13,863 research outputs found

    Bimodal fingerprint capturing system based on compound-eye imaging module

    Full text link
    This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/AO.43.001355 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law

    MPI Phantom Study with A High-Performing Multicore Tracer Made by Coprecipitation

    Get PDF
    Magnetic particle imaging (MPI) is a new imaging technique that detects the spatial distribution of magnetic nanoparticles (MNP) with the option of high temporal resolution. MPI relies on particular MNP as tracers with tailored characteristics for improvement of sensitivity and image resolution. For this reason, we developed optimized multicore particles (MCP 3) made by coprecipitation via synthesis of green rust and subsequent oxidation to iron oxide cores consisting of a magnetite/maghemite mixed phase. MCP 3 shows high saturation magnetization close to that of bulk maghemite and provides excellent magnetic particle spectroscopy properties which are superior to Resovist® and any other up to now published MPI tracers made by coprecipitation. To evaluate the MPI characteristics of MCP 3 two kinds of tube phantoms were prepared and investigated to assess sensitivity, spatial resolution, artifact severity, and selectivity. Resovist® was used as standard of comparison. For image reconstruction, the regularization factor was optimized, and the resulting images were investigated in terms of quantifying of volumes and iron content. Our results demonstrate the superiority of MCP 3 over Resovist® for all investigated MPI characteristics and suggest that MCP 3 is promising for future experimental in vivo studies

    Encoding of temporal probabilities in the human brain

    Get PDF
    Anticipating the timing of future events is a necessary precursor to preparing actions and allocating resources to sensory processing. This requires elapsed time to be represented in the brain and used to predict the temporal probability of upcoming events. While neuropsychological, imaging, magnetic stimulation studies, and single-unit recordings implicate the role of higher parietal and motor-related areas in temporal estimation, the role of earlier, purely sensory structures remains more controversial. Here we demonstrate that the temporal probability of expected visual events is encoded not by a single area but by a wide network that importantly includes neuronal populations at the very earliest cortical stages of visual processing. Moreover, we show that activity in those areas changes dynamically in a manner that closely accords with temporal expectations

    Creation of a Bose-condensed gas of rubidium 87 by laser cooling

    Full text link
    We demonstrate direct laser cooling of a gas of rubidium 87 atoms to quantum degeneracy. The method does not involve evaporative cooling, is fast, and induces little atom loss. The atoms are trapped in a two-dimensional optical lattice that enables cycles of cloud compression to increase the density, followed by degenerate Raman sideband cooling to decrease the temperature. Light-induced loss at high atomic density is substantially reduced by using far red detuned optical pumping light. Starting with 2000 atoms, we prepare 1400 atoms in 300 ms at quantum degeneracy, as confirmed by the appearance of a bimodal velocity distribution as the system crosses over from a classical gas to a Bose-condensed, interacting one-dimensional gas with a macroscopic population of the quantum ground state. The method should be broadly applicable to many bosonic and fermionic species, and to systems where evaporative cooling is not possible.Comment: 5 pages, 3 figures (main text

    Orientation in space using the sense of smell

    Get PDF
    Several studies reported that respiration interacts with olfactory perception. Therefore, in the pilot study of this experiment series human breathing was investigated during an olfactory experiment. Breathing parameters (respiratory minute volume, respiratory amplitude, and breathing rate) were quantified in response to odor stimulation and olfactory imagery. We provide evidence that respiration changed during smelling and during olfactory imagery in comparison to the baseline condition. In conclusion, olfactory perception and olfactory imagery both have an impact on the human respiratory profile, which is hypothesized to be based on a common underlying mechanism named sniffing. Our findings underline that for certain aspects of olfactory research it may be necessary to control and/or monitor respiration during olfactory stimulation. The human ability to localize odors has been investigated in a limited number of studies, but the findings are contradictory. We hypothesized that this was mainly due to differential effects of olfactory and trigeminal stimulation. Only few substances excite selectively the olfactory system. One of them is hydrogen sulphide (H2S). In contrast, most odorants stimulate both olfactory and trigeminal receptors of the nasal mucosa. The main goal of this study was to test the human ability to localize substances, which excite the olfactory system selectively. For this purpose we performed localization experiment using low and high concentrations of the pure odorant H2S, the olfactory-trigeminal substance isoamyl acetate (IAA), and the trigeminal substance carbon dioxide (CO2). In preparation for the localization study a detection experiment was carried out to ensure that subjects perceived the applied stimuli consciously. The aim of the detection study was to quantify the human sensitivity in response to stimulation with H2S, IAA, and CO2. We tested healthy subjects using an event-related experimental design. The olfactory stimulation was performed using an olfactometer. The results showed that humans are able to detect H2S in low concentration (2 ppm) with moderate sensitivity, and possess a high sensitivity in response to stimulation with 8ppm H2S, 50% v/v CO2, and 17.5% v/v IAA. The localization experiment revealed that subjects can localize H2S neither in low nor in high concentrations. In contrast to that, subjects possess an ability to localize both IAA and CO2 stimuli. These results clearly demonstrate that humans are able to localize odorants which excite the trigeminal system, but they are not able to localize odors that stimulate the olfactory system exclusively, in spite of consciously perceiving the stimuli

    RNA Control of HIV-1 Particle Size Polydispersity

    Get PDF
    HIV-1, an enveloped RNA virus, produces viral particles that are known to be much more heterogeneous in size than is typical of non-enveloped viruses. We present here a novel strategy to study HIV-1 Viral Like Particles (VLP) assembly by measuring the size distribution of these purified VLPs and subsequent viral cores thanks to Atomic Force Microscopy imaging and statistical analysis. This strategy allowed us to identify whether the presence of viral RNA acts as a modulator for VLPs and cores size heterogeneity in a large population of particles. These results are analyzed in the light of a recently proposed statistical physics model for the self-assembly process. In particular, our results reveal that the modulation of size distribution by the presence of viral RNA is qualitatively reproduced, suggesting therefore an entropic origin for the modulation of RNA uptake by the nascent VLP
    • …
    corecore