5 research outputs found

    Bilingual Lexicon Induction through Unsupervised Machine Translation

    Full text link
    A recent research line has obtained strong results on bilingual lexicon induction by aligning independently trained word embeddings in two languages and using the resulting cross-lingual embeddings to induce word translation pairs through nearest neighbor or related retrieval methods. In this paper, we propose an alternative approach to this problem that builds on the recent work on unsupervised machine translation. This way, instead of directly inducing a bilingual lexicon from cross-lingual embeddings, we use them to build a phrase-table, combine it with a language model, and use the resulting machine translation system to generate a synthetic parallel corpus, from which we extract the bilingual lexicon using statistical word alignment techniques. As such, our method can work with any word embedding and cross-lingual mapping technique, and it does not require any additional resource besides the monolingual corpus used to train the embeddings. When evaluated on the exact same cross-lingual embeddings, our proposed method obtains an average improvement of 6 accuracy points over nearest neighbor and 4 points over CSLS retrieval, establishing a new state-of-the-art in the standard MUSE dataset.Comment: ACL 201

    Bilingual dictionary generation and enrichment via graph exploration

    Get PDF
    In recent years, we have witnessed a steady growth of linguistic information represented and exposed as linked data on the Web. Such linguistic linked data have stimulated the development and use of openly available linguistic knowledge graphs, as is the case with the Apertium RDF, a collection of interconnected bilingual dictionaries represented and accessible through Semantic Web standards. