t denotes a D-dimensional vector where the missing dimensions have been replaced by
zeros, and µq(x̃t) and Σq(x̃t) are parametrized as

[µq(x̃t),Σq(x̃t)] = ϕenc
ω (ϕx

ω(x̃t),ht−1) (A.6)

Prior
p(zt|z<t) = N (µo,t,Σ2

o,t), where [µo,t,Σ2
o,t] = ϕprior

ω (ht−1) (A.7)
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(a) (b)

Figure A.1: Generative model (a) and inference model (b) for Shi-VAE without discrente latent space s.

RNN state

ht = fθ(Yt,ht−1), (A.8)

where fθ is a RNN such as LSTM or GRU.

ELBO

log p(Xo
≤T ) ≥

∫ ∫
q(xm
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≤T ) log
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t II

For the first term I we can derive the following expression

∫ ∫
q(xm

≤t, z≤t|xo
≤t) log p(xo

t |z≤t)dz≤t, dxm
t =

∫ ∫
p(xm

≤t|z≤t)q(z≤t|xo
≤t) log p(xo

t |z≤t)dz≤t, dxm
t

=
∫
p(xm

≤t|z≤t)dxm
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1

∫
q(z≤t|xo

≤t) log p(xo
t |z≤t)dz≤t

=
∫
q(z≤t|xo

≤t) log p(xo
t |z≤t)dz≤t.
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The second expression II can be rewritten in the following form:∫ ∫
q(xm

≤T , z≤T |xo
≤T ) log

(
q(zt|xo

≤t, z<t)
p(zt|z<t)

)
dz≤t, dxm

t

=
∫ ∫

p(xm
≤t|z≤t)q(z≤t|xo

≤t) log
(
q(zt|xo

≤t, z<t)
p(zt|z<t)

)
dz≤t, dxm

t

=
∫
p(xm

≤t|z≤t)dxm
t︸ ︷︷ ︸

1

∫
q(z<t|xo

<t)q(zt|xo
≤t, z<t) log

(
q(zt|xo

≤t, z<t)
p(zt|z<t)

)
dz<t

=
∫
q(z<t|xo

<t) KL(q(zt|xo
≤t, z<t)||p(zt|z<t))dz<t.

The final ELBO expression will be

ELBO =
T∑

t=1

(∫
q(z≤t|xo

≤t) log p(xo
t |z≤t)dz≤t −

∫
q(z<t|xo

<t) KL(q(zt|xo
≤t, z<t)||p(zt|z<t))dz<t

)

= Ez≤T ∼q(z≤T |xo
≤T

)

[
T∑

t=1
log p(xo

t |z≤t)−KL(q(zt|xo
≤t, z<t)||p(zt|z<t))

]

A.2 Shi-VAE with discrete latent space st

The approach involves a mixture of Gaussian prior on zt, temporal dependencies solely on zt,
and updating the state of the RNN ht using (zt, st).

Generative

p(X≤T ,Z≤T ,S≤T ) =
T∏

t=1
p(zt|ht−1, st)p(xt|zt,ht−1, st) (A.9)

=
T∏

t=1
p(zt|ht−1, st)p(xt|γt,d = hd(yt,d, st,ht−1))p(st), (A.10)

where

Likelihood : p(xt|zt,ht−1, st) = p(xm
t |zt,ht−1, st)p(xo

t |zt,ht−1, st) (A.11)

Transformation : Yt = [yt,1, . . . ,yt,d] = ϕz
ω(zt) (A.12)

Prior st : p(st) ∼ Categorical(K−1) (A.13)

Prior zt : p(zt|ht−1, st) = N (µo,t.Σ2
o,t), [µo,t.Σ2

o,t] = ϕprior
ω (ht−1, st) (A.14)

RNN State : ht = fθ(yt,ht−1) (A.15)

