119 research outputs found

    Bilingually motivated domain-adapted word segmentation for statistical machine translation

    Get PDF
    We introduce a word segmentation approach to languages where word boundaries are not orthographically marked, with application to Phrase-Based Statistical Machine Translation (PB-SMT). Instead of using manually segmented monolingual domain-specific corpora to train segmenters, we make use of bilingual corpora and statistical word alignment techniques. First of all, our approach is adapted for the specific translation task at hand by taking the corresponding source (target) language into account. Secondly, this approach does not rely on manually segmented training data so that it can be automatically adapted for different domains. We evaluate the performance of our segmentation approach on PB-SMT tasks from two domains and demonstrate that our approach scores consistently among the best results across different data conditions

    Bilingually motivated word segmentation for statistical machine translation

    Get PDF
    We introduce a bilingually motivated word segmentation approach to languages where word boundaries are not orthographically marked, with application to Phrase-Based Statistical Machine Translation (PB-SMT). Our approach is motivated from the insight that PB-SMT systems can be improved by optimizing the input representation to reduce the predictive power of translation models. We firstly present an approach to optimize the existing segmentation of both source and target languages for PB-SMT and demonstrate the effectiveness of this approach using a Chinese–English MT task, that is, to measure the influence of the segmentation on the performance of PB-SMT systems. We report a 5.44% relative increase in Bleu score and a consistent increase according to other metrics. We then generalize this method for Chinese word segmentation without relying on any segmenters and show that using our segmentation PB-SMT can achieve more consistent state-of-the-art performance across two domains. There are two main advantages of our approach. First of all, it is adapted to the specific translation task at hand by taking the corresponding source (target) language into account. Second, this approach does not rely on manually segmented training data so that it can be automatically adapted for different domains

    Low-resource machine translation using MATREX: The DCU machine translation system for IWSLT 2009

    Get PDF
    In this paper, we give a description of the Machine Translation (MT) system developed at DCU that was used for our fourth participation in the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT 2009). Two techniques are deployed in our system in order to improve the translation quality in a low-resource scenario. The first technique is to use multiple segmentations in MT training and to utilise word lattices in decoding stage. The second technique is used to select the optimal training data that can be used to build MT systems. In this year’s participation, we use three different prototype SMT systems, and the output from each system are combined using standard system combination method. Our system is the top system for Chinese–English CHALLENGE task in terms of BLEU score

    Constrained word alignment models for statistical machine translation

    Get PDF
    Word alignment is a fundamental and crucial component in Statistical Machine Translation (SMT) systems. Despite the enormous progress made in the past two decades, this task remains an active research topic simply because the quality of word alignment is still far from optimal. Most state-of-the-art word alignment models are grounded on statistical learning theory treating word alignment as a general sequence alignment problem, where many linguistically motivated insights are not incorporated. In this thesis, we propose new word alignment models with linguistically motivated constraints in a bid to improve the quality of word alignment for Phrase-Based SMT systems (PB-SMT). We start the exploration with an investigation into segmentation constraints for word alignment by proposing a novel algorithm, namely word packing, which is motivated by the fact that one concept expressed by one word in one language can frequently surface as a compound or collocation in another language. Our algorithm takes advantage of the interaction between segmentation and alignment, starting with some segmentation for both the source and target language and updating the segmentation with respect to the word alignment results using state-of-the-art word alignment models; thereafter a refined word alignment can be obtained based on the updated segmentation. In this process, the updated segmentation acts as a hard constraint on the word alignment models and reduces the complexity of the alignment models by generating more 1-to-1 correspondences through word packing. Experimental results show that this algorithm can lead to statistically significant improvements over the state-of-the-art word alignment models. Given that word packing imposes "hard" segmentation constraints on the word aligner, which is prone to introducing noise, we propose two new word alignment models using syntactic dependencies as soft constraints. The first model is a syntactically enhanced discriminative word alignment model, where we use a set of feature functions to express the syntactic dependency information encoded in both source and target languages. One the one hand, this model enjoys great flexibility in its capacity to incorporate multiple features; on the other hand, this model is designed to facilitate model tuning for different objective functions. Experimental results show that using syntactic constraints can improve the performance of the discriminative word alignment model, which also leads to better PB-SMT performance compared to using state-of-the-art word alignment models. The second model is a syntactically constrained generative word alignment model, where we add in a syntactic coherence model over the target phrases in the context of HMM word-to-phrase alignment. The advantages of our model are that (i) the addition of the syntactic coherence model preserves the efficient parameter estimation procedures; and (ii) the flexibility of the model can be increased so that it can be tuned according to different objective functions. Experimental results show that tuning this model properly leads to a significant gain in MT performance over the state-of-the-art

