
Clemson University
TigerPrints

All Theses Theses

12-2007

Design of ALU and Cache Memory for an 8 bit
ALU
Pravin chander Chandran
Clemson University, pravinc@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Chandran, Pravin chander, "Design of ALU and Cache Memory for an 8 bit ALU" (2007). All Theses. 242.
https://tigerprints.clemson.edu/all_theses/242

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=tigerprints.clemson.edu%2Fall_theses%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/242?utm_source=tigerprints.clemson.edu%2Fall_theses%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


ii 

 

 

 

 

 

 

 

 

DESIGN OF ALU AND CACHE MEMORY FOR AN 8 BIT MICROPROCESSOR 

 

 

 

A Thesis 

Presented to 

the Graduate School of 

Clemson University 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

Electrical Engineering  

 

 

by 

Pravin Chander Chandran 

December 2007 

 

 

Accepted by: 

Dr. Kelvin Poole, Committee Chair 

Dr. William Harrell 

Dr. Michael Bridgwood 



 iii 

ABSTRACT 

 

 

The design of an ALU and a Cache memory for use in a high performance 

processor was examined in this thesis. Advanced architectures employing increased 

parallelism were analyzed to minimize the number of execution cycles needed for 8 bit 

integer arithmetic operations. In addition to the arithmetic unit, an optimized SRAM 

memory cell was designed to be used as cache memory and as fast Look Up Table. 

 The ALU consists of stand alone units for bit parallel computation of basic 

integer arithmetic operations. Addition and subtraction were performed using Kogge 

Stone parallel prefix hardware operating at 330MHz. A high performance multiplier was 

built using Radix 4 Modified Booth Encoder (MBE) and a Wallace Tree summation 

array. The multiplier requires single clock cycle for 8 bit integer multiplication and 

operates at a maximum frequency of 100MHz. Multiplicative division hardware was built 

for executing both integer division and square root. The division hardware computes 8-bit 

division and square root in 4 clock cycles. Multiplier forms the basic building block of all 

these functional units, making high level of resource sharing feasible with this 

architecture. The optimal operating frequency for the arithmetic unit is 70MHz. 

A 6T CMOS SRAM cell measuring 90 µm
2
 was designed using minimum size 

transistors. The layout allows for horizontal overlap resulting in effective area of 76 µm
2
 

for an 8x8 array. By substituting equivalent bit line capacitance of P4 L1 Cache, the 

memory was simulated to have a read time of 3.27ns. 

 



 iv 

An optimized set of test vectors were identified to enable high fault coverage 

without the need for any additional test circuitry. Sixteen test cases were identified that 

would toggle all the nodes and provide all possible inputs to the sub units of the 

multiplier. A correlation based semi automatic method was investigated to facilitate test 

case identification for large multipliers. This method of testability eliminates 

performance and area overhead associated with conventional testability hardware. 

Bottom up design methodology was employed for the design. The performance 

and area metrics are presented along with estimated power consumption. A set of Monte 

Carlo analysis was carried out to ensure the dependability of the design under process 

variations as well as fluctuations in operating conditions. The arithmetic unit was found 

to require a total die area of 2mm
2
 (approx.) in 0.35 micron process. 



 v 

DEDICATION 

 

 

To My Beloved Parents 



 vi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii 

ACKNOWLEDGMENTS 

 

 I would like to thank my advisor Dr. Kelvin Poole for his technical guidance, 

support and patience throughout the progress of this thesis. I would like to thank Dr. 

William R Harrell and Dr. Michael Bridgwood for serving on my committee.  

 I would like to thank my committee members and other faculty members for their 

contributions and support in enriching my educational experience. Finally, I would like to 

thank my family for their constant support and encouragement in all my endeavors. 

 



 viii 

TABLE OF CONTENTS 

 

 

Page 

 

TITLE PAGE ................................................................................................................... i 

 

ABSTRACT................................................................................................................... iii 

 

DEDICATION ............................................................................................................... iv 

 

ACKNOWLEDGMENTS................................................................................................v 

 

LIST OF TABLES ....................................................................................................... viii 

 

LIST OF FIGURES........................................................................................................ ix 

 

CHAPTER 

 

 I. OVERVIEW...................................................................................................1 

 

   Arithmetic and Logic Unit .......................................................................2 

   Cache Memory .........................................................................................4 

 

 II. ADDITION AND SUBTRACTION..............................................................7 

 

   Background ..............................................................................................7 

   Addition and Subtraction .......................................................................10 

   Fast Adder for Multiplier .......................................................................14 

 

 III. MULTIPLICATION ....................................................................................17 

 

   Background ............................................................................................17 

   Integer Multiplier Architecture ..............................................................19 

   Encoding.................................................................................................19 

   Negative Partial Product Generation......................................................22 

   Partial Product Reduction.......................................................................24 

   Testability...............................................................................................29 

 

 IV. DIVISION, SQUARE ROOT AND INVESRE...........................................34 

 

   Background ............................................................................................34 

   Newton Raphson Algorithm ..................................................................35 

 



 ix

   

Table of Contents (Continued)                                                                     Page 

   

    

   Normalization.........................................................................................37 

   Initial approximation table .....................................................................42 

   Square Root ............................................................................................47 

   Square.....................................................................................................48 

   Inverse ....................................................................................................49 

 

 

 V. MEMORY DESIGN ....................................................................................53 

 

   SRAM Organization...............................................................................53 

   6 T SRAM Circuit ..................................................................................55 

   Cell Sizing and Performance..................................................................57 

   Differential Sense Amplifier ..................................................................59 

   Latch Type Sense Amplifier ..................................................................67 

   Write circuitry ........................................................................................71 

    

 

 VI. PERFORMANCE ANALYSIS & CONCLUSION.....................................73 

 

   Process Variations ..................................................................................73 

   Supply Variation ....................................................................................75 

             Temperature Variations..........................................................................77 

   Power......................................................................................................79 

   Summary and Conclusion ......................................................................80 

   Further Improvements ............................................................................82 

 

 

 

 

APPENDICES................................................................................................................83 

 

 A: Kogge Stone Adder – PG Diagram Notation ...............................................84 

 B: Multiplier Testability....................................................................................85 

 C: SRAM Capacitance Calculations .................................................................87 

 D: Schematics....................................................................................................92 

 E: Layouts .........................................................................................................99 

 

 

REFERENCES.............................................................................................................100 



 x

LIST OF TABLES 

 

 

Table                                                                                                                               Page 

 

 2.1 Comparison of Parallel Prefix Adders ...........................................................9 

 

 3.1 Truth Table of Modified Booth Encoder......................................................20 

 

 3.2 Test Cases for the Multiplier........................................................................30 

 

 3.3 Semi Automatic Test Cases Identification ...................................................32 

  

 4.1 Truth Table for Priority Detector .................................................................39 

 

 4.2 Initial Approximation Look Up Table .........................................................42 

 

 4.3 Square Root Approximation Look Up Table ...............................................48 

 

 5.1 6T Transistor Sizing.....................................................................................59 

 

 5.2 Cache Memory in Pentium 4 and Athlon Microprocessors .........................60 

 

 5.3 Latch Type Sense Amplifier Sizing .............................................................70 



 xi

 LIST OF FIGURES 

 

 

Figure                                                                                                                             Page 

 

  

 2.1 PG Diagram of a 16 Bit Kogge Stone Adder ...............................................10 

 

 2.2 Block Diagram for Combined ADD/SUB Unit ...........................................11 

 

 2.3 Schematic of ADD/SUB Unit. .....................................................................12 

 

 2.4 Output of ADD/SUB Unit............................................................................13 

 

 2.5 Delay Comparison of Adders.......................................................................14 

 

 2.6 Power Comparison of Adders. .....................................................................15 

 

 2.7 Area Comparison of Adders.........................................................................16 

 

 3.1 Schematic of MBE using T-Gate .................................................................21 

 

 3.2 Generation of Negative Partial Product Rows .............................................22 

 

 3.3 Simple Sign Extension .................................................................................23 

 

 3.4 Wallace Tree Construction diagram.............................................................25 

 

 3.5 Partial Product reduction using Wallace Tree..............................................25 

 

 3.6 Schematic of a Wallace Tree .......................................................................26 

 

 3.7 Block Diagram of Integer Multiplier ...........................................................27 

 

 3.8 Schematic of a Multiplication and Squaring Hardware ...............................28 

 

 3.9 Output of Multiplication Unit ......................................................................31 

 

 4.1 Block Diagram of Divisor Normalization Unit............................................38 

 

 4.2 Schematic of a Priority Detector ..................................................................39 

 

 4.3 Schematic of T Gate based Barrel Shifter ....................................................40 

 



 xii

List of Figures (Continued) 

 

Figure                                                                                                                             Page 

 

 4.4 Combined Normalization and Mantissa Computation circuit......................41 

 

 4.5 Block Diagram of Division Hardware .........................................................44 

 

 4.6 Schematic of Combined Division and Square Root Hardware ....................45 

 

 4.7 Output of Division Unit................................................................................46 

 

 4.8 Block Diagram for Square Root Computation.............................................48 

 

 4.9 Output of Square Root Computation............................................................49 

 

 4.10 Output of Square Computation ....................................................................50 

 

 4.11 Output of Inverse Computation....................................................................51 

 

 5.1 Organization of Single Column of SRAM Memory Array..........................53 

  

 5.2 6-T SRAM Memory Cell .............................................................................55 

 

 5.3 Ripple voltage vs Cell Ratio.........................................................................57 

 

 5.4 Node voltage vs. Pull-Up Ratio ...................................................................58 

 

 5.5 Output of Single SRAM row........................................................................61 

 

 5.6 Schematic of CMOS Differential Sense Amplifier......................................62 

 

 5.7 Cache Output for Write and Read of ‘0’ ......................................................65 

 

 5.8 Bit Line Capacitance vs. Access Time.........................................................66 

 

 5.9 Schematic of Latch Type Sense Amplifier ..................................................67 

 

 5.10 Latch Type Sense Amplifier Output ............................................................69 

 

 6.1 Output of Adder under Process Variations ..................................................74 

 

 6.2 Output of Multiplier under Process Variations ............................................74 

 



 xiii 

List of Figures (Continued) 

 

Figure                                                                                                                             Page 

 

 6.3 Output of Division Hardware under Process Variations .............................75 

 

 6.4 Output of Adder under Supply Variations ..................................................76 

 

 6.5 Output of Multiplier under Supply Variations ............................................76 

 

 6.6 Output of Division Hardware under Supply Variations ..............................77 

 

 6.7 Output of Adder under Temperature Variations .........................................78 

 

 6.8 Output of Multiplier Temperature Variations .............................................77 

 

 6.9 Output of Division Hardware under Temperature Variations .....................79 

 

 

 

 

  



1 

CHAPTER ONE 

 

OVERVIEW 

 

Due to wide spread use of microprocessors and signal processors, implementation 

of high performance arithmetic hardware has always remained an attractive design 

problem. Arithmetic and Logic Unit (ALU) is the workhorse of a microprocessors and 

determines the speed of operation of the processor. All modern processors include stand 

alone hardware for computation of basic arithmetic operations. In addition to fast 

arithmetic hardware, processors are also equipped with on-chip memory (cache) to 

achieve significant performance improvement by avoiding delay due to data access from 

main memory. The key objective of this work is to address the design of the above 

mentioned functional blocks. The design goals are summarized as follows.  

a. Implementation of a high performance arithmetic hardware with minimum 

possible clock cycles capable of computing square, square root and inverse in 

addition to basic arithmetic operations.  

b. Implementation of a fast data rate cache. 

c. Investigation of testing method to eliminate the need for additional hardware for 

testability while ensuring high fault coverage. 

 

A brief description of components needed to build a complete processor is 

presented in the following section. The functional blocks of a processor include, 

1. ALU and Floating Point Unit 

2. Data and Instruction Cache 



 2 

3. Control Unit 

4. Registers, Flags, Stack, Queues, Buffers 

5. Bus circuitry 

A decoder and control circuitry are needed to generate control signals needed for 

execution of instructions. Registers and Flags are needed within processor to store 

intermediate values and status after various ALU operations. Bus circuitry involving data, 

address and control bus is needed for proper integration of different units. 