Recognition

q(Z≤T ,S≤T ,Xm
≤T |Xo

≤T ) =
T∏

t=1
q(st|xo

t )q(zt|xo
t ,ht−1, st)p(xm

t |zt, st) (A.16)
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(a) (b)

Figure A.2: Generative model (Fig. A.2a) and recognition model (Fig. A.2b) for T-missVAE with
Gaussian Mixture Prior.

where

q(st|xo
t ) = Categorical(π(x̃ϕ

t )) (A.17)

q(zt|xo
t ,ht−1, st) = N (µq(x̃ϕ

t , st,ht−1),Σq(x̃ϕ
t , st,ht−1)) (A.18)

x̃ϕ
t = ϕx

ω(x̃t) (A.19)

(A.20)

ELBO

log p(Xo
≤T ) ≥

∫ ∫ ∫
q(Xm

≤T ,Z≤T ,S≤T |Xo
≤T ) log

(
p(X≤T ,S≤T ,Z≤T )

q(Xm
≤T ,Z≤T ,S≤T |Xo

≤T )

)
dZ≤T dS≤T dXm

≤T

=
T∑

t=1

∫ ∫ ∫
q(xm

t , zt, st|xo
t ) log

(
p(xo

t |zt, st)p(xm
t |zt, st)p(zt|ht−1, st)p(st)

q(st|xo
t )q(zt|xo

t ,ht−1, st)p(xm
t |zt, st)

)
dztdstdxm

t

=
T∑

t=1

[ ∫ ∫ ∫
q(xm

t , zt, st|xo
t ) log p(xo

t |zt, st)dztdstdxm
t I

−
∫ ∫ ∫

q(xm
t , zt, st|xo

t ) log
(
q(zt|xo

t ,ht−1, st)
p(zt|ht−1, st)

)
dztdstdxm

t II

−
∫ ∫ ∫

q(xm
t , zt, st|xo

t ) log
(
q(st|xo

t )
p(st)

)
dztdstdxm

t

]
III

The first term I corresponds to the reconstruction:∫ ∫ ∫
q(xm

t , zt, st|xo
t ) log p(xo

t |zt, st)dztdstdxm
t

=
∫ ∫ ∫

q(st|xo
t )q(zt|xo

t ,ht−1, st)p(xm
t |zt, st) log p(xo

t |zt, st)dztdstdxm
t

=
∫ ∫

q(st|xo
t )q(zt|xo

t ,ht−1, st) log p(xo
t |zt, st)dztdst

= Eq(st|xo
t )Eq(zt|xo

t ,ht−1,st)
[

log p(xo
t |zt, st)

]
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The second term II :∫ ∫ ∫
q(xm

t , zt, st|xo
t ) log

(
q(zt|xo

t ,ht−1, st)
p(zt|ht−1, st)

)
dztdstdxm

t

=
∫ ∫

q(st|xo
t )q(zt|xo

t ,ht−1, st) log
(
q(zt|xo

t ,ht−1, st)
p(zt|ht−1, st)

)
dztdst

= Eq(st|xo
t )
[
KL(q(zt|xo

t ,ht−1, st)||p(zt|ht−1, st))
]

The third term III :∫ ∫ ∫
q(xm

t , zt, st|xo
t ) log

(
q(st|xo

t )
p(st)

)
dztdstdxm

t

=
∫ ∫

q(st|xo
t )q(zt|xo

t ,ht−1, st) log
(
q(st|xo

t )
p(st)

)
dztdst

= KL(q(st|xo
t )||p(st))

∫
q(zt|xo

t ,ht−1, st)dzt

= KL(q(st|xo
t )||p(st))

The final ELBO has the following form:

log p(Xo
≤T ) ≥

T∑
t=1

[
Eq(st|xo

t )Eq(zt|xo
t ,ht−1,st)

[
log p(xo

t |zt, st)
]

− Eq(st|xo
t )
[
KL(q(zt|xo

t ,ht−1, st)||p(zt|ht−1, st))
]