    Vietnamese to Chinese Machine Translation via Chinese Character as Pivot

    Get PDF

    Low-Resource Machine Translation Using MaTrEx: The DCU Machine Translation System for IWSLT 2009

    Get PDF
    In this paper, we give a description of the Machine Translation (MT) system developed at DCU that was used for our fourth participation in the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT 2009). Two techniques are deployed in our system in order to improve the translation quality in a low-resource scenario. The first technique is to use multiple segmentations in MT training and to utilise word lattices in decoding stage. The second technique is used to select the optimal training data that can be used to build MT systems. In this year’s participation, we use three different prototype SMT systems, and the output from each system are combined using standard system combination method. Our system is the top system for Chinese–English CHALLENGE task in terms of BLEU score.International Workshop on Spoken Language Translation (IWSLT2009), December 1-2, 2009, Tokyo, Japa

    Building a biomedical tokenizer using the token lattice design pattern and the adapted Viterbi algorithm

    Get PDF
    Abstract: Background: Tokenization is an important component of language processing yet there is no widely accepted tokenization method for English texts, including biomedical texts. Other than rule based techniques, tokenization in the biomedical domain has been regarded as a classification task. Biomedical classifier-based tokenizers either split or join textual objects through classification to form tokens. The idiosyncratic nature of each biomedical tokenizer’s output complicates adoption and reuse. Furthermore, biomedical tokenizers generally lack guidance on how to apply an existing tokenizer to a new domain (subdomain). We identify and complete a novel tokenizer design pattern and suggest a systematic approach to tokenizer creation. We implement a tokenizer based on our design pattern that combines regular expressions and machine learning. Our machine learning approach differs from the previous split-join classification approaches. We evaluate our approach against three other tokenizers on the task of tokenizing biomedical text. Results: Medpost and our adapted Viterbi tokenizer performed best with a 92.9% and 92.4% accuracy respectively. Conclusions: Our evaluation of our design pattern and guidelines supports our claim that the design pattern and guidelines are a viable approach to tokenizer construction (producing tokenizers matching leading custom-built tokenizers in a particular domain). Our evaluation also demonstrates that ambiguous tokenizations can be disambiguated through POS tagging. In doing so, POS tag sequences and training data have a significant impact on proper text tokenization

    Foundation, Implementation and Evaluation of the MorphoSaurus System: Subword Indexing, Lexical Learning and Word Sense Disambiguation for Medical Cross-Language Information Retrieval

    Get PDF
    Im medizinischen Alltag, zu welchem viel Dokumentations- und Recherchearbeit gehört, ist mittlerweile der ĂŒberwiegende Teil textuell kodierter Information elektronisch verfĂŒgbar. Hiermit kommt der Entwicklung leistungsfĂ€higer Methoden zur effizienten Recherche eine vorrangige Bedeutung zu. Bewertet man die NĂŒtzlichkeit gĂ€ngiger Textretrievalsysteme aus dem Blickwinkel der medizinischen Fachsprache, dann mangelt es ihnen an morphologischer FunktionalitĂ€t (Flexion, Derivation und Komposition), lexikalisch-semantischer FunktionalitĂ€t und der FĂ€higkeit zu einer sprachĂŒbergreifenden Analyse großer DokumentenbestĂ€nde. In der vorliegenden Promotionsschrift werden die theoretischen Grundlagen des MorphoSaurus-Systems (ein Akronym fĂŒr Morphem-Thesaurus) behandelt. Dessen methodischer Kern stellt ein um Morpheme der medizinischen Fach- und Laiensprache gruppierter Thesaurus dar, dessen EintrĂ€ge mittels semantischer Relationen sprachĂŒbergreifend verknĂŒpft sind. Darauf aufbauend wird ein Verfahren vorgestellt, welches (komplexe) Wörter in Morpheme segmentiert, die durch sprachunabhĂ€ngige, konzeptklassenartige Symbole ersetzt werden. Die resultierende ReprĂ€sentation ist die Basis fĂŒr das sprachĂŒbergreifende, morphemorientierte Textretrieval. Neben der Kerntechnologie wird eine Methode zur automatischen Akquise von LexikoneintrĂ€gen vorgestellt, wodurch bestehende Morphemlexika um weitere Sprachen ergĂ€nzt werden. Die BerĂŒcksichtigung sprachĂŒbergreifender PhĂ€nomene fĂŒhrt im Anschluss zu einem neuartigen Verfahren zur Auflösung von semantischen AmbiguitĂ€ten. Die LeistungsfĂ€higkeit des morphemorientierten Textretrievals wird im Rahmen umfangreicher, standardisierter Evaluationen empirisch getestet und gĂ€ngigen Herangehensweisen gegenĂŒbergestellt
    • 

    corecore