In addition to these common elements, all superscalar processors contain 

specialized circuits called Branch Predictors to prevent branch penalty in a pipeline 

implementation. Also special purpose buffers like Translation Look Aside Buffer (TLB) 

and Branch Target Buffer (BTB) etc are used to increase the performance of processor. 

TLB is used by Memory Management Unit (MMU) as a look up table to convert virtual 

address into physical address. BTB is used in association with Branch Predictor to cache 

information corresponding to conditional path determined by branch predictor. These 

buffers have fast access rate requirements which can satisfactorily be met by SRAM 

memory designed in this thesis. 

 

Arithmetic and Logic Unit 

 

Design of ALU was undertaken in this thesis in the context of high performance 

and testability. Architectures with high degree of parallelism were explored for design of 

high speed arithmetic unit. For simplicity, functional units were designed with 8 bit 



 3 

capability. Due to architectural parallelism, increase in operand size would only require 

replication of hardware parallel to existing circuitry.  

The ALU has stand alone hardware for performing basic integer arithmetic 

operations and is capable of computing square, square root and inverse as well. A logic 

unit performing 8 bit logic operations was built using logic cells available in the IC cell 

library and was found to have a high operating frequency close to 1GHz. 

The multiplier is the most critical functional unit in the ALU. Popular techniques 

for improving the speed of a multiplier include reduction of the number of partial product 

rows, fast reduction of partial product rows and final summation of result using a fast 

adder. Wallace tree multiplier, a column compression multiplier found in many 

processors including IBM PowerPC [1], was implemented in this thesis. Modified Booth 

Encoding and Kogge stone adder were used to enhance the performance of the Wallace 

multiplier. 

In the past, emphasis was mostly on development of high performance adder and 

multiplier. This resulted in poor performance of division unit and forced programmers to 

develop algorithms free of these operations. To increase the efficiency of a processor it is 

required that the latency for division is close to thrice the latency of multiplication. In 

recent processors, division takes 4-10 times the time needed for multiplication. Many 

modern processors take advantage of their fast multiplier to achieve high division speed 

using multiplicative division techniques. In most of the recent implementations, division 

and square root share functionality with FP multiplier to avoid large area and cost 



 4 

involved in having a stand alone unit. Though resource sharing is beneficial, it sometimes 

hits the performance of arithmetic unit by loading the multiplier heavily.  

In this thesis, Newton Raphson multiplicative division algorithm was used to 

implement a combined division and square root hardware. NR algorithm is based on 

functional recurrence and uses iterative refinement to obtain the result. An initial 

approximation is generally used to increase the rate of convergence. Popular 

implementation of NR division unit includes floating point division units of IBM 

RS6000, IBM Power PC and Power2 processors etc. A small look up table was used to 

decrease the number of computational cycles to four cycles.  

Square root was also implemented using Newton Raphson algorithm. For 

processor optimization, the desired latency for square root is about 9.1 times the division 

latency. The hardware implemented in this thesis is capable of calculating integer square 

root in 4 clock cycles and inverse in 3 clock cycles. Squaring is performed by the 

multiplier in a single cycle clock cycle. 

 

Cache Memory 

 

Memory access is a frequent operation in any program. More than one memory 

access per instruction is needed to fetch instruction and to fetch/store data. However there 

has been an increasing gap between speed of memory and that of logic devices as 

technology scales. Modern processors tend to bridge the gap between logic performance 

and memory latency by use of large cache on chip.  Cache stores most frequently used 

locations of memory and enable much faster access. The access time for main memory is 



 5 

typically 100 cycles while access time for L1 cache is only 1-2 cycles. Generally a 

SRAM cell is used for L1 cache and DRAM is used for L2 cache and main memory. In 

modern processors, memory occupies as much as three quarters of die area.  

In this work, SRAM memory cell was designed for optimum area and speed. In 

large SRAM arrays, only one cell from each column is connected to bit line at a time 

depending on the signal from column decoder. Other cells in the column though isolated 

from the bit line, contribute a significant capacitance to it. Hence the delay characteristics 

of a large memory array can be studied by adding appropriate capacitance to bit line of a 

single cell.  

To simulate the performance of a large cache, it was assumed that the SRAM cell 

designed in this thesis is used to build L1 Cache of the P4 processor. To determine the 

attainable performance, number of rows in the cache of Pentium processor was first 

determined. By substituting the equivalent bit line capacitance, characteristics of the 

cache was simulated. To obtain high access rate, a differential pair sense amplifier was 

designed.  

A row of 8 SRAM cells was built for use as Look up table for division. Due to 

large cycle time and small bit line capacitance, timing constraints weren’t aggressive for 

this 8 bit SRAM unit. Hence sense amplifier for this row was substituted with an inverter. 

Since a single SRAM row was used, column decoder and timing circuitry were not 

needed for this work.  The SRAM row can be seen to meet the timing requirements for 

registers and buffers needed for the processor and can be used to build these components 

as well. 



 6 

The remaining portion of this thesis is structured as follows. Chapter II-IV 

addresses the design and development of components for arithmetic unit. Chapter V 

presents the design of sub units of SRAM memory. Power estimation and worst case 

delay analysis of the designed circuitry is described in Chapter VI. The following chapter 

begins with design of hardware for high speed addition. 

 

 



 7 

CHAPTER TWO 

ADDITION AND SUBTRACTION 

 

Addition is the most commonly used arithmetic operation and hence the 

performance of an ALU is greatly dependent on the performance of its adder. A variety 

of choices exists for addition depending on speed and area requirements. 

 

Background 

 

A Ripple Carry Adder (RCA) consisting of cascaded full adders is the simplest 

adder available with smallest area and largest delay. Numerous techniques have been 

proposed so far to enhance addition speed by optimizing carry propagation chain. A 

Carry Skip Adder offers data dependent performance improvement by featuring a Carry-

Bypass path in addition to carry ripple path.  Carry is by-passed over a fixed block of 

adders if group propagate signal for that block is high [2]. A Variable Carry Skip adders 

consisting of adder blocks of variable size have been shown to improve speed [3] and 

reduce power dissipation [4]. The worst-case delay for a Carry Skip adder is the same as 

that of a Ripple Carry Adder which makes it unsuitable for high performance 

applications. In case of Carry Select Adder, [5] results corresponding to both possible 

values of carry-in are pre computed and appropriate result is later selected based on carry 

rippled from previous stage.  

Look Ahead adder is one of the fastest adders available, characterized by absence 

of any ripple mechanisms. Carry Look Ahead adder [CLA] computes carry-in for each bit 

using a Look Ahead circuitry [6]. The complexity of look-ahead circuitry increases with 



 8 

operand size due to fan-in requirements, making the adder unsuitable for large operand 

sizes. Prefix tree architectures with controlled fan out are commonly used for wide 

operand look-ahead addition.  

A class of adders based on Ling’s algorithm target alternate implementations of 

the carry equation [7]. Instead of propagating the actual carry, propagation of pseudo 

carry is investigated in these algorithms. Naffziger adder [8], a popular variation of 

Ling’s algorithm, found its implementation in Itanium 2 and HP PA RISC 64 bit 

processors. Alternate adders like NMOS based Manchester Chain Carry Skip adders are 

exemplary of circuit level techniques to improve addition speed [9, 10]. 

Hybrid adders exploit the advantages of more than one addition scheme and are 

proven to outperform each of the constituent adders [11, 12]. For large operand sizes, 

parallel prefix adders are believed to have a superior performance compared to other 

addition techniques. A brief description of the available parallel prefix adders is 

presented in the following section. 

 

Parallel Prefix Adders (PPA) 

 

With increasing clock frequencies, simple CLA adders cannot meet the timing 

requirements for use in wide data paths. Dramatic improvement in CLA performance for 

large operands is obtained by use of prefix tree architectures. Popular PP architectures 

include Brent-Kung [13], Kogge-Stone [14], Ladner Fischer [15], Han Carlson [16] and 

Sklansky [17]. All these architectures differ only in the way they handle the trade off 

between logic depth and hardware size. 



 9 

Of the available PPAs, Brent and Kung adder has the maximum logic depth and 

minimum area. Ladner-Fischer adder has the minimum number of stages with maximum 

fan out for all stages. A Kogge Stone has the maximum number of cells with minimum 

fan out. Han Carlson adder is a hybrid of the Ladner Fischer and the Kogge Stone adder 

with reduced wiring and area compared to Kogge Stone adder. A summary of 

characteristics of different parallel prefix adders is given below.       

 

ADDER LOGIC LEVEL FAN OUT CELLS 

Brent – Kung 22log 1N −  2 2N  

Sklansky 2log N  1
2

N +  20.5 logN N  

Kogge Stone 2log N  2 2logN N  

Han-Carlson 2log 1N +  2 2log 1
2

N
N N∗ + −  

Ladner-Fischer 2log N  
2

N  20.5 logN N∗ ∗  

 

Table 2-1: Comparison of Parallel Prefix Adders. 

 

Kogge Stone tree is the most preferred topology for high performance data paths. 

Based on logical effort calculations, speed of a Kogge Stone adder has been reported to 

exceed the performance of any other PPA adders for bit sizes upto 128 bits [18]. Work on 



 10 

high radix implementation of parallel prefix adders has shown further improvement in 

performance through reduction of both logic depth as well as cell count [19]. 

 

Addition and Subtraction 

 

A Kogge Stone adder was implemented in this thesis for addition and subtraction. 

Kogge Stone adder has a fan out of 2 and completely eliminates the fan out problem 

associated with large carry look ahead adders. The equations for prefix computation for 

the KS adder as well as the PG diagram are presented below. The notation for sub units 

of PG diagram can be found in Appendix 1.         

Generate and Propagate: 

.i i i

i i i

g A B

p A B

=

= ⊕
 

Sum Generation: 

i i iS p c= ⊕  

Look Ahead Carry Generation 

1 1

1

1

i i i i

out n

C g

C g pC

C C

−

+

=

= +

=

 

 

Figure 2-1: PG Diagram of a 16 bit Kogge Stone Adder. 



 11 

Parallel prefix adders have a staged architecture as can be seen with Kogge Stone 

adder above. Presence of multiple stages facilitates pipelining which makes these adders 

a preferred choice for current pipelined implementations. 

 

Subtraction 

Hardware for addition and subtraction was implemented as a combined ADD/ 

SUB unit. Subtraction is generally performed using two’s complement addition. Two’s 

complement of a number is obtained by negation of the operand followed by an 

increment-by-1. To invert the operand, an XOR gate was used as a conditional NOT gate 

with one of its input serving as control input (CTRL). The XOR gate inverts the other 

input if the CTRL input is ‘High’. The CTRL signal is applied to Cin to perform the 

increment needed to complete two’s complement calculation. When CTRL signal is 

‘Low’, the unit performs addition. 

 

Figure 2-2: Block Diagram for Combined ADD/SUB Unit. 

 



 12 

 

Figure 2-3: Schematic of ADD/SUB Unit. 

 

Testing 

The hardware for combined addition and subtraction was tested using a worst case 

input. Worst case input for an adder is one in which carry due to LSB affects the result of 

all other bits till MSB. Since adder is used for subtraction as well, worst case for 

subtraction occurs if the carry propagates from LSB to MSB during addition of inverted 

bit.  The ADD/SUB unit was tested with the following input. 

 

A –11111111 

 

B –11111111 

 

A + B:   Sum = 11111110  ;  Carry = 1 

 

A – B:   00000000 



 13 

 

Figure 2-4: Output of ADD/SUB Unit 

The maximum speed of operation of the unit was found to be 333 MHz for a 

worst case input. 

 

Adder for Multiplier  

In addition to the adder performing arithmetic additions, an ALU also needs 

adders for its multiplier. The following adders were needed for the multiplier that was 

built for this thesis. 

1. Carry Save 

2. Fast Adder for final sum 

Carry save adders are often called 3:2 compressors and are employed in partial 

product reduction. Carry Save adder produces partial sum and carry outputs. The carry is 

then shifted and added with the input at next bit position. Carry Save adders are generally 

used in multiplication hardware for fast reduction of partial products rows.  

 



 14 

Fast Adder for Multiplier 

 

A variety of choices exists for design of final adder for the multiplier. For 

moderate operand sizes, a small CLA is generally configured as an adder chain and used 

as Block CLA adder. Carry Select adder and hybrid adders are also sometimes used for 

final addition in a multiplier. This thesis analyzed the performance improvement obtained 

by use of a parallel prefix adder over Block CLA and Carry Select adders for different 

operand sizes. This data can be used to select appropriate adders depending on bit size 

and performance requirements. 

To draw a comparison between these adders, 4, 8, 16, and 32 bit adders were laid 

out and their delay, power and area were determined. The result of the study is presented 

below.   

 

DELAY COMPARISON

0

5

10

15

20

25

0 5 10 15 20 25 30 35

ADDER SIZE

D
E
L
A
Y
 (
n
S
) 
  
..
.

BCLA

CSLA

Kogge Stone

 

  Figure 2-5: Delay Comparison of Adders. 



 15 

 

POWER COMPARISON

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

ADDER SIZE

P
O
W
E
R
 (
n
W
) 
  
..
.

BCLA

CSLA

Kogge Stone

 

      Figure 2-6: Power Comparison of Adders. 

 

 

 

AREA COMPARISON

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35

ADDER SIZE

A
R
E
A
 (
S
q
. 
m
m
) 
  
..
.

BCLA

CSLA

Kogge Stone

 

      Figure 2-7: Area Comparison of Adders. 



 16 

From the above plots, it can be seen that the Kogge Stone adder gives a much 

higher speed performance than the Block CLA and Carry Select adders, as expected. 

However power consumption of the Kogge Stone adder is also higher. Performance of a 

Carry Select adder can be seen to worsen with increase in operand sizes. Delay associated 

with long operand sizes could be due the remnant ripple mechanism in these adders. The 

rate of increase in delay with operand size was found to be much lower for a Kogge 

Stone adder making it an ideal adder for large operands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 17 

CHAPTER THREE 

MULTIPLICATION  

 

Multiplication is a frequently used operation in applications like speech and 

image processing. Hence the speed of the multiplier determines the performance of a 

processor used for these applications. Recursive addition based multipliers like Shift and 

Add multiplier are simple and occupy small area but need multiple clock cycles to 

produce a data dependent result. In this thesis, a fast multiplier that performs 

multiplication in single cycle was built. 

 

Background 

 

A sequential multiplication method like serial Shift-Add takes as many cycles as 

the word size for multiplication [20, 21]. Reduction in number of cycles is achieved by 

using high radix multiplication methods that operate on more than one bit at a time [22]. 

Higher radix multipliers reduce the computational time at the cost of circuit complexity 

and can be used with architectures involving increased parallelism to achieve a single 

cycle multiplication.          

Among parallel multipliers available, array multipliers are the easiest to design 

and have a regular structure that facilitates easy implementation. However array 

multipliers are associated with large delay and increased power consumption [23, 24]. 

Tree Multipliers are faster than array multiplier though they employ the same number of 

adders. Baugh Wooley [25, 26], Pezaris [27], Wallace tree [28, 29] or any variations of 



 18 

these multiplication techniques are commonly considered for fast multiplication. Lack of 

regularity is the major bottleneck in implementation of tree multipliers. 

Baugh Wooley multiplier adjusts partial products to maximize regularity of 

multiplication array. Though compact, it doesn’t employ any partial product reduction 

scheme and hence suffers from latency of combining large partial product rows. Wallace 

Tree multiplier is believed to achieve superior performance over other multipliers. Dadda 

Multiplier [30] is a modification of Wallace tree multiplier that uses less number of 

adders and has a little improvement in speed. A Wallace multiplier however is 

comparatively easier to implement using a full custom layout than a Dadda multiplier. 

Hence a Wallace tree multiplier is by far the common choice when high performance is 

targeted. [31, 32]. A Wallace tree combines partial product bits as early as possible and 

reduces the depth of adder chain. Further there are fewer transitions at nodes, and fewer 

glitches, which result in low power consumption. Methods to improve the regularity of a 

Wallace tree had been of interest to some researchers [33, 40].  

A Wallace tree multiplier was designed in this thesis. In addition, a minimal set of 

test vectors with high fault coverage were identified to ensure testability of the multiplier. 

The description of the multiplier architecture and the testability method are presented in 

the following sections. 

 

 

 

 



 19 

Integer Multiplier Architecture 

The integer multiplier was built to perform unsigned integer multiplication using 

2’s complement binary representation. General hardware for fast parallel multiplication 

consist of modules for,  

1. Encoding 

2. Partial Product reduction 

3. Final Summation 

Generation of fewer partial product rows greatly improves the speed of 

multiplication. Partial products are then compressed into a sum and a carry for each bit 

position using an adder tree and finally summed using a high-speed adder. 

 

Encoding 

 

Minimization of partial product rows is a critical step in improving the speed of 

multiplication. Reduction in row count is generally achieved by processing operands 

using some coding scheme. Gray code has the characteristic of low switching activity and 

is used in some multipliers [34]. Due to prevalent use of binary number system, binary 

encoding is however predominant in most implementations. Binary encoding techniques 

include Canonical (Booth), Differentiating, Non Restoring, and Modified Booth 

recoding. Majority of the latest works in high-speed multiplication employ Modified 

Booth encoding [35, 36, 37]. 

 



 20 

A simple booth coding scheme involves replacement of consecutive ones by a 1 

in MSB+1 and -1 in LSB. 

                            N N-1 N-2 n N+1 n2  + 2  + 2 . . . . . 2   =  2  - 2  

A modified version of booth encoder proposed by Macsorley [38] is widely used 

for encoding multiplicands. The algorithm can be implemented at different radices. A 

radix 2
N
 booth encoder reduces the partial product rows by N. A Radix-8 encoder, for 

example, produces only a third of original partial product rows [39]. Higher radix 

implementations however increase circuit complexity limiting the use of radix to 4 in 

most cases. The truth table of a Radix 4 booth encoder is given below. Booth selector is a 

multiplexer to select an operand based on control signal. 

 

Mi+1 Mi Mi-1 MBE OUTPUT 

0 0 0 0 

0 0 1 1×  

0 1 0 1×  

0 1 1 2×  

1 0 0 2×−  

1 0 1 1×−  

1 1 0 1×−  

1 1 1 0 

 

Table 3-1: Truth Table of Modified Booth Encoder 

 

 
 



 21 

 
 

Figure 3-1: Schematics of Modified Booth Encoder using T-Gate 

 

For 8-bit multiplication, Radix 4 MBE produces four partial product rows.The 

number of partial product rows is thus only half the original number. In reality a MBE 



 22 

produces N+ 1 row of partial products due to use of negative encoding. Methods to 

reduce the additional row have been investigated with good success though [40]. 

 

Negative Product Generation 

 

An MBE produces positive as well as negative partial products. Generation of 

negative multiples requires two’s complement determination. -2Y term for example, can 

be generated using a hardwire shift and two’s complementation. Two’s complement 

involves inversion of the number followed by addition of a ‘1’. To complete two’s 

complement, a number of fast adders, proportional to partial product rows are needed. To 

avoid this, partial product is only inverted and 1 is added to LSB if the recoding signal is 

negative 

 

Figure 3-2: Generation of Negative Partial Product Rows. 

 

 

 

 



 23 

Sign Extension 

In case of signed numbers, the MSB bit represents the sign of the number. The 

partial product is negative if it contains a ‘1’ in its MSB and is positive otherwise. In case 

of negative partial products this sign bit has to be extended till the bit position 16 as 

shown below. 

 

Figure 3-3: Simple Sign Extension 

 

The MSB bit will be heavily loaded if the sign bit were to be literally extended till 

MSB as shown above. In addition the number of computations needed and power 

consumption also increases in case of such an extension scheme. Instead the result of 

addition is generally pre computed (10101011 in Figure 3-2) and added to partial product 

row at the appropriate position. The combination of ‘10101011’ and sign bits [S0-S3] is 

used for sign extension and negative product generation needed for negative partial 

products. 

 

For unsigned multiplication, an additional row of multiplicand has to be added to 

partial product row.  

 



 24 

Partial Product Reduction 

A Wallace tree increases the speed of partial product reduction by virtue of its 

increased parallelism. Carry save adders are used for constructing adder tree and 

configuration of carry save adders determines power and performance of reduction 

scheme. A 3:2, 4:2 or 5:2 CSA can be employed for PP reduction. Logic depth decreases 

with the size of CSA while the power consumption increases [36]. To minimize power, a 

3:2 CSA was used in this work. Further improvement in performance and power can be 

achieved by path delay matching. 

 

Wallace Tree Construction 

Bakalis et al. [41] suggested some rules for construction of Wallace tree. These 

rules were found to reduce unwanted transition at nodes resulting in performance 

improvement and power reduction. The key items to be considered in constructing a 

Wallace tree are summarized as follows.  

a. The partial product bits (PP) are to be grouped in triplets and fed to a full 

adder at the first level of each tree.  Partial product bits greater than 3 in a 

particular bit position need to be summed at the next level along with 

carry from the preceding bit position.  

b. Half adders should be used only at the terminal level and the number of 

HA per tree should be at most one.  

c. The sign extension bits are summed either at the last or the previous to last 

level of each tree to avoid unnecessary transitions in the tree.  



 25 

The dot diagram and tree structure that follows describe the Wallace tree 

reduction logic. 

 

Figure 3-4: Wallace Tree Construction diagram [41] 

 

 

Figure 3-5: Partial Product reduction using Wallace Tree 

            NEG
 

  PP0 PP1 PP2 PP3 PP4 PP5 PP6 PP
 

        NEG
 

  PP0
 

PP1
 

PP2
 

PP3
 

PP4
 

PP5
 

PP6
 

PP7
 

PP8
 

[S3
 

    NEG
 

  PP0
 

PP1
 

PP2
 

PP3
 

PP4
 

PP5
 

PP6
 

PP7
 

PP8
 

[S2] 1   
NEG
 

  PP0
 

PP1
 

PP2
 

PP3
 

PP4
 

PP5
 

PP6
 

PP7
 

PP8
 

[S1] 1       
PP0
 

PP1
 

PP2
 

PP3
 

PP4
 

PP5
 

PP6
 

PP7
 

PP8
 

[S0] 1           
                  1             



 26 

 

 

 
 

Figure 3-6: Schematic of Wallace Tree Adder. 

 



 27 

 

 

 

 

 

 

 

Figure 3-7: Block Diagram of Integer Multiplier 

 

 



 28 

 

Figure 3-8: Schematic of a Multiplication and Squaring Hardware 



 29 

Testability 

 

The objectives of testability are high fault coverage, ‘at speed’ testing, minimum 

area overhead and minimum number of test vectors. Boundary Scan using TAP (Test 

Access Port) greatly improves observability and controllability and is implemented in 

most of the modern processors. Scan methods however result in a large area over ahead 

as well as increased testing time. Proper choice of test cases is still needed to ensure 

functionality of the design in addition to scan hardware. BIST schemes are popular for 

testing memory and are sometimes employed for logic circuitry as well. BIST schemes 

generate test vectors automatically but require increased hardware for test vector 

generation and compaction. The additional hardware for testability in turn affects the 

speed of the system under test as well. In this thesis, an optimal set of test vectors were 

identified to make the multiplier fully testable without the need for any additional 

circuitry. 16 test cases were identified that would be sufficient to verify the functionality 

of the multiplier circuit.  

From the large set of inputs available for the 8 bit multiplier, an optimum set 

capable of generating all possible input combinations to the sub units were identified. The 

identified test vectors can generate all possible inputs to the adders of Wallace tree as 

well as to all the booth encoders. Since all the critical nodes of the circuit are toggled, 

these cases would be sufficient to test the functionality of the circuit. Booth selector and 

the final adder however are not targeted by the test cases. It is assumed that faults in these 

circuit blocks, if any, would be observable for any valid input.  

 



 30 

Initially optimal set of test cases was manually identified by populating partial 

product rows based on values desired at adder inputs. The test cases manually identified 

are presented below. Appendix II shows the output obtained at adders of Wallace tree for 

the following test cases. It can be seen from the output that all full and half adders receive 

all possible inputs. Booth encoders can also be seen to receive all inputs needed for 

complete functional testing. 