−KL(q(st|xo
t )||p(st))

]
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B
Proofs and Derivations for Multiple Expert L2D

In this section, we provide proofs for the main results in the paper. We derive the Bayes optimal
rule for L2D to multiple experts, and show that the surrogate losses proposed in the paper are
consistent. Next, we show that the mixture of experts formulation (Hemmer et al., 2022) is not
consistent. We continue the notation from the main paper. For simplicity, we do not worry
about measure-theoretic considerations and assume that appropriate conditions hold that allow
us to interchange summations and integrals, for example. We begin by giving a formal definition
of what it means for a surrogate loss to be consistent.

Definition B.0.1. (Consistent Loss Function). A surrogate loss function ψ : C × Y → R+
operating in the surrogate space C ⊆ RK along with some suitable decoding function g : C → Y
is said to be consistent if for all distributions D, ∀ε > 0, ∃ δ > 0 such that if

|E(x,y)∼D [ψ (y, c(x))]− inf
u∈C

E(x,y)∼D [ψ (y,u)] | < δ, (B.1)

holds for a prediction function h : X → C, h(x) := c(x) ∈ RK , then it must hold that

P(x,y)∼D [g ◦ h(x) 6= y] ≤ P(x,y)∼D [h∗(x) 6= y] + ε, (B.2)

where h∗ : X → Y is the Bayes optimal predictor.

A common example of one decoding function in machine learning is the arg max function.
Intuitively, consistency implies that the minimization of a surrogate loss ψ(·) results in a prediction
function h(·) whose expected error converges to the Bayes risk.

B.1 Bayes Rule for Learning to Defer with Multiple Experts

We have J experts and a classifier, where the system either allows the classifier to make the final
prediction or defers to one of the J experts. When the classifier makes the prediction, the system
incurs loss `clf(ŷ, y) where ŷ = h(x). When the system defers to the jth expert, it incurs a loss
`exp(mj , y). In what follows, we frame the learning to defer problem as a general classification
problem, and aim to find a function g : X → Ŷ := Y ∪ {⊥1,⊥2, . . . ,⊥J} and |Ŷ| = K + J with
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the minimum expected loss (also known as risk). We consider g as modeling a probabilistic
decision rule δ(ŷ|x) := [δ(ŷ = 1|x), δ(ŷ = 2|x), . . . , δ(ŷ = K + J |x)] where δ(ŷ = i|x) denotes the
confidence in making the ith decision for x ∼ x. We write risk as follows:

RD[δ (ŷ|x)] =
K∑

i=1

K+J∑
j=1

∫
x
δ(ŷ = j|x)` (ŷ = j, y = i)P (y = i)P (x|y = i) dx, (B.3)

where ` : (ŷ, y) 7→ R+ is a general loss function, i runs over the input label space, and j runs
over the output prediction space (classifier and all the experts). We further expand the risk in
Equation B.3 based on the definition of the loss function in learning to defer

RD[δ (ŷ|x)] =
K∑

i=1

∫
x

( K∑
j=1

δ(ŷj |x)`clf (j, i)

+
K+J∑

j=K+1

 K∑
m=1

δ(ŷj |x)`exp (mj , y)P(mj |x, y = i))

)P (y = i)P (x|y = i) dx,

where we have used shorthand δ (ŷj |x) to denote δ (ŷ = j|x), and P (mj |x, y = i) = P (mj = m|x, y = i).
Next, we denote:

wi,j = `clf(j, i)

wi,⊥j =
K∑

m=1
δ(ŷj |x)`exp (mj , y)P(mj |x, y = i))

Thus, RD[δ (ŷ|x)] can be written as:

RD[δ (ŷ|x)] =
K∑

i=1

∫
x

 K∑
j=1

δ(ŷj |x)wi,j +
K+J∑

j=K+1
δ(ŷj |x)wi,⊥j

P (y = i)P (x|y = i) dx.

