1,927 research outputs found

    Efficient FPGA implementation of high-throughput mixed radix multipath delay commutator FFT processor for MIMO-OFDM

    Get PDF
    This article presents and evaluates pipelined architecture designs for an improved high-frequency Fast Fourier Transform (FFT) processor implemented on Field Programmable Gate Arrays (FPGA) for Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM). The architecture presented is a Mixed-Radix Multipath Delay Commutator. The presented parallel architecture utilizes fewer hardware resources compared to Radix-2 architecture, while maintaining simple control and butterfly structures inherent to Radix-2 implementations. The high-frequency design presented allows enhancing system throughput without requiring additional parallel data paths common in other current approaches, the presented design can process two and four independent data streams in parallel and is suitable for scaling to any power of two FFT size N. FPGA implementation of the architecture demonstrated significant resource efficiency and high-throughput in comparison to relevant current approaches within literature. The proposed architecture designs were realized with Xilinx System Generator (XSG) and evaluated on both Virtex-5 and Virtex-7 FPGA devices. Post place and route results demonstrated maximum frequency values over 400 MHz and 470 MHz for Virtex-5 and Virtex-7 FPGA devices respectively

    Generating and Searching Families of FFT Algorithms

    Full text link
    A fundamental question of longstanding theoretical interest is to prove the lowest exact count of real additions and multiplications required to compute a power-of-two discrete Fourier transform (DFT). For 35 years the split-radix algorithm held the record by requiring just 4n log n - 6n + 8 arithmetic operations on real numbers for a size-n DFT, and was widely believed to be the best possible. Recent work by Van Buskirk et al. demonstrated improvements to the split-radix operation count by using multiplier coefficients or "twiddle factors" that are not n-th roots of unity for a size-n DFT. This paper presents a Boolean Satisfiability-based proof of the lowest operation count for certain classes of DFT algorithms. First, we present a novel way to choose new yet valid twiddle factors for the nodes in flowgraphs generated by common power-of-two fast Fourier transform algorithms, FFTs. With this new technique, we can generate a large family of FFTs realizable by a fixed flowgraph. This solution space of FFTs is cast as a Boolean Satisfiability problem, and a modern Satisfiability Modulo Theory solver is applied to search for FFTs requiring the fewest arithmetic operations. Surprisingly, we find that there are FFTs requiring fewer operations than the split-radix even when all twiddle factors are n-th roots of unity.Comment: Preprint submitted on March 28, 2011, to the Journal on Satisfiability, Boolean Modeling and Computatio

    VLSI Implementation of Deep Neural Network Using Integral Stochastic Computing

    Full text link
    The hardware implementation of deep neural networks (DNNs) has recently received tremendous attention: many applications in fact require high-speed operations that suit a hardware implementation. However, numerous elements and complex interconnections are usually required, leading to a large area occupation and copious power consumption. Stochastic computing has shown promising results for low-power area-efficient hardware implementations, even though existing stochastic algorithms require long streams that cause long latencies. In this paper, we propose an integer form of stochastic computation and introduce some elementary circuits. We then propose an efficient implementation of a DNN based on integral stochastic computing. The proposed architecture has been implemented on a Virtex7 FPGA, resulting in 45% and 62% average reductions in area and latency compared to the best reported architecture in literature. We also synthesize the circuits in a 65 nm CMOS technology and we show that the proposed integral stochastic architecture results in up to 21% reduction in energy consumption compared to the binary radix implementation at the same misclassification rate. Due to fault-tolerant nature of stochastic architectures, we also consider a quasi-synchronous implementation which yields 33% reduction in energy consumption w.r.t. the binary radix implementation without any compromise on performance.Comment: 11 pages, 12 figure

    Efficient Implementation on Low-Cost SoC-FPGAs of TLSv1.2 Protocol with ECC_AES Support for Secure IoT Coordinators

    Get PDF
    Security management for IoT applications is a critical research field, especially when taking into account the performance variation over the very different IoT devices. In this paper, we present high-performance client/server coordinators on low-cost SoC-FPGA devices for secure IoT data collection. Security is ensured by using the Transport Layer Security (TLS) protocol based on the TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 cipher suite. The hardware architecture of the proposed coordinators is based on SW/HW co-design, implementing within the hardware accelerator core Elliptic Curve Scalar Multiplication (ECSM), which is the core operation of Elliptic Curve Cryptosystems (ECC). Meanwhile, the control of the overall TLS scheme is performed in software by an ARM Cortex-A9 microprocessor. In fact, the implementation of the ECC accelerator core around an ARM microprocessor allows not only the improvement of ECSM execution but also the performance enhancement of the overall cryptosystem. The integration of the ARM processor enables to exploit the possibility of embedded Linux features for high system flexibility. As a result, the proposed ECC accelerator requires limited area, with only 3395 LUTs on the Zynq device used to perform high-speed, 233-bit ECSMs in 413 ”s, with a 50 MHz clock. Moreover, the generation of a 384-bit TLS handshake secret key between client and server coordinators requires 67.5 ms on a low cost Zynq 7Z007S device