 

 

 

 

 

 

 

 

 

 

  

 

  

  

Table 3-2: Test Cases for the Multiplier 

 

TEST CASE ID MULTIPLICAND MULTIPLIER 

TC1 00000000 00000000 

TC2 10101011 10010010 

TC3 10101011 01101001 

TC4 01010101 110111011 

TC5 10101011 10000000 

TC6 10101011 11011101 

TC7 11111110 111X1101 

TC8 01110111 10010000 

TC9 10001001 1110101 

TC10 1101101 01000010 

TC11 00100010 10101101 

TC12 10100100 10111111 

TC13 01010101 00110111 

TC14 11000101 01011101 

TC15 10101011 11100111 

TC16 10011011 11110100 



 31 

 

 

 

Figure 3-9: Multiplier Output 

X=171d ; Y = 187d ; Result = 31977d 

 

The major drawback of this manual procedure is that the complexity of 

identification increases with bit size. A hand analysis like this would not be feasible for 

multipliers operating on large word lengths. A statistical method was investigated to 

assist human analyst with the identification task.  

An attempt was made to determine test cases for adders of Wallace tree in a semi 

automatic fashion. The multiplier was constructed in MATLAB and input at 3:2 adders 

corresponding to all possible multiplier inputs was captured in a table. Adder inputs were 

grouped as a vector and similarity between different vectors was used as an index to 

discriminate between cases. An adder has 8 possible inputs and the vectors were sorted 

based on maximum occurrence of each input and written into separate tables. SET 1 



 32 

(Table 3-3) was created by grouping one case from each table and was found to have 

fault coverage of 71.3 %.   

To improve the fault coverage, top 25 vectors were picked from each sorted table 

and compared against each other. A measure of dissimilarity between the vectors was 

computed to improve fault coverage.  SET 2 consists of one dissimilar pair for each input 

and sets 3 & 4 were identified by repeating the procedure with different pairs.  

 

TEST ID NO. OF TEST CASES FAULT COVERAGE % 

SET 1 8 71.3 % 

SET 2 16 88.6 % 

SET 3 16 94 % 

SET 4 16 91.33 % 

 

Table 3-3: Semi Automatic Test Case Identification 

 

Fault coverage with the later procedure (SET 2-4) seems satisfactory for 

preliminary test case generation. Each set can then be refined to further improve fault 

coverage. 

 

In summary, a fast multiplier with an operating frequency of 100MHz was built in 

this work. Also a method to generate test vectors was investigated to improve the 

testability of the multiplier. Performance of many other operations like division, square 

root and inverse are dependent on the multiplier. The following chapter describes the 



 33 

design of division hardware using this multiplier. The worst case delay and the power 

consumption of the multiplier are examined in Chapter VI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 34 

CHAPTER FOUR 

DIVISON AND OTHER FUNCTIONS 

 

Division and square root are increasingly becoming performance bottlenecks in 

realization of a high performance processor. Though the number of occurrences of 

division in a program is very small, the total processor time spent on division is the same 

as that spent for addition and subtraction. Since the operating frequency of ALU is 

determined by its slowest functional unit, fast division hardware is essential to improve 

the overall performance of the ALU. 

Digit recurrence and Functional Recurrence are two major classes of division 

algorithms. Digit recurrence methods use subtraction to obtain quotient and divisor 

resulting in a linear dependence of latency on bit size. The most popular among digit 

recurrence algorithm is the SRT division [42, 43] which found its implementation in 

many commercial processors. Higher radix architecture improves the speed of division by 

retiring larger number of bits per cycle. High radix SRT hardware reduces the number of 

cycles needed but increases circuit complexity and latency. Radix-4 SRT division was 

used to perform integer division in early Intel Pentium Processors [44].  

For high speed division, variations of functional recurrence methods are widely 

used. Multiplicative Division and Divisor Reciprocation are the common functional 

iteration methods found in many floating point hardware. Functional recurrence 

algorithms use iterative refinement to improve the precision of the result. The precision 

of the result doubles with each iteration. An initial approximation is often used to reduce 

the number of iterations needed to arrive at the final result. Newton Raphson and 



 35 

Goldschimdt algorithm are the commonly used algorithms for multiplicative division. 

Newton-Raphson method [45, 46] involves two dependent multiplications that need to be 

performed sequentially, followed by a subtraction. Hence the time per iteration is large. A 

major advantage of this method is that the algorithm is self correcting and error in 

iteration doesn’t affect the result of next iteration. 

Goldschmidt method is a variation of NR method without a dependent 

multiplication [47, 48]. Since numerator and denominator operations are independent of 

each other, Goldschmidt’s algorithm remains an ideal choice for pipelined 

implementations. Goldschmidt algorithm was used in IBM S/390, AMD K7 etc. 

Goldschmidt algorithm, though faster, is not self correcting. Error in any iteration can 

cause the result to drift from the actual value necessitating the need for error correction 

hardware. 

Both these algorithms use an initial inverse approximation of divisor and refine 

the result using a series of iterations. While digit recurrence methods produce quotient 

and reminder, functional recurrence algorithms requires calculation of reminder from the 

quotient using an additional cycle. Though functional recurrence methods result in better 

performance, digit recurrence still retains its popularity. In this thesis Self Correcting 

Newton Raphson algorithm was used to build the division hardware. The following 

section explains the basics of NR algorithm applied to division. 

 

 

 



 36 

Newton Raphson Algorithm 

Newton Raphson algorithm applied to quotient determination is illustrated below. 

Consider the problem of determining the quotient of a division a/b. If x represent the 

inverse of the divisor, 

 
1/

( ) 1 0

x b

f x bx

=

= − =
 

 The first iteration in Newton Raphson yields, 

 

1 '

1 2

1

( )

( )

1

1/

(2 )

i
i i

i

i
i i

i

i i i

f x
x x

f x

b
x

x x
x

x x bx

+

+

+

= −

−
= −

= −

 

Quotient is determined using Newton Raphson iterative algorithm using the 

following steps. 

a. Reciprocal Approximation 

b. Divisor Reciprocal determination using NR iteration    

[ 1 (2 )i i ix x b x+ = ∗ − ∗ ] 

c. Multiplication of divisor reciprocal with dividend to get the quotient. 

 

Each NR refinement step has two dependent multiplications and a subtraction. By 

reordering one of the dependent multiplications to next iteration, the dependency was 

resolved to achieve speed improvement at the cost of one additional cycle.  



 37 

Fast division hardware often makes use of a pre computed initial approximation to 

increase the speed of division. A Look Up table is often used to store a low precision 

inverse approximation of the divisor. The number of iterations needed to determine the 

inverse accurate to n bits depends on the initial approximation used. The number of 

cycles reduces with bit accuracy of inverse approximation. However the size of Look Up 

Table increases quadratically with increase in approximation accuracy. A small look up 

table is easily manageable and hence is often preferable. 

 

Normalization 

To ensure that the quotient bit is obtained in estimated clock cycles, the divisor is 

normalized such that none of the leading bit positions are zeros. Initial approximation 

corresponding to most significant bits of normalized divisor is obtained from the Look up 

Table. 

The number of clock cycles needed for division is dependent on initial 

approximation used. With 8 bit approximation, the output can be obtained with a single 

multiplication requiring two clock cycles. However the size of the look up table needed 

for this is 256 (2
8
) rows. When a 4 bit approximation is used, additional clock cycle is 

needed while the look up table reduces to 16 rows. A proper choice of the table size can 

be made depending on area and clock cycle requirements. 

Since the MSB after normalization is always 1, it can be omitted and the next four 

bits can be used to index the table. This will reduce the size of look up table to 8 rows for 

4 bit accuracy. However instead of reducing the table size, bit accuracy of the result was 



 38 

increased in this work.  Since hardware to support rounding was not implemented, it was 

decided to increase the accuracy of the inverse approximation by one more bit. Four bits 

after the MSB of normalized divisor is used to address the table.  This would ensure that 

the quotient is obtained in two iterations under all circumstances irrespective of 

truncation and approximation errors. 

A T-Gate based Barrel Shifter was used in association with a priority detector to 

normalize the divisor. Priority detector circuit determines the position of first non zero in 

the divisor and the shifter moves the first non zero bit to MSB flushing away the leading 

zeros.  

                                    

Figure 4-1: Block Diagram of Divisor Normalization Unit 

 

The priority detector outputs the bit position of the input corresponding to first 

occurrence of ‘1’.The logic equation and truth table for priority detector is given by, 

 

 

Barrel Shifter 

Priority Detector 

b



 39 

Logic Equation: 

 

1

8 8

.i i

P B

Pi B B −

=

=
 

 

 

INPUT OUTPUT 

1XXX XXXX 10000000 

01XXXXXX 01000000 

001X XXXX 00100000 

0001XXXX 00010000 

00001XXX 00001000 

000001XX 00001000 

0000001X 0000 0010 

00000001 00000001 

 

Table 4-1: Truth Table for priority detector 

 

 

 

Figure 4-2: Schematic of Priority Detector. 



 40 

 

 

 

 
Figure 4-3: T Gate based Barrel Shifter for Divisor Normalization. 

 
Hardware to facilitate mantissa computation for inverse operation was built along with 

normalization circuitry. The circuit estimates the mantissa based on size of the divisor. 

The details of the computation are explained under Square root computation. 



 41 

 

 

Figure 4-4: Combined Normalization and Mantissa Computation Circuit. 

 

 



 42 

Initial Approximation 

The approximation is pre computed using an expanded version of the Newton 

Raphson algorithm and stored in a table. 

2 4(2 ) (1 ( 1) )*(1 ( 1)i n n nx b b b= − ∗ + − + −  

where, nb  -  Normalized Denominator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-2: Initial Approximation Look Up Table 

 

MSB INITIAL APPROX. 

10000 1.0000000 

10001 1.1110000 

10010 1.1100011 

10011 1.1010111 

10100 1.1001100 

10101 1.1000011 

10110 1.0111010 

10111 1.0110010 

11000 1.0101010 

11001 1.0100011 

11010 1.0011101 

11011 1.0010111 

11100 1.0010010 

11101 1.0001101 

11110 1.0001000 

11111 1.0000100 



 43 

Generally a ROM Look Up table is used to store the value. In this thesis a single 

row of SRAM was used instead of the look up table. An array of 16x8 SRAM cells along 

with column decoder can be used to build a fully functional look up table for the actual 

hardware. The design of the SRAM cell is described in chapter 5.  Address decoder and 

timing design were ignored in this work for the purpose of simplicity. The inverse 

approximation corresponding to the divisor is stored in the SRAM before the start of 

division.  

For an 8 bit division, the quotient is obtained in 3 cycles. Since the rate of 

convergence is quadratic, a 64 bit division can be performed in 6 cycles using this 

architecture. Increase in size of LUT can further decrease the clock cycles needed. If the 

look up table is to be avoided, 3 additional cycles would be needed to compute the 4 bit 

initial error approximation. However the normalization cycle would no longer be required 

making the effective increase in clock cycles to be 2. Increase in clock cycle would 

increase power consumption as well. Hence the use of a look up table is justifiable from 

performance and power perspective in modern high speed low power hardware. 

 

NR Iterations 

Result of first iteration has a bit precision of 5 MSB bits corresponding to 

normalized divisor. Second iteration gives a result with 10 bit precision which guarantees 

the desired accuracy. Since the quotient corresponds to normalized denominator, the 

result was again shifted using the barrel shifter. 



 44 

 

 

Figure 4-5: Block Diagram of Division Hardware for NR Iteration 

 

 

 

 

 

 

 

 

MULTIPLIER 

2’ Comp 

 

MULTIPLIER 

MUX MUX MUX MUX 

x x x 

q 

a b d 

Barrel Shifter 
Shift  

Quotient 

Divisor Dividend 
Inverse      Approx. 



 45 

 

 

Figure 4-6: Schematic of Combined Division and Square Root Hardware 



 46 

Functional Testing 

Since the multiplier along with shift registers forms the basic building blocks of 

the divider, it can be assumed that faults in other units, if any, are observable for any 

given input. Hence functional testing of division hardware was performed using a worst 

case input. 