Denote w∗
i,⊥ := minj∈[J]{wi,⊥j

}, we have

RD[δ (ŷ|x)] ≥
K∑

i=1

∫
x

 K∑
j=1

δ(ŷj |x)wi,j +
K+J∑

j=K+1
δ(ŷj |x)w∗

i,⊥

P (y = i)P (x|y = i) dx.

We also denote
∑K+J

j=K+1 δ(ŷj |x) as δ(ŷ⊥|x). Then the lower bound of RD[δ (ŷ|x)], denoted as
R̄D[δ (ŷ|x)], is

R̄D[δ (ŷ|x)] =
K∑

i=1

∫
x

 K∑
j=1

δ(ŷj |x)wi,j + δ(ŷ⊥|x)w∗
i,⊥

P (y = i)P (x|y = i) dx.

Since
∑K

j=1 δ(ŷj |x) + δ(ŷ⊥|x) = 1.0 and
∫

x P(x|y = i)dx = 1.0, we follow Chow (1957)
to decompose R̄D[δ (ŷ|x)] in two terms:

R̄D = R̄⊥
D + R̄δ

D,
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where

R̄⊥
D =

K∑
i=1

P(y = i) · w∗
i,⊥,

R̄δ
D =

∫
x

[K]∪{⊥}∑
j=1

δ(ŷj |x)Zj(x)dx, and

Zj(x) =
K∑

i=1

(
wi,j − w∗

i,⊥
)
P(x)P(y = i|x), j ∈ {1, 2, . . . ,K,⊥}.

To elaborate, we simplify the problem from deferring to multiple experts to deferring to just
the one expert with the minimum wi,⊥j

in obtaining the lower bound R̄⊥
D. We also observe

that we have no control over R̄⊥
D. However, we can control R̄δ

D by controlling the decision
rule δ. We have Z⊥(x) = 0, and also it holds that

R̄δ
D ≥

∫
x

min
j

[Zj (x)] dx,

where the equality holds iff δ (ŷk|x) = 1.0 for k = arg minj Zj (x). Thus, the optimal rule is to
deterministically (i.e. with confidence 1.0) choose k ∈ {1, 2, . . . ,K,⊥} with the minimum Zj (x).
This means that choosing j for which the Zj(x) is the smallest minimizes the risk. Given that
Z⊥ = 0, this means that the classifier predicts when the minimum Zj (x) is negative. Thus,
deferral happens when Zj(x) is positive for all j, i.e., the optimal rejection rule r∗(x) is:

r∗(x) = I [Zj(x) ≥ 0;∀j ∈ {1, . . . ,K}] . (B.4)

This rejection rule is similar to the learning to defer to one expert. Given the definition of Zj(x),
the optimal behavior to choose which expert to defer to is the one with minimum wi,⊥j . We
further simplify the optimal rejection rule in the following proposition.

Proposition B.1.1. The Bayes optimal rejection rule for L2D with multiple experts is given
as:

r∗(x) =
{

1 if Ey|x [`clf(ŷ, y)] ≥ minj∈J Ey|xEm|x,y [`exp (mj , y)] ∀ŷ ∈ Y
0 otherwise.

(B.5)

Proof : The proof follows immediately from the definition of r∗(x) in Equation B.4.
In our work, we use the canonical 0-1 loss for both `clf and `exp. In this case, the rejection

rule can trivially be written as in the following corollary.

Corollary B.1.2. For a misclassification 0-1 loss, the optimal rejection rule is:

r∗(x) = I
[
max
j∈J

P(mj = y|x = x) ≥ max
y∈Y

P(y = y|x = x)
]
, (B.6)

where P(mj = y|x = x) is the expert’s correctness probability for the jth expert, and P(y =
y|x = x) is the regular class probability.