    A versatile Montgomery multiplier architecture with characteristic three support

    Get PDF
    We present a novel unified core design which is extended to realize Montgomery multiplication in the fields GF(2n), GF(3m), and GF(p). Our unified design supports RSA and elliptic curve schemes, as well as the identity-based encryption which requires a pairing computation on an elliptic curve. The architecture is pipelined and is highly scalable. The unified core utilizes the redundant signed digit representation to reduce the critical path delay. While the carry-save representation used in classical unified architectures is only good for addition and multiplication operations, the redundant signed digit representation also facilitates efficient computation of comparison and subtraction operations besides addition and multiplication. Thus, there is no need for a transformation between the redundant and the non-redundant representations of field elements, which would be required in the classical unified architectures to realize the subtraction and comparison operations. We also quantify the benefits of the unified architectures in terms of area and critical path delay. We provide detailed implementation results. The metric shows that the new unified architecture provides an improvement over a hypothetical non-unified architecture of at least 24.88%, while the improvement over a classical unified architecture is at least 32.07%

    A class of AM-QFT algorithms for power-of-two FFT

    Full text link
    This paper proposes a class of power-of-two FFT (Fast Fourier Transform) algorithms, called AM-QFT algorithms, that contains the improved QFT (Quick Fourier Transform), an algorithm recently published, as a special case. The main idea is to apply the Amplitude Modulation Double Sideband - Suppressed Carrier (AM DSB-SC) to convert odd-indices signals into even-indices signals, and to insert this elaboration into the improved QFT algorithm, substituting the multiplication by secant function. The 8 variants of this class are obtained by re-elaboration of the AM DSB-SC idea, and by means of duality. As a result the 8 variants have both the same computational cost and the same memory requirements than improved QFT. Differently, comparing this class of 8 variants of AM-QFT algorithm with the split-radix 3add/3mul (one of the most performing FFT approach appeared in the literature), we obtain the same number of additions and multiplications, but employing half of the trigonometric constants. This makes the proposed FFT algorithms interesting and useful for fixed-point implementations. Some of these variants show advantages versus the improved QFT. In fact one of this variant slightly enhances the numerical accuracy of improved QFT, while other four variants use trigonometric constants that are faster to compute in `on the fly' implementations

    Design and implementation of high-radix arithmetic systems based on the SDNR/RNS data representation

    Get PDF
    This project involved the design and implementation of high-radix arithmetic systems based on the hybrid SDNRIRNS data representation. Some real-time applications require a real-time arithmetic system. An SDNR/RNS arithmetic system provides parallel, real-time processing. The advantages and disadvantages of high-radix SDNR/RNS arithmetic, and the feasibility of implementing SDNR/RNS arithmetic systems in CMOS VLSI technology, were investigated in this project. A common methodological model, which included the stages of analysis, design, implementation, testing, and simulation, was followed. The combination of the SDNR and RNS transforms potential complex logic networks into simpler logic blocks. It was found that when constructing a SDNRIRNS adder, factors such as the radix, digit set, and moduli must be taken into account. There are many avenues still to explore. For example, implementing other arithmetic systems in the same CMOS VLSI technology used in this project and comparing them to equivalent SDNR/RNS systems would provide a set of benchmarks. These benchmarks would be useful in addressing issues relating to relative performance

    Faster binary-field multiplication and faster binary-field MACs

    Get PDF
    This paper shows how to securely authenticate messages using just 29 bit operations per authenticated bit, plus a constant overhead per message. The authenticator is a standard type of "universal" hash function providing information-theoretic security; what is new is computing this type of hash function at very high speed. At a lower level, this paper shows how to multiply two elements of a field of size 2^128 using just 9062 \approx 71 * 128 bit operations, and how to multiply two elements of a field of size 2^256 using just 22164 \approx 87 * 256 bit operations. This performance relies on a new representation of field elements and new FFT-based multiplication techniques. This paper's constant-time software uses just 1.89 Core 2 cycles per byte to authenticate very long messages. On a Sandy Bridge it takes 1.43 cycles per byte, without using Intel's PCLMULQDQ polynomial-multiplication hardware. This is much faster than the speed records for constant-time implementations of GHASH without PCLMULQDQ (over 10 cycles/byte), even faster than Intel's best Sandy Bridge implementation of GHASH with PCLMULQDQ (1.79 cycles/byte), and almost as fast as state-of-the-art 128-bit prime-field MACs using Intel's integer-multiplication hardware (around 1 cycle/byte). Keywords: Performance, FFTs, Polynomial multiplication, Universal hashing, Message authenticatio
    • 

    corecore