Multiplier and the shifter constitute the major building blocks of the division 

hardware. Barrel shifter has a shift independent delay. Hence worst case delay of the 

divider occurs for worst case at multiplier. The bit positions 7,9-12 of the multiplier has 

longest logical depth and worst case for a multiplier occurs if the operands are large 

enough to toggle carry save adders in these positions. A suitable input to perform this was 

selected to test the divider.  

 

Figure 4-7: Output of Division Unit 

A = 107d;  B = 22d; Quotient =4 ; Reminder = 19 



 47 

Since the division hardware encounters additional delay of an 8 bit addition when used 

for determining square root, the maximum frequency of operation of the division unit was 

fixed to be 70MHz. 

 

Square Root 

Square root is found to occur 10 times less frequently in a program than division.  

Due to large area and cost involved, a stand alone unit for square rooting is not 

justifiable. However a slow square root may still bring down the overall efficiency of the 

processor. In many of the modern processors FP division unit is used to compute square 

root as well. 

In this thesis, Newton Raphson Iterative Square root algorithm was used to 

compute integer square root. The NR formula for square root computation is given by, 

1

1

2
i i

i

N
x x

x
+

 
= + 

 
 

Divide by 2, needed for this can be achieved by the use of a hard wire shift by one 

position. Fast Kogge Stone adder was used again to compute the sum. An initial 

approximation was obtained from a LUT to increase the speed of computation. 

The proposed hardware for square root approximation consists of a priority 

encoder to determine the size of the operand accurate to MSB bit. The encoder output is 

used to address the Look up table to obtain square root approximation. Based on square 

root approximation, inverse approximation for division is obtained from a different table. 



 48 

Use of a look up table results in reducing the number of iterations needed as in case of 

division. 

 

Figure 4-8: Block Diagram for Square Root computation 

 

OPERAND PRI. ENC. O/P SQRT APPROX. 

1X 001 1 

1XX 010 10 

1XXX 011 11 

1XXXX 100 100 

1XXXXX 101 101 

1XXXXXX 110 1000 

1XXXXXXX 111 1011 

 

Table 4-3: Square Root Look Up Table 

 



 49 

The division hardware needs an additional SRAM table to complete the circuitry 

needed for square root computation. Though square root approximation requires 

additional hardware, it doesn’t result in any performance overhead on the division circuit. 

The value of square root approximation was directly supplied in this implementation. The 

cycle time for division is 14ns, allowing another memory access in normalization cycle 

with inclusion of appropriate hardware. Since the maximum output is 4 bit, square root 

computation requires two more NR iterations resulting in 4 clock cycles. 

 

 
*LSB needs to be ignored to account for ‘divide by two’. 

 

Figure 4-9: Output of Square Root Computation 

INPUT = 237 ; SQRT = 15 

 

 

 



 50 

Square 

 

If booth encoding is not used, multiplier architecture can be modified to 

implement an exclusive squaring hardware with only half the partial product rows as the 

multiplier. However when an encoder is employed both multiplication and squaring 

generates same number of partial product rows. Hence multiplier was made to handle 

squaring as well. 

Based on CTRL signal the hardware can be operated as a multiplier or a squaring 

unit. When CTRL is ‘High’, the hardware performs X*Y else it determines 2X . 

 

Figure 4-10: Output of Square computation. 

X- 171d;   X
2
=29241 

 

Inverse 

 

Division hardware was used to implement inverse as well. To facilitate inverse 

computation, an encoder circuitry was built in the division hardware along with 

normalization circuitry. The encoder was used for computation of mantissa involving 

negative power of final result based on the original divisor. The delay obtained for 



 51 

inverse is essentially same as that for a division. Since inverse doesn’t involve calculation 

of a reminder, only 3 cycles are needed to compute inverse. An 8 bit exponential result 

and a 3 bit mantissa are produced by the hardware during inverse computation. Final 8 bit 

result is obtained by replacing the 3 least significant bits of the exponential term with 

encoder output. Thus result of inverse is a 5 bit exponential term and a 3 bit mantissa 

carrying a negative power. 

 

Figure 4-11: Output of Inverse Computation. 

Y =177 ; Inverse = 7

5

23
*2

2

− = 0.0056 

 

This section concludes the work on arithmetic unit. Since the slowest unit 

determines the overall operating speed, the optimum operating frequency of the processor 

is 70MHz. In many modern processors, the adder is operated at twice the clock frequency 

to improve performance. Adder designed in this work supports such performance 



 52 

enhancement and can be operated at higher speed. Worst case performance analysis as 

well as power estimation for the arithmetic unit is presented in Chapter VI. The following 

chapter addresses the design of SRAM cell and the peripheral circuits needed to handle 

R/W memory requirements of the process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 53 

CHAPTER FIVE 

 

MEMORY DESIGN 

 

 

SRAMs (Static Random Access Memory) are high speed, low power random 

access memories with high noise margin and full compatibility with current logic 

process. Despite its higher cost, SRAM is the most popular choice for high speed 

memory. In addition to use as cache in high performance microprocessors, SRAM 

memory cells area also used as data buffers and as fast Look-Up-Tables (RAMDAC - 

Random Access Memory Digital-to-Analog Converter). 

 

SRAM ORGANIZATION – Single Column 

 

Figure 5-1: Organization of Single Column of SRAM Memory Array 



 54 

A single column of SRAM array is shown in Fig 5.1. The key components are, 

1. SRAM Cell 

2. Column Pull up (or) Pre Charge Circuitry 

3. Write Circuitry 

4. Read Circuitry 

A 6T SRAM cell consumes low power and has a high static noise margin when 

compared to other topologies like 4T and 4TLL. Hence the 6T cell topology is more 

popular than other SRAM configurations despite its comparatively bigger size. Address 

decoders are used to select appropriate word line (WL) based on memory address. 

Column Pull up consist of PMOS transistors that pre charge the bit line to Vdd before 

each read. Sense amplifier amplifies the reduced voltage swing across the bit lines into a 

full logic level signal. Write circuitry consists of NMOS transistors to discharge 

appropriate bit line capacitance and set the cell voltage at the desired node to zero. 

 

6 T SRAM Design 

A 6T SRAM cell consists of a positive feedback amplifier formed by two cross 

coupled inverters. The cell has two stable states and preserves one of its stable states as 

long as the power supply is present. Regeneration towards one of the stable states will 

occur if the gain of the inverters is greater than one. Since the two inverters complement 

each other, the logic level is maintained by the cell as long as power supply is on and 

voltage level at the nodes is not externally disturbed. In addition to the inverter pair, the 

cell consists of two n type access transistors that connect the data to the bit line. The 



 55 

access transistors are enabled by row select signal which connect appropriate cell to bit 

line for read and write operations. 

 

Figure 5-2: 6-T SRAM Memory Cell 

 

To write data, the bit lines are pre charged to the value to be stored and the access 

transistors are enabled. The new logic state is set by forcing the bit line voltage on the 

internal nodes for sufficient interval of time. Faster write can be achieved by increasing 

the size of write transistor. 

To read data, both the bit lines are initially pre charged to a high value. When the 

access transistors are enabled, the side with stored ‘0’ discharges the bit line voltage. 

Direct read of the memory cell is time consuming since it requires discharge of large bit 

line capacitance by the cell. To increase the speed of operation, the cell is allowed to 

discharge a small voltage and a sense amplifier is used to convert the small differential 



 56 

voltage to full logic level output.  The pre charge transistors can be sized according to bit 

line capacitance and the frequency of operation. 

 

Design 

 

Area and speed optimization remain the key objective in SRAM cell design. Since 

a 6T SRAM cell is symmetric, design involves sizing of only three transistors. For design 

simplicity, long channel MOS equations were used for cell sizing.  

 

Data Read 

 

For read operation, bit lines are initially pre charged to Vdd and the access 

transistors corresponding to the desired cell are enabled by asserting the appropriate word 

line. A differential voltage develops across the bit line which is later sensed to determine 

the value stored in the cell. Assuming that BL_BAR stores a low value, the transistors 

M1 and M5 will be ON and will begin to discharge the bit line capacitance. The 

discharge current increases the node voltage Q_bar. Logic level on Q should not be 

disturbed during the read to avoid read upset. Hence the maximum allowable ripple at 

node voltage at Q_bar is less than the threshold voltage of M3. 

The relationship between the transistor sizes and change in node voltage at Q_bar 

can be used to determine the device dimensions.  A plot of maximum value of ripple 

voltage at the node as a function of Cell Ratio was used to determine safe operating 

conditions for the cell. 



 57 

Transistor M5 is in saturation region and M1 is in linear region. The fact that 

same current flows through both the devices is used to determine the size-voltage 

relation.  

( ) ( )
2 2

, 5 , 1
2 2

DSATn
n M DD Tn DSATn n M DD Tn

V V
k V V V V k V V V

   ∆
− ∆ − − = − ∆ −   

  
 

 

 
2 2 2( ) (1 ) ( )DSATn DD Tn DSATn DD TnV CR V V V CR CR V V

V
CR

+ − − + + −
∆ =  

 

For long channel devices, saturation voltage is given by ( )dsat DD TnV V V= − , 

 

21 (1 )
( )DD Tn

CR CR CR
V V V

CR

 + − + +
 ⇒ ∆ = −
 
 

   Where, 1

5

S
CR

S
=  

 

 
 

CELL RATIO vs RIPPLE VOLTAGE

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.5 1 1.5 2 2.5

CELL RATIO CR

R
IP
P
L
E
 V
O
L
T
A
G
E
 (
v
o
lt
s)

 

Figure 5-3: Ripple Voltage Vs Cell Ratio 



 58 

Data Write 

 

To design the cell for proper write operation, let us assume that Zero has to be 

stored in Q.  To store zero, the bit line BL needs to be pulled down to force the cell to a 

new logic state. This requires that the pass transistor M6 be stronger than the pull up M4 

to force the internal node to the new value. Pull down ratio was determined in similar 

manner as CR by analyzing the current through M4 and M6. 

2 2

, 6 , 4( ) ( )
2 2p

Q DSATp

n M DD Tn Q p M DD Tp DSAT

V V
k V V V k V V V

   
− − = − −      

   
 

 

( )
2

2( ) 2 * *
2

p DSATp

Q DD Tn DD Tn DD Tp DSATp

n

V
V V V V V PR V V V

µ

µ

 
= − − − − − −  

 
 

 

4

6

S
PR

S
=  

 

PULL-UP RATIO vs NODE VOLTAGE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

PULL UP RATIO  PR

N
O
D
E
 V
O
L
T
A
G
E
 (
v
o
lt
s)

 

Figure 5-4: Node Voltage Vs Pull Up Ratio 



 59 

Sizing and Performance 

 

From Figure 5-3, Cell Ratio (CR) needs to be greater than 1.7. This can be 

achieved by either increasing the size of pull down transistors or decreasing the size of 

access transistors, while keeping the size of the other transistor minimum.  Decreasing 

the size of access transistor increases the load on word line and is not generally preferred. 

Increasing the size of pull down devices increases the storage capacity of the cell while 

minimizing the load on word line.  

The Pull Up Ratio (PR) needs to be less than 1.5 to ensure proper Write. Hence 

size of both the transistors is kept at the minimum value permissible by layout rules. 

 

TRANSISTOR L W CR PR 

M1, M3 0.4 1.6 

M5,M6 0.5 1 

M2,M4 0.5 1 

2 1 

 

Table 5-1: 6T Transistor Sizing. 

 

 

 

 

 

 

 



 60 

Sense Amplifier 

 

A sense amplifier converts the reduced signal swing in the form of a differential 

voltage across the bit lines to a full logic level voltage at its output. A differential sense 

amplifier offers high read speed and is generally used in SRAM memories. However only 

SRAM cells generate differential output and alternative amplification methods need to be 

used for other types of memory like DRAM, ROM, and EEPROMs. A Latch type sense 

amplifier, a common choice for DRAM memories, was also implemented in this thesis 

along with high speed differential sense amplifier. 

 Typical Size of Cache Memory in some commercial processors is tabulated 

below. The performance of the SRAM cache was analyzed later by determining read time 

for an array equivalent of a P4 L1 cache. 