To sum it up, the Bayes optimal rule is to compare the confidences of the experts and the
classifier, and follow whosoever has the highest confidence. The rule is analogous to the single
expert setting proved in Mozannar and Sontag (2020).
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B.2 Proof of Theorem 3.1: Consistency of ψJ
SM

Convexity of ψJ
SM is immediately clear. We provide the proof for consistency below:

For simplicity, we denote

− log
(

exp{gy(x)}∑
y′∈Y⊥ exp{gy′(x)}

)
= ζy(x),

− log
(

exp{g⊥,j(x)}∑
y′∈Y⊥ exp{gy′(x)}

)
= ζ⊥,j(x).

(B.7)

Then, ψJ
SM can be written as:

φJ
SM (g1, . . . , gK , g⊥,1, . . . , g⊥,J ; x, y,m1, . . . ,mJ) = ζy(x) +

J∑
j=1

I[mj = y] · ζ⊥,j(x). (B.8)

We consider the pointwise risk C[ψJ
SM] defined as:

C[ψJ
SM] = Ey|x=xEm|x=x,y=y

[
ψJ

SM(g1, . . . , gK , g⊥,1, . . . , g⊥,J ; x, y,m1, . . . ,mJ)
]
, (B.9)

where m|x = x, y = y is a compact representation for each mj |x = x, y = y. Our setup assumes
that each mj is independent. Denote ηy(x) = P(y = y|x = x), we expand the expectations:

C[ψJ
SM] =

∑
y∈Y

ηy(x) · ζy(x) +
J∑

j=1

∑
y∈Y

ηy(x)
∑

mj∈M
P(mj = mj |x = x, y = y)I[mj = y] · ζ⊥,j(x)

 .

C[ψJ
SM] =

∑
y∈Y

ηy(x) · ζy(x) +
J∑

j=1

∑
y∈Y

ηy(x)
∑

mj∈M
P(mj = y|x = x, y = y) · ζ⊥,j(x)

 .

C[ψJ
SM] =

∑
y∈Y

ηy(x) · ζy(x) +
J∑

j=1
P(mj = y|x = x) · ζ⊥,j(x).

Next, we consider the minimizer of C[ψJ
SM]. Since we have established convexity, we can

analyze the minimizers of C[ψJ
SM] by taking the partial derivatives w.r.t. gy{x} and g⊥,j{x}

respectively and set them to 0. Thus, w.r.t. gy{x}, we have

∂C[ψJ
SM]

∂gy{x}
= 0 =⇒ exp{gy(x)}∑

y′∈Y⊥ exp{gy′(x)} = P(y = y|x = x)
1 +

∑J
j=1 P(mj = y|x = x)

. (B.10)

Similarly, w.r.t. g⊥,j{x} we have

∂C[ψJ
SM]

∂g⊥,j{x}
= 0 =⇒ exp{g⊥,j(x)}∑

y′∈Y⊥ exp{gy′(x)} = P(mj = y|x = x)
1 +

∑J
j=1 P(mj = y|x = x)

. (B.11)

The above equations hold true for optimal classifier and the rejector. Thus, if we take
the decision as in the main text, we are agreeing with the Bayes solution (considering that
denominators are same in both the above conditions).
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B.3 Proof of Theorem 3.2: Consistency of ψJ
OvA

The proof follows directly from Verma and Nalisnick (2022). However, for completion we
provide the full proof below.

For the surrogate prediction functions g1, . . . , gK , g⊥,1, . . . , g⊥,J , and the binary classification
surrogate loss φ : {−1, 1} × R → R+, ψJ

OvA takes the following pointwise-form:

C[ψJ
OvA] = ψJ

OvA(g1, . . . , gK , g⊥,1, . . . , g⊥,J ; x, y,m1, . . . ,mJ)

= φ[gy(x)] +
∑

y′∈Y,y′ 6=y

φ[−gy′(x)]

+
J∑

j=1
φ[−g⊥,j(x)] +

J∑
j=1

I[mj = y] (φ[g⊥,j(x)]− φ[−g⊥,j(x)]) .

