10 research outputs found

    Efficient graph cuts for unsupervised image segmentation using probabilistic sampling and SVD-based approximation

    Get PDF
    The application of graph theoretic methods to unsupervised image partitioning has been a very active field of research recently. For weighted graphs encoding the (dis)similarity structure of locally extracted image features, unsupervised segmentations of images into coherent structures can be computed in terms of extremal cuts of the underlying graphs. In this context, we focus on the normalized cut criterion and a related recent convex approach based on semidefinite programming. As both methods soon become computationally demanding with increasing graph size, an important question is how the computations can be accelerated. To this end, we study an SVD approximation method in this paper which has been introduced in a different clustering context. We apply this method, which is based on probabilistic sampling, to both segmentation approaches and compare it with the Nyström extension suggested for the normalized cut. Numerical results confirm that by means of the sampling-based SVD approximation technique, reliable segmentations can be computed with a fraction (less than 5%) of the original computational cost

    A Rank-Two Feasible Direction Algorithm for the Binary Quadratic Programming

    Get PDF
    Based on the semidefinite programming relaxation of the binary quadratic programming, a rank-two feasible direction algorithm is presented. The proposed algorithm restricts the rank of matrix variable to be two in the semidefinite programming relaxation and yields a quadratic objective function with simple quadratic constraints. A feasible direction algorithm is used to solve the nonlinear programming. The convergent analysis and time complexity of the method is given. Coupled with randomized algorithm, a suboptimal solution is obtained for the binary quadratic programming. At last, we report some numerical examples to compare our algorithm with randomized algorithm based on the interior point method and the feasible direction algorithm on max-cut problem. Simulation results have shown that our method is faster than the other two methods

    Median and related local filters for tensor-valued images

    Get PDF
    We develop a concept for the median filtering of tensor data. The main part of this concept is the definition of median for symmetric matrices. This definition is based on the minimisation of a geometrically motivated objective function which measures the sum of distances of a variable matrix to the given data matrices. This theoretically wellfounded concept fits into a context of similarly defined median filters for other multivariate data. Unlike some other approaches, we do not require by definition that the median has to be one of the given data values. Nevertheless, it happens so in many cases, equipping the matrix-valued median even with root signals similar to the scalar-valued situation. Like their scalar-valued counterparts, matrix-valued median filters show excellent capabilities for structure-preserving denoising. Experiments on diffusion tensor imaging, fluid dynamics and orientation estimation data are shown to demonstrate this. The orientation estimation examples give rise to a new variant of a robust adaptive structure tensor which can be compared to existing concepts. For the efficient computation of matrix medians, we present a convex programming framework. By generalising the idea of the matrix median filters, we design a variety of other local matrix filters. These include matrix-valued mid-range filters and, more generally, M-smoothers but also weighted medians and \alpha-quantiles. Mid-range filters and quantiles allow also interesting cross-links to fundamental concepts of matrix morphology

    Using the Eigenvalue Relaxation for Binary Least-Squares Estimation Problems

    Full text link
    The goal of this paper is to survey the properties of the eigenvalue relaxation for least squares binary problems. This relaxation is a convex program which is obtained as the Lagrangian dual of the original problem with an implicit compact constraint and as such, is a convex problem with polynomial time complexity. Moreover, as a main pratical advantage of this relaxation over the standard Semi-Definite Programming approach, several efficient bundle methods are available for this problem allowing to address problems of very large dimension. The necessary tools from convex analysis are recalled and shown at work for handling the problem of exactness of this relaxation. Two applications are described. The first one is the problem of binary image reconstruction and the second is the problem of multiuser detection in CDMA systems