 

PROCESSOR CACHE SIZE TYPE # LINES 

Pentium 4 

 

L1 (64) 

L2(128) 

8KB 

512KB 

4 Way SA 

8 Way SA 

1024 

32768 

Athlon 64FX 

 

L1(64) 

L2(64) 

64KB 

1 MB 

2 Way SA 

16 Way SA 

8192 

128000 

 

Table 5-2: Cache Memory in Pentium 4 and Athlon Microprocessors. 

 

 

 



 61 

Sense Amplifier for Division Look Up Table 

 

Look up needed for division hardware is taken care of by a single row of SRAM 

cell. The bit line capacitance of a single SRAM row is 2.5fF, which can quickly be 

discharged by the cell itself. An inverter attached to BL_BAR was used to read the data 

stored in the cell since a sense amplifier is not needed to read the cell.  

The SRAM cell was found to have an access time of 0.75ns even without the use 

of a sense amplifier. Addition of bit line capacitance would increase the access time and 

require use of a sense amplifier. 

 

Figure 5-5: Output of single SRAM row. 

 

Differential Sense Amplifier 

 

A differential sense amplifier was built using a NMOS differential pair and a 

current mirror load. A current mirror load enables conversion of a differential signal to a 

single ended output with high common mode rejection ratio. The amplifier was designed 

for a gain of 15.   



 62 

 

Figure 5-6: Schematic of CMOS Differential Sense Amplifier with Inverter 

 

Output of the sense amplifier is generally connected to a driver to prevent loading 

of the amplifier. In this design, single ended output from the sense amplifier was 

connected to an inverter. Since inverter acts as a regeneration circuit, no constraints were 

imposed on the output swing during design of the amplifier.  

1 2 4( || )Sense m O OA g r r= −  

 

1
1 5

1

* *m n

W
g k I

L
 =  
 

 

 

The above equation indicates that the gain of the amplifier can be increased by 

either increasing ro of load transistors or by increasing the transconductance of the 

differential pair. The transistors are operated in the saturation region and ro tends to be a 

high value in saturation mode of operation. Transconductance of the differential pair can 



 63 

be increased by increasing both W/L and bias current. Care is needed when designing a 

high gain amplifier since increase in I5 decreases ro. Since gain required for this design is 

small, this was not of any concern for this design. 

Gain 

1

2

1

2* *

*( )

n

Sense

p n

W
K

L
A

I λ λ

 
 
 =
+

 

 

Slew Rate and settling time 

 

5

L

I
SR

C
=  

 

Common mode input range is another important design parameter for the sense amplifier. 

5
5( ) 1 5

1

_min
*

DS sat GS DS tn

n

I
IC V V V V

K S
= + = + +  

3 3_ max ( )DD DS DD GS tnIC V V V V V= − = − −  

 

 

Design 

 

A MATLAB program was used to design the differential amplifier. Since the common 

mode range and output swing of the amplifier is not critical, attempt was made to 

minimize the size of transistors while keeping these values at an acceptable range. 

Plugging in the values used in the program, the size of transistors is derived below. 

I5=100
-6
 A 

 

2 2

1

1

* *( )

2*

Sense p n

n

A IW

L K

λ λ+  = 
 

 

 



 64 

2 6 2

6

1

15 *50*10 *(0.04 0.06)
1.11 1

2*90*10

W

L

−

−

+  = = 
 

∼  

 

 
Designing S5 and S3 for Input Common Mode Range, 

 

5 _min 1 _min 1( ) ( )DS IC GS IC DS tnV V V V V V= − = − +  

 

5
1

1*
DS

n

I
V

K S
=  

 

5

2

5 _min 1

2*

*( )n IC DS tn

IW

L K V V V

  =  − − 
 

 

6

6 2

5

2*100*10
2

90*10 *(0.5 1 0.55)

W

L

−

−

  = =  − − 
 

 

 

S3 depends on maximum common mode input and can be calculated using the following 

relation,  

 

3 _maxGS DD IC tnV V V V= − +  

3 3.3 2.8 0.55 1.05GSV = − + =  

 
6

5

6 22
3 3

100*10
12.9

35*10 *(1.1 0.68)*( )p GS tp

IW

L K V V

−

−

  = = =  −− 
 

 

 

 

Power Consumption: 

 

5 * DDPower I V=  = 6100*10 *3.3 0.33mW− =  

 

 



 65 

 

 

 

Figure 5-7: Cache Output for Write and Read of ‘0’. 

 

The access time for various bit line capacitances was determined and plotted to 

characterize the performance of SRAM and the differential sense amplifier. As bit line 

capacitance increases, the time needed for the cell to discharge bit line by 300mV 

increases, resulting in increased access time. The read time of the sense amplifier was 

fairly constant around 0.9ns. The access time can be seen to exhibit a linear dependence 

with bit line capacitance. For a bit line capacitance of 2.56pF, which corresponds to 

equivalent bit line capacitance of a P4 L1 cache, the access time was found to be 3.27ns.  



 66 

 

ACCESS TIME

640
1280

2560

5120

10240

0

2

4

6

8

10

12

100 1000 10000 100000

BIT LINE CAPACITANCE (pF)

A
C
C
E
S
S
 T
IM

E
 (
n
 S
eC

) 

 

Figure 5-8: Bit Line Capacitance Vs Access Time 

 

Though bit line capacitance was calculated and substituted, the word line capacitance was 

ignored in this analysis. Since word line is made of POLY, large word line contributes to 

a larger RC affecting the transient performance. In actual implementation of a cache, the 

word line capacitance needs to be taken in to account and the drive strength of decoder 

circuit should be improved accordingly. 

 

 



 67 

Latch Type Sense Amplifier 

Latch type sense amplifier can be used with different types of memories while the 

differential pair is useful only with an SRAM. The time needed for read is much higher 

than that with a differential sense amplifier due to the need to fully discharge the bit line 

capacitance. Hence with this sense amplifier, Set Up time and Read Time are both 

dependent on bit line capacitance.  

 

Figure 5-9: Schematic of Latch Type Sense Amplifier. 

 

A Latch type sense amplifier consists of two cross coupled amplifiers, similar to 

the SRAM cell, and a clocked pull-up and pull-down. The sense amplifier is generally 



 68 

forced to an unstable state by pre charging both the transistors to Vdd/2 prior to read and 

then allowed to sense the differential voltage. The side with lower voltage drops to zero 

regenerative amplification while the other bit line stays at high value. 

This thesis implemented a variation of common sense amplifier [Howe et. al]. In 

this method, the sense amplifier is held in an unstable state, by driving both the inverters 

by Vdd. Since both the inverters are driven by Vdd, a p-channel gating transistor is not 

needed for this design. The bit line with lower voltage gets discharged when a differential 

voltage is applied to the sense amplifier. 

 

Design 

The Latch based sense amplifier was designed to have a sense time of 2ns for a 1pf bit 

line capacitance. Sense time of the cross coupled inverter is given by, 

*ln

n

Bit OUT
sense

m IN

C V
t

g V

 ∆
=  ∆ 

 

 
Therefore to achieve a desired sense time, the transconductance of the NMOS transistors 

need to be, 

*ln
n

Bit OUT
m

sense IN

C V
g

t V

 ∆
=  ∆ 

 

 
For a sense time of 1ns and a drop in voltage to 50% of the initial value, the sizes of the 

pull down can be calculated as, 

9

1 3.3 1.65
*ln

2*10 0.3nm

pf
g

−

− =  
 

 

 



 69 

30.85*10
nm

g −=  

 

3

* *( 0.3 )
nm n DD Tn

W
g K V V V

L

 = − − 
 

 

 

6

3

*90*10 *(3.3 0.3 )
nm Tn

W
g V

L

− = − − 
 

 

 
3

6 6

3

0.85*10
3.85

90*10 *(3.3 0.3 ) 90*10 *(3.3 0.3 0.55)

nm

Tn

gW

L V

−

− −

  = = =  − − − − 
 

 

PMOS transistors M2 and M4 were sized twice the NMOS to obtain mid point voltage 

equal to Vdd/2 

 

To determine the size of NMOS gating transistors, the current through pull down 

was determined and equated to current through the gating transistor. 

Current through pull down transistor M1 is given by, 

2

1 5

3

1
* * *( )

2
D n ox DD DS Tn

W
I C V V V

L
µ = − − 

 
 

6 2

1

1
*4*90*10 *(3.3 0.3 0.55)

2
DI

−= − −  

1 1.1DI mA=  

 
Since same current flows through M1 and M5, 

5
5 1 5* * *( )*

2

DS
D D n ox DD Tn DS

VW
I I C V V V

L
µ = = − − 

   

5

55
5*( )

2

D

DS
n DD Tn DS

IW

VL
K V V V

  = 
  − −

 



 70 

 

 

3

6

1.1*10
15

90*10 *(3.3 0.55 0.15)*0.3

−

−
= =

− −
 

 

5

15
W

L

  = 
 

 

TRANSISTOR W/L 

M3 / M1 4 

M2 / M4 8 

M5 15 

 

Table 5-3: Sizing of Latch Type Sense Amplifier. 

 

Table 5-10: Latch Type Sense Amplifier Output. 

1

5
5*( )

2

D

DS
n DD Tn DS

I

V
K V V V

=
− −



 71 

The designed amplifier was found to have a set up time of 2.23ns and a read time of 

0.97ns. Latch type sense amplifiers generally require more area than a differential pair to 

attain comparable performance. Most of the available SRAM memories employ 

variations of a differential pair to attain their characteristic higher performance. 

 

Write Circuitry 

 

Write circuitry consists of two NMOS transistors driven by WRITE and 

WRITE_BAR. Based on the data to be written, one of the transistors is switched ON 

while the other transistor remains OFF. The size of transistors depends on the bit line 

capacitance and the discharge time. Write circuitry is not critical in SRAM design since it 

can be sized for any desired frequency of operation independent of other components.  

The following example illustrates design of NMOS transistors for write circuitry 

to discharge a bit line capacitance of 2pF in 2ns.  

 

Current needed to discharge bit line capacitance is given by,  

9

* 2 *3.3
3.3

2*10

Bit
Write

V

C V pF
I mA

t −
∆

∆
= = =  

 

=> 
3

_

2 6 2

3.3*10

0.5* * *( ) 0.5*90*10 *(3.3 0.55)

10

D Write

write n ox DD Tn

IW

L K C V V

−

−

  = =  − − 
=

 

 

10
write

W

L

  = 
 

 

 



 72 

This chapter addressed the design of an SRAM cell and analyzed a couple of 

sensing options. Based on performance requirements, all these options generally find a 

place in a processor. A single row of SRAM, similar to division LUT, can be employed 

as fast registers and buffers. Latch type sense amplifier can be used as sense amplifiers 

for DRAM memories as well as for moderate sized SRAM arrays. Differential pair sense 

amplifier will be employed in large sized cache. Thus requirements for fast static RW 

memory in a processor can be taken care of by units designed in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 73 

CHAPTER SIX 

 

PERFORMANCE ANALYSIS AND CONCLUSION 

 

 

Delay of a circuit is sensitive to variations in variety of parameters like supply 

voltage, temperature, noise as well as process variations. In this chapter, effect of these 

variations on performance of the arithmetic unit was studied to ensure that the desired 

performance is always achieved. Effect of these parametric variations was studied by 

observing the output of each unit prior to the final register. The delay due to the final 

register was however taken into account to test for maximum operating frequency of the 

circuit. 

 

Process Variations 

MOS devices often exhibit variations in process parameters. Variations in process 

parameters can alter the delay of a circuit by affecting drain current. To ensure that the 

design works under variations in process parameters, Monte Carlo analysis was 

performed for random variation of following process parameters. 

Channel doping concentration (NCH) is an important process parameter that 

affects threshold voltage as well as the drain current of a gate. Gate oxide thickness (TOX) 

affects the oxide capacitance and in turn affects drain current and delay. Drain current is 

also directly proportional to mobility. Change in delay due to 5% variation in the above 

mentioned parameters was studied in this work. 

 

 



 74 

 

 

Figure 6-1: Output of Adder under process variations. 

 

 

Figure 6-2: Output of Multiplier under process variations. 

 

 

 



 75 

 

Figure 6-3: Output of Divider under process variations. 