We consider the pointwise inner ψOvArisk for some x = x written as follows:

C[ψJ
OvA] = Ey|x=xEm|x=x,y=y

[
ψJ

OvA(g1, . . . , gK , g⊥,1, . . . , g⊥,J ; x, y,m1, . . . ,mJ)
]
,

We expand both the expectations one-by-one below:

C[ψJ
OvA] = Ey|x=x

[
φ[gy(x)] +

∑
y′∈Y,y′ 6=y

φ[−gy′(x)] +
J∑

j=1
φ[−g⊥,j(x)]

+
J∑

j=1

 ∑
mj∈M

P(mj = mj |x = x, y = y)I [mj = y] (φ[g⊥,j(x)]− φ[−g⊥,j(x)])

].
Denote P(y = y|x = x) as ηy(x), then

C[ψJ
OvA] = Ey|x=x

∑
y∈Y

φ[gy(x)] +
∑

y′∈Y,y′ 6=y

φ[−gy′(x)]


+

J∑
j=1

(
φ[−g⊥,j(x)]

+
∑
y∈Y

ηy(x)
[ ∑

mj∈M
P(mj = mj |x = x, y = y)I [mj = y] (φ[g⊥,j(x)]− φ[−g⊥,j(x)])

])

C[ψJ
OvA] =

∑
y∈Y

ηy(x)

φ[gy(x)] +
∑

y′∈Y,y′ 6=y

φ[−gy′(x)]



+
J∑

j=1

φ[−g⊥,j(x)] +
∑
y∈Y

ηy(x)
∑

mj∈M
P(mj = y|x = x, y = y)

︸ ︷︷ ︸
P (mj = y|x = x)

(φ[g⊥,j(x)]− φ[−g⊥,j(x)])


C[ψJ

OvA] =
∑
y∈Y

ηy(x)

φ[gy(x)] +
∑

y′∈Y,y′ 6=y

φ[−gy′(x)]


+

J∑
j=1

[
φ[−g⊥,j(x)] + P (mj = y|x = x) (φ[g⊥,j(x)]− φ[−g⊥,j(x)])

]
.
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Denote P(mj = y|x = x) as pmj
, then we have

C[ψJ
OvA] =

∑
y∈Y

ηy(x)

φ[gy(x)] +
∑

y′∈Y,y′ 6=y

φ[−gy′(x)]


+

J∑
j=1

[(
1− pmj

)
φ[−g⊥,j(x)] + pmj

φ[g⊥,j(x)]
]

We further simplify the above equation as follows:

C[ψJ
OvA] =

∑
y∈Y

[ηy(x) · φ[gy(x)] + (1− ηy(x)) · φ[−gy(x)]]

+
J∑

j=1

[(
1− pmj

)
φ[−g⊥,j(x)] + pmj

φ[g⊥,j(x)]
]
.

Thus, we conclude from the above expression that we K+J binary classification problems where the
pointwise risk (or inner risk) for the ith binary classification problem is given as ηy (x)φ (gy (x)) +
(1− ηy (x))φ (−gy (x)) for i ∈ [K] and pmj

(x)φ (g⊥,j (x)) +
(
1− pmj

(x)
)
φ (−g⊥,j (x)) when

i ∈ [J ]}. Thus, minimizer of the inner ψOvA -risk can be analyzed in terms of the pointwise
minimizer of the inner φ-risk for each of the K + J sub binary classification problems. Denote the
minimizer of pointwise inner ψOvA-risk as g∗, then the above decomposition means g∗

i corresponds
to the minimizer of the inner φ-risk for the ith binary classification problem.