    A Convex Relaxation Bound for Subgraph Isomorphism

    Get PDF

    Segmentation with area constraints

    Get PDF
    Image segmentation approaches typically incorporate weak regularity conditions such as boundary length or curvature terms, or use shape information. High-level information such as a desired area or volume, or a particular topology are only implicitly specified. In this paper we develop a segmentation method with explicit bounds on the segmented area. Area constraints allow for the soft selection of meaningful solutions, and can counteract the shrinking bias of length-based regularization. We analyze the intrinsic problems of convex relaxations proposed in the literature for segmentation with size constraints. Hence, we formulate the area-constrained segmentation task as a mixed integer program, propose a branch and bound method for exact minimization, and use convex relaxations to obtain the required lower energy bounds on candidate solutions. We also provide a numerical scheme to solve the convex subproblems. We demonstrate the method for segmentations of vesicles from electron tomography images

    Binary Partitioning, Perceptual Grouping, and Restoration with Semidefinite Programming

    Get PDF
    We introduce a novel optimization method based on semidefinite programming relaxations to the field of computer vision and apply it to the combinatorial problem of minimizing quadratic functionals in binary decision variables subject to linear constraints

    Recalage non rigide et segmentation automatique d'images de perfusion du foie

    Get PDF
    Contexte médicale -- Revue de littérature -- Recalage avec contrainte d'incompressibilité -- Segmentation basée sur le recalage de grandes déformations -- Cadre de travail unifié et efficace -- Discussion générale

    Robust perceptual organization techniques for analysis of color images

    Get PDF
    Esta tesis aborda el desarrollo de nuevas técnicas de análisis robusto de imágenes estrechamente relacionadas con el comportamiento del sistema visual humano. Uno de los pilares de la tesis es la votación tensorial, una técnica robusta que propaga y agrega información codificada en tensores mediante un proceso similar a la convolución. Su robustez y adaptabilidad han sido claves para su uso en esta tesis. Ambas propiedades han sido verificadas en tres nuevas aplicaciones de la votación tensorial: estimación de estructura, detección de bordes y segmentación de imágenes adquiridas mediante estereovisión.El mayor problema de la votación tensorial es su elevado coste computacional. En esta línea, esta tesis propone dos nuevas implementaciones eficientes de la votación tensorial derivadas de un análisis en profundidad de esta técnica.A pesar de su capacidad de adaptación, esta tesis muestra que la formulación original de la votación tensorial (a partir de aquí, votación tensorial clásica) no es adecuada para algunas aplicaciones, dado que las hipótesis en las que se basa no se ajustan a todas ellas. Esto ocurre particularmente en el filtrado de imágenes en color. Así, esta tesis muestra que, más que un método, la votación tensorial es una metodología en la que la codificación y el proceso de votación pueden ser adaptados específicamente para cada aplicación, manteniendo el espíritu de la votación tensorial.En esta línea, esta tesis propone un marco unificado en el que se realiza a la vez el filtrado de imágenes y la detección robusta de bordes. Este marco de trabajo es una extensión de la votación tensorial clásica en la que el color y la probabilidad de encontrar un borde en cada píxel se codifican mediante tensores, y en el que el proceso de votación se basa en un conjunto de criterios perceptuales relacionados con el modo en que el sistema visual humano procesa información. Los avances recientes en la percepción del color han sido esenciales en el diseño de dicho proceso de votación.Este nuevo enfoque ha sido efectivo, obteniendo excelentes resultados en ambas aplicaciones. En concreto, el nuevo método aplicado al filtrado de imágenes tiene un mejor rendimiento que los métodos del estado del arte para ruido real. Esto lo hace más adecuado para aplicaciones reales, donde los algoritmos de filtrado son imprescindibles. Además, el método aplicado a detección de bordes produce resultados más robustos que las técnicas del estado del arte y tiene un rendimiento competitivo con relación a la completitud, discriminabilidad, precisión y rechazo de falsas alarmas.Además, esta tesis demuestra que este nuevo marco de trabajo puede combinarse con otras técnicas para resolver el problema de segmentación robusta de imágenes. Los tensores obtenidos mediante el nuevo método se utilizan para clasificar píxeles como probablemente homogéneos o no homogéneos. Ambos tipos de píxeles se segmentan a continuación por medio de una variante de un algoritmo eficiente de segmentación de imágenes basada en grafos. Los experimentos muestran que el algoritmo propuesto obtiene mejores resultados en tres de las cinco métricas de evaluación aplicadas en comparación con las técnicas del estado del arte, con un coste computacional competitivo.La tesis también propone nuevas técnicas de evaluación en el ámbito del procesamiento de imágenes. En concreto, se proponen dos métricas de filtrado de imágenes con el fin de medir el grado en que un método es capaz de preservar los bordes y evitar la introducción de defectos. Asimismo, se propone una nueva metodología para la evaluación de detectores de bordes que evita posibles sesgos introducidos por el post-procesado. Esta metodología se basa en cinco métricas para estimar completitud, discriminabilidad, precisión, rechazo de falsas alarmas y robustez. Por último, se proponen dos nuevas métricas no paramétricas para estimar el grado de sobre e infrasegmentación producido por los algoritmos de segmentación de imágenes.This thesis focuses on the development of new robust image analysis techniques more closely related to the way the human visual system behaves. One of the pillars of the thesis is the so called tensor voting technique. This is a robust perceptual organization technique that propagates and aggregates information encoded by means of tensors through a convolution like process. Its robustness and adaptability have been one of the key points for using tensor voting in this thesis. These two properties are verified in the thesis by applying tensor voting to three applications where it had not been applied so far: image structure estimation, edge detection and image segmentation of images acquired through stereo vision.The most important drawback of tensor voting is that its usual implementations are highly time consuming. In this line, this thesis proposes two new efficient implementations of tensor voting, both derived from an in depth analysis of this technique.Despite its adaptability, this thesis shows that the original formulation of tensor voting (hereafter, classical tensor voting) is not adequate for some applications, since the hypotheses from which it is based are not suitable for all applications. This is particularly certain for color image denoising. Thus, this thesis shows that, more than a method, tensor voting can be thought of as a methodology in which the encoding and voting process can be tailored for every specific application, while maintaining the tensor voting spirit.By following this reasoning, this thesis proposes a unified framework for both image denoising and robust edge detection.This framework is an extension of the classical tensor voting in which both color and edginess the likelihood of finding an edge at every pixel of the image are encoded through tensors, and where the voting process takes into account a set of plausible perceptual criteria related to the way the human visual system processes visual information. Recent advances in the perception of color have been essential for designing such a voting process.This new approach has been found effective, since it yields excellent results for both applications. In particular, the new method applied to image denoising has a better performance than other state of the art methods for real noise. This makes it more adequate for real applications, in which an image denoiser is indeed required. In addition, the method applied to edge detection yields more robust results than the state of the art techniques and has a competitive performance in recall, discriminability, precision, and false alarm rejection.Moreover, this thesis shows how the results of this new framework can be combined with other techniques to tackle the problem of robust color image segmentation. The tensors obtained by applying the new framework are utilized to classify pixels into likely homogeneous and likely inhomogeneous. Those pixels are then sequentially segmented through a variation of an efficient graph based image segmentation algorithm. Experiments show that the proposed segmentation algorithm yields better scores in three of the five applied evaluation metrics when compared to the state of the art techniques with a competitive computational cost.This thesis also proposes new evaluation techniques in the scope of image processing. First, two new metrics are proposed in the field of image denoising: one to measure how an algorithm is able to preserve edges, and the second to measure how a method is able not to introduce undesirable artifacts. Second, a new methodology for assessing edge detectors that avoids possible bias introduced by post processing is proposed. It consists of five new metrics for assessing recall, discriminability, precision, false alarm rejection and robustness. Finally, two new non parametric metrics are proposed for estimating the degree of over and undersegmentation yielded by image segmentation algorithms
    corecore