 

The results above confirm that the design meets the operating frequency determined 

earlier under process variations. 

 

Supply Variation 

In large circuits, the supply voltage is also seen to vary from one region to another 

due to resistance and inductance of the metal lines. Further general power supplies also 

exhibit fluctuations up to 10%. The delay of a gate increases with decrease in supply 

voltage. To ensure proper operation under voltage variation, the performance of 

arithmetic units were tested for power supply variation from 3 Volts to 3.6 Volts 

 

 

 



 76 

 

 

 

Figure 6-4: Output of Adder under Supply Variations. 

 

 

 

 

Figure 6-5: Output of Multiplier under Supply Variations. 

 



 77 

 

 

Figure 6-6: Output of Divider under Supply Variations. 

 

Temperature Variations  

Temperature represents the single major factor affecting the performance of a 

digital circuit. Mobility of charge carriers is found to decrease by 40% for 100 K rise in 

temperature. Temperature dependence of mobility is given by 

300
T o o

T

K
µ µ  =  

 
 

Mobility has a direct impact on the drain current. To obtain the worst case delay 

due to increase in temperature, the circuit was tested over a temperature range of 20 
o
C to 

80 
o
C. The response of different sub units to temperature variations is presented below. 

 



 78 

 

 

Figure 6-7: Output of Adder under Temperature variation. 

 

 

 

Figure 6-8: Output of Multiplier under Temperature variation. 

 

 



 79 

 

 

Figure 6-9: Output of Divisor under Temperature variation. 

 

The above analysis was used to determine the worst case delay of these functional 

units to determine the operating frequency. The results confirm that reliable operation of 

these devices can be ensured for the frequencies estimated earlier.  

 

Based on these parametric variations, it can be concluded that the components 

meet the operating speed for operating range. Frequency of the adder, multiplier and the 

division hardware are 330MHz, 100MHz and 70MHz respectively. 

 

Power 

Power consumption is an important factor that must be estimated for assessment 

of overall performance of a design. Higher the performance, higher is the power 

consumption of a circuit. In this work dynamic power consumption for basic arithmetic 

operations was estimated. Dynamic power is the power dissipated by a gate during 



 80 

switching activity. Since switching activity in a circuit is dependent on input operands, 

power consumption is often difficult to estimate accurately.  

Power consumption of sub units of arithmetic unit was determined using ELDO 

simulation. When tested with cases used for functional testing, the power consumption of 

the adder, multiplier and the division hardware were found to be 3.2nW, 2.38mW and 

13.68mW respectively. 

 

Summary & Conclusion 

In summary, an attempt was made to design arithmetic hardware with minimum 

possible clock cycles. Leading architectures used in commercial processors were used for 

implementation of a high performance arithmetic hardware. The hardware performs 

integer addition, subtraction, multiplication and squaring in a single clock cycle. Division 

and square rooting need 4 clock cycles. This is comparable to minimum clock cycles 

needed in commercial processors that typically devote 4-10 times the multiplication time 

for division. Floating point 8-bit inverse was computed in 3 cycles. The architectures 

employed supports increase in operand size by duplication of basic building blocks.  

A Wallace tree multiplier was built to cater to the requirement for a high speed 

multiplier. Multiplicative division method was used to build hardware for division and 

square rooting. Multiplication and division hardware primarily support integer arithmetic 

operations and can be extended for floating point implementations by inclusion of 

hardware to normalize operands and add/subtract mantissa depending on the operation.  



 81 

In addition to design of high performance hardware, this work also proposed a 

method to test complex designs using optimal set of test vectors. This approach to 

testability eliminates area and performance overhead associated with conventional 

hardware-based testability methods while improving the speed of testing as well. 

The optimal speed of operation of the arithmetic unit was found to be 70MHz. 

Pentium ΙΙ, a 32 bit commercial processor built in a comparable process technology (0.28 

micron) had a maximum operating speed of 300MHz size with 14 pipeline stages. 

Pipelining increases the speed of operation of a processor and a two stage pipelined 

processor can operate at almost twice the frequency of an un-pipelined processor with 

exclusion of delay due additional pipeline buffers. Parallel architectures result in 

logarithmic increase in delay with operand size. The operating frequency of 70MHz for 

un-pipelined implementation clearly reveals that the speed performance of the arithmetic 

unit is comparable to commercial implementations. 

Also a fast access rate 8KB, 300MHz cache was built in this work using 6T 

SRAM cells. To compare the performance of this cache with current implementations, 

the effect of scaling need to be considered. As technology scales, the cache speed 

increases proportionately due to scaling of bit line capacitance. Speed roughly doubles 

for scaling by a factor of 2. The speed of operation of the memory hardware, to the first 

order, would be roughly 5.4 times faster if the same design is implemented in 65nm 

process technology. This implies a dual cycle L1 access for a hardware operating at 

3.2GHz which is comparable to speed performance of P4 processor.  This concludes that 



 82 

the hardware designed in this work is comparable in performance to commercial 

implementations. 

The physical design of the circuit was carried out in Mentor Graphics 

environment using Autoplace and Route option. The hardware was implementation using 

a 0.35 micron process and requires an area of approximately 2mm
2
 when the multiplier is 

shared by the division hardware. Cache size would however determine the final die area 

if this hardware is used to design a complete microprocessor.  

 

Further Improvements 

This work can be extended in the following directions to further improve the 

overall performance of the hardware. Power reduction through gating schemes can be 

implemented to turn off idle units and reduce static power. Path delay balancing can be 

used to reduce transition activity in the sub circuits and in turn reduce delay as well as 

power consumption. The process of test case identification can be fully automated to 

make the approach more useful for larger designs. 

 

 

 

 

 

 

 



 83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 84 

Appendix A 

KOGGE ADDER – PG  NOTATION 

 

 

 

Figure A-1: PG Diagram notation for Kogge Stone Adder [52]. 

 

 

 

 

 

 

 

 

 



 85 

Appendix B 

MULTIPLIER - TESTABILITY 

 

Figure B-1: Test Case Identification for 8 bit Wallace Multiplier. 



 86 

 

 

 

Figure B-2: Semi Automatic Test Case Identification for 8 bit Wallace Multiplier. 

 

 

 

 

 

 

 



 87 

Appendix C 

SRAM – CAPACITANCE CALCULATIONS 

 

Bit Line Capacitance 

 

Bit line capacitance is generally a major consideration in design of an SRAM 

array. Overlap capacitance and the drain/source bulk capacitance of the access transistors 

contribute to a major part of bit line capacitance.   

 

_BIT LINE OV DiffC C C= +  ………………………………………………………………..(1)
 

 

Overlap Capacitance 

Overlap capacitance of a cell is given by, 

*BIT ov
OV

C
W C

Cell

− =  

 

OV OL fringeC C C= + …………………………………..………………………………..(2) 

 
Where, 

OLC CGDO CGSO= +  

2
ln 1OX POLY

fringe

OX

T
C

t

ξ
π

 
= + 

 
 

 

 
CGDSO and CGSO are Gate drain and Gate source overlap capacitance per unit gate 

width and were obtained from model file. 

10 1 12.06 ~ 0.2CGDO CGSO e Fm fF mµ− − −= =  

10.4 .OLC CGDO CGSO fF mµ −= + =   ….……………………………………………..(3) 

 



 88 

 

For current process, TPOLY is roughly 100 times tox, 

=> ( )2 2*11.9
ln 1 ln 1 100 0.1

3.14

OX POLY
f

OX

T
C fF

t

ξ
π

 
= + = + = 

 
…………………………….(4) 

 

Using (2), (3) and (4), the value of Overlap Capacitance can be determined to be 

 

0.5*1 0.5BIT OVC
f

Cell

− = =  

 
Diffusion Capacitance 

BIT Diff

BP SW

C
C C

Cell

− = +  

( * )* ( 2* )*
BIT Diff

diff Jn diff JSWn

C
W L C W L C

Cell

− = + +   

From Modle File, 
4 1 29.79 . 0.979 .JC e F m fF mµ− − −= =  

4 1 13.6 . 0.36 .JSWC e F m fF mµ− − −= =  

 

=> (1*1)*0.979 (1 2*1)*0.36
BIT DiffC

Cell

− = + +  

2
BIT DiffC

fF
Cell

− =  

 

Total Bit line capacitance 

BIT OV BIT DiffC C− −+  = 0.5+2 = 2.5fF 

 

Interconnect capacitance is not calculated in this work. For large arrays interconnect 

capacitance also adds a significant value to the bit line capacitance. 



 89 

 

Word Line Time Constant 

Word Line time constant is another important capacitance associated with the 

SRAM cell. For wide SRAM rows, the RC delay due to word line capacitance is an 

important parameter that needs to be considered to determine cell characteristics as well 

for decoder design. 

 

 

Word Line Resistance: 

*WORD

R
R

Cell
=
□

□

 ………………………………………………………………………(5) 

For 8 bit word line, 

8 *WORD

R
R

Cell
=

□

□

 

                  Resistance per Square – 8Ω  (approx) 

8*16*8 1024WORDR = = Ω  

 

1WORDR K= Ω  

Word Line Capacitance: 

In case of SRAM cell, one of the access transistors will be off all the time. The actual 

word line capacitance is given by, 

_ _WORD Access On Access OffC C C= +  

Where, 

           2 ( || )Access Off OV OX bC WC WL C C− = +  

*WORD WORD WORDR Cτ =



 90 

2
2

3
Access ON OV OXC WC WLC− = +  

 

To simplify word line capacitance calculation,  full gate capacitance is assumed 

and the sum of capacitances seen looking into the two access transistors was calculated. 

 

2WORD
OX

C
WLC

Cell
=  ………………………………………………………………………(6) 

Oxide capacitance is calculated as, 

14

29

8.854 10 *3.9

7.8 10 *100
ox

FC
cm

−

−

∗
=

∗
 

14
8

29

8.854 10 *3.9
*10 4.42

7.8 10 *100
F
mµ

−
−

−

∗
= =

∗
 

152 2*1*0.5*4.42*10WORD
OX

C
WLC

Cell

−= =  

4.42WORDC
fF

Cell
=  

 

For 8 bit word line, 

8* 8*4.4WORD
WORD

C
C fF

Cell
= =  

35.2WORDC fF=  

 

15 111 *35.42*10 3.5*10K − −= Ω = s 

*WORD WORD WORDR Cτ =



 91 

RC of word line is a very low value for 8 bit SRAM array and hence can be excluded for 

sense amplifier design. 

 

Oxide Capacitance Calculation 

o OX
ox

OX

C
T

ξ ξ
=  

14

29

8.854 10 *3.9

7.8 10 *100
ox

FC
cm

−

−

∗
=

∗
 

14
8

29

2

8.854 10 *3.9
*10

7.8 10 *100

4.42

F
m

F
m

µ

µ

−
−

−

∗
=

∗

=

 

 

Bit Line Capacitance of Pentium4 - L1 Cache 

Cache Size = 8KB 

Number of Bits / Line = 64 bits =8 Bytes 

Cache Lines = Cache Size / Number of Bits = 8KB / 8B = 1K 

=1024 Lines. 

 

If SRAM cell designed in this thesis was used to build the L1 Cache of P4, the total bit 

line capacitance will be 1024 * 2.5fF = 2.56pF 

 

 

 

 

 



 92 

Appendix D 

SCHEMATICS 

 

 

 

 
 

 

 

 

Figure D-1: T-Gate based Booth Selector. 

 

 

 

 



 93 

 

Figure D-2: 8 Bit Booth encoder and selector to generate partial product rows. 



 94 

 

 

 
 

 
 Figure D-3: 4 Bit Carry Look Ahead Adder. 

 

 



 95 

 

 
 

 

 

Figure D-4: 8 Bit Block Carry Look Ahead Adder using 4 bit CLA. 

 

 

 

 
 

Figure D-5: 4 Bit Carry Select Adder. 

 

 

 

 



 96 

 

 
 

Figure D-6: 32 Bit Kogge Stone Adder Circuit. 

 



 97 

 
 

 
 

 

 

 

Figure D-7: T Gate based multiplexer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 98 

 

 

 
 

 

 

Figure D-8: SRAM Column without Read Circuitry. 