We know that the Bayes solution for the binary classification problem is sign
(
η(x)− 1

2
)

where
η(x) denotes p(y = 1|x = x). Now when the binary surrogate loss φ is a strictly proper composite
loss for binary classification, by the property of strictly proper composite losses, we have sign(g∗

y(x))
would agree with the Bayes solution of the Binary classification, i.e. g∗

y(x) > 0 if ηy (x) > 1
2 .

And similarly g∗
⊥ (x) > 0 if pmj (x) > 1

2 . Furthermore, we have the existence of a continuous and
increasing inverse link function γ−1 for the binary surrogate φ with the property that γ−1 (g∗

y (x)
)

would converge to ηy (x). Similarly, γ−1
(
g∗

⊥,j (x)
)

would converge to pmj
(x). Thus, when the

binary surrogate loss φ is a strictly proper composite loss, and the classifier and the rejector are
defined as in the main text, the minimizer of the pointwise risk C

[
ψJ

OvA
]

agree with the Bayes
optimal solution. Thus, ψJ

OvA is a calibrated loss function for L2D w.r.t. 0-1 misclassification loss.

B.4 Inconsistency of the Mixture of Experts Formulation
(Hemmer et al., 2022)

Proposition B.4.1. LMoE is inconsistent for learning to defer.

The proof works by construction. Specifically, we construct a distribution over X × Y for
which the necessary condition for consistency does not hold true.

Consider we have X = {x} and Y = {0, 1}, i.e. the input space contains the singleton element
x with 2 output labels. We define the following distribution D such that P(x, 0) = α0, P(x, 1) = α1.
For completion, α0 + α1 = 1. For simplicity, we consider one expert who predicts correctly with
perfect confidence, i.e m = y ∀y. The mixture of experts method works by estimating the allocator
scores we(x) (for expert) and wc(x) (for classifier) such that we(x) +wc(x) = 1, and the classifier
scores c0(x), c1(x) with

∑1
i=0 ci(x) = 1. In such a setting, we have

E(x,y)∼D [LMoE (F,A,x, y,m)] = −α0 [log (we + wc · c0)]− α1 [log (we + wc · c1)] .
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It is an easy argument to see that the minimum value of the above expression is 0, i.e.,

inf
A,F

E(x,y)∼D [LMoE (F,A,x, y,m)] = 0.

MoE system decides to defer to the expert if we(x) > wc(x). For δ > 0, choose we(x) = 0.5− δ
and wc(x) = 0.5 + δ. Note that ∀ δ > 0, the system would always decide not to defer to the
expert. Also choose c0(x) = 1, c1(x) = 0. For such an allocator Ā and the classifier F̄ ,

E(x,y)∼D
[
LMoE

(
F̄ , Ā,x, y,m

)]
= −α1 · log (0.5− δ)

≤ −α1 · (0.5− δ − 1) = α1 · (0.5 + δ) ,

where the inequality comes from using log (x) ≤ x − 1. Next, choose α1 such that α1 = δ
0.5+δ

(why this is true is left as an exercise to the reader). Combining everything, we have shown that

|E(x,y)∼D
[
LMoE

(
F̄ , Ā,x, y,m

)]
− inf

A,F
E(x,y)∼D [LMoE (F,A,x, y,m)] | ≤ δ.

Thus, our choice of Ā and F̄ satisfy Equation B.1 for all δ > 0. Since in our construction, we
always allow the decision to be made by the classifier which can only predict class label h(x) 0,
we have P(x,y)∼D [h(x) 6= y] = α1. And the Bayes optimal rule h∗(x) is to always let the expert
make the prediction, thus, P(x,y)∼D [h∗(x) 6= y] = 0. Hence, we have

P(x,y)∼D [h(x) 6= y] = P(x,y)∼D [h∗(x) 6= y] + η,

where η = α1. Thus, ∀ε < κ, ε > 0, Equation B.2 fails to hold true. Hence, we have shown that
the optimization of LMoE allows faulty solutions that may not reach the Bayes optimal predictor.
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