 

 

 

 



 99 

 

Appendix E 

LAYOUTS 

 

SRAM CELL 

 

 

 
 

 

Figure E-1: Layout of SRAM Cell. 

 

 

 

 

 

 

 



 100 

 

 

 

Sense Amplifier 

 

 
 

 

Figure E-2: Latch Type Sense Amplfiier. 

 

 



 101 

 

 

 

 

 

 
 

Figure E-3: SRAM cell arranged as 8x8 array. 

 

 

 

 



 102 

REFERENCES 

 

 

[1] Jessani, R.M.; Olson,C.H.,"Floating-point unit of the PowerPC 603e 

microprocessor" IBM Journal of Research and Development, v 40, n 5, Sep, 

1996, p 559-566 

 

[2] M. Lehman and N. Burla, “Skip techniques for high-speed carry propagation 

in binary arithmetic units”, IRE Trans. Electron. Computers., vol. EC-10, pp. 

691-698, 1961 

 

[3] V. G. Oklobdzija and E. R. Barnes, “Some Optimal Schemes For ALU 

Implementation in VLSI Technology”, Proceedings of the 7
th
 Symposium on 

Computer Arithmetic ARITH-7, pp. 2-8, Reprinted in “Computer Arithmetic”, 

E. E. Swartzlander, (editor), Vol. II, pp. 137-142, 1985 

 

[4] M. J. Schulte, K. Chirca, J. Glossner, H. Wang, S. Mamidi, P. Balzola, S. 

Vassiliadis, “A Low-Power Carry Skip Adder with Fast Saturation”, asap, pp. 

269-279,  15th IEEE International Conference on Application-Specific 

Systems, Architectures and Processors (ASAP'04),  2004 

 

[5] J. Bedrij, “Carry-Select Adder”, IRE Transactions on Electronic Computers, 

p. 340-344, 1962 

 

[6] Weinberger and J. L. Smith, “A Logic for High-Speed Addition”, National 

Bureau of Standards, Circ. 591, pp. 3-12, 1958. 

 

[7] H. Ling, “High speed binary adder”, IBM J. Res. Develop,. vol. 25, p. 156, 

May 1981 

 

[8] S.Naffziger, “A Sub nano second 0.5µm 64 bit Adder Design” , Digest of 

Technical Papers: 1996 IEEE International Solid State Circuits Conference, 

1996, pp. 362-363. 

 

[9] T. Kilburn, D. B. G. Edwards, and D. Aspinall, “Parallel Addition in Digital 

Computers: A New Fast Carry Circuit”, Proceedings of IEE, Volume 106-B, 

p.464, September 1959. 

 

[10] R. Hashemian, “A fast carry propagation technique for parallel adders”, 

Circuits and Systems, 1990, Proceedings of the 33rd Midwest Symposium, pp 

456 - 459 vol.1, Aug. 1990 

 



 103 

[11] T.Kilburn, D.B.G. Edwards and D.Aspinall, “A Parallel Arithmetic Unit 

Using a Saturated Transitor Fast Carry Circuit”, Proceedings of the IEE, Pt. B, 

vol. 107, pp. 573-584, November 1960. 

 

[12] Kwon, E. Swartzlander, K. Nowka, “A fast hybrid carry-look ahead / carry-
select adder design”, Proceedings of the 11

th
 Great Lakes Symposium on 

VLSI, pp 149-152, 2001 

 

[13] R. P. Brent and H. T. Kung, “A Regular Layout for Parallel Adders”, IEEE 
Transaction on Computers, Vol. C-31, No. 3, p. 260-264, March, 1982. 

 

[14] P.M Kogge and H.S Stone, “A Parallel Algorithm for the Efficient solution of 

a General Class of Recurrence Equations,” IEEE Transactions on Computers, 

vol. 22, no. 8, pp.786-793, Aug 1973. 

 

[15] R.E. Ladner and M.J Fischer, “Parallel Prefix Computation,” Journal of the 

Association for Computer Machinery, vol. 27, no. 4, pp. 831-838, Oct. 1980. 

 

[16] T. Han and D.A Carlson, “Fast Area Efficient VLSI Adders,” in Proceedings 
of the 8

th
 IEEE Symposium on Computer Arithmetic, 1987, pp. 49-56. 

 

[17] J. Sklansky, “An Evaluation of Several Two Summand Binary Adders,” EC 9, 

No.2, June 1960, pp. 213-226. 

 

[18] D. Harris and J. Sutherland, “Logical Effort of Carry Propagate Adders,” In 
Proceedings of the 37

th
 Asilomar conference on Signals, Systems and 

Computers, CA, pp 873-878, November 2003. 

 

[19] Gurkaynak, Frank, K. Leblebici, Yusuf, Chaouat, Laurent, McGuinness, 

Patrick, "Higher Radix Kogge Stone parallel prefix adder architectures," 

Proceedings - IEEE International Symposium on Circuits and Systems, v 5, 

2000, p V-609-V-612 

 

[20] Gnanasekaran, R ,”A Fast Serial-Parallel Binary Multiplier”, Computers, 

IEEE Transactions on, Volume C-34,  Issue 8, pp741 – 744, Aug 1985 

 

[21] Shih-Lien Lu; Kenney, J.,”Design of most-significant-bit-first serial 

multiplier”, Electronics Letters,vol. 31, Issue 14, pp.1133 – 1135, Jul 1995 

 

[22] M Core Reference Manual, Motorla Inc., 1998. 

 

[23] Zhijun Huang, Milos D. Ercegovac, "High-Performance Low-Power Left-to-

Right Array Multiplier Design," IEEE Transactions on Computers, vol. 54,  

no. 3,  pp. 272-283,  Mar.,  2005. 



 104 

[24] P.C.H Meier, R.A Rutembar and L.R Carley, “Exploring Multiplier 

Architecture and Layout for Low Power,” Proc. Of IEEE 1996 Custom 

Integrated Circuits Conference, pp. 513-516, 1996  

 

[25] Baugh, Charles R.; Wooley, Bruce A.,”Two’s complement Parallel Array 

Multiplication algorithm,”IEEE Transactions on Computers, v C-22, n 12, p 

1045-1047, Dec, 1973. 

 

[26] P.E Blankesnhip, ”Comments on A Two’s Complement Parallel Array 

Multiplication Algorithms,” IEEE Transactions on Computers, vol. C-23, p. 

1327,1974 

 

[27] Pezaris. S.D,”40- ns 17- bit by 17- bit array multiplier”, IEEE Trans 

Computers, v C-20, n 4, Apr, 1971, p 442-7 

 

[28] C.S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans. Computers, 

vol. 13, no. 2, pp. 14-17, 1964. 

 

[29] F. Elguibaly, “A Fast Parallel Multiplier-Accumulator Using the Modified 

Booth Algorithm,” IEEE Trans. Circuits and Systems, vol. 47, no. 9, pp. 902-

908, 2000. 

 

[30] L. Dadda, “Some Schemes for Parallel Multiplier,” Alta Frequenza, vol. 34, 

pp. 349-356, 1965. 

 

[31] J. Fadavi-Ardekani, “M x N Booth Encoded Multiplier Generator Using 

Optimized Wallace Trees,” IEEE Trans. Very Large Scale Integration, vol. 1, 

no. 2, pp. 120-125, 1993. 

 

[32] Farooqui, A.A.; Oklobdzija, V.G., "General data-path organization of a MAC 

unit for VLSI implementation of DSP processors," Circuits and Systems, 

1998. ISCAS '98. Proceedings of the 1998 IEEE International Symposium on , 

vol.2, no.pp.260-263 vol.2, 31 May-3 Jun 1998 

 

[33] Rectangular Wallace N. Itoh, Y. Naemura, H. Makino, Y. Nakase, T. 

Yoshihara, and Y. Horiba, “A 600-MHz 54x54-bit Multiplier with 

Rectangular-Styled Wallace Tree,” IEEE J. Solid-State Circuits 36, No. 2, 

249–257,February 2001. 

 

[34] E. Costa, J. Monteiro, and S. Bampi. A New Architecture for 2's Complement 

Gray Encoded Array Multiplier.” In Proceedings of the XV Symp. on 

Integrated Circuits and Systems Design, pages 14--19, September 2002. 

 



 105 

[35] O.L. MacSorley, “High Speed Arithmetic in Binary Computers,” Proc. IRE, 

vol. 49, pp. 67-91, 1961 

 

[36] Jeff Scott, Lea Hwang Lee, Ann Chin, John Arends, bill Moyer, “Designing 

the M.CoreTM M3 CPU Architecture,” IEEE International Conference on 

Computer Design, Austin, Texas, Oct 10-13,1999. 

 

[37] Alexander Goldovsky, Bimal Patel, Michael Schulte, Ravi Kolagotla, 

Hosahalli Srinivas, and Geoffrey Burns. Design and implementation of a 16 

by 16 low-power two's complement multiplier. In IEEE International 

Symposium on Circuits and Systems, volume 5, pages 345--348, May 2000. 

 

[38] O.L.MacSorley, "High-Speed Arithmetic in Binary Computers," IRE 

Proceedings vol.49, pp.67--91, 1961. 

 

[39] McFearin, L.D.; Matula, D.W,Seidel, P.M, “Binary multiplication radix-32 

and radix-256”,15th IEEE Symposium on Computer Arithmetic, p 23-32, 

2001.  

 

[40] Y.Wang, Y.Jiang and E. Sha, On Area-Efficient Low Power Array 

Multipliers. In the 8th IEEE International conference on electronics, Circuits 

and Systems, pages 505-508,2001. 

 

[41] D. Bakalis, D. Nikolos, On low power BIST for carry save array multipliers, 

in: Proceedings of the 5th International On-Line Testing Workshop, 1999, pp. 

86-90. 

 

[42] S. E. McQuillan, J.V. McCanny, R. Hamill, “New Algorithms and VLSI 

Architectures for SRT Division and Square Root,” Proceedings of the 11th 

IEEE Symposium on Computer Arithmetic, 1993, pp. 80-86. 

 

[43] D. Harris, S. Oberman and M. Horowitz, “SRT Division Architectures and 

Implementations. Proc. 13th Symp. Computer Arithmetic, pp. 18-24, July 

1997 

 

[44] T. Coe, P.T.P. Tang, "It Takes Six Ones To Reach a Flaw," arith, p. 140,  12th 
IEEE Symposium on Computer Arithmetic (ARITH-12 '95),  1995 

 

[45] Wang, L.  Schulte, J. Michael,” Decimal floating-point division using 

Newton-Raphson iteration”, Proceedings - 15th IEEE International 

Conference on Applications-Specific Systems, Architectures and Processors, 

2004, p 84-97 

 

 



 106 

[46] P. Montuschi, L. Ciminiera, A. Giustina, "Division unit with Newton-Raphson 

approximation and digit-by-digit refinement of the quotient", IEE Proceedings 

- Computers and Digital Techniques -- November 1994 -- Volume 141, Issue 

6, p. 317-324 

 

[47] R.E. Goldschmidt, "Applications of Division by Convergence," MS thesis, 

Dept. of Electrical Eng., Massachusetts Inst. of Technology, Cambridge, 

Mass., June 1964 

 

[48] Peter Markstein, Software Division and Square Root Using Goldschmidt’s 

Algorithms, Proceedings of the 6th Conference on Real Numbers and 

Computers, pp. 146-157, 2004. 

 

 

OTHER REFERENCES 

 

[49] Digital Integrated Circuits: A Design Perspective, 2nd Ed, Jan M. Rabaey, 

Anantha Chandrankasan, Borivoje Nikolic, Prentice Hall, 2005. 

 

[50] Microelectronics: An Integrated Approach, Roger T. Howe and Charles G. 

Sodini, Prentice Hall, 1997 

 

[51] CMOS Digital Integrated Circuits, Analysis and Design, 3
rd
 Ed, Sung-Mo 

Kang, Yusuf Leblebici, TataMcGraw-Hill 2003. 

 

[52] Adders: Lecture Notes, David Harris, Harvey Mudd College. 


	Clemson University
	TigerPrints
	12-2007

	Design of ALU and Cache Memory for an 8 bit ALU
	Pravin chander Chandran
	Recommended Citation


	Microsoft Word - Pravin_Thesis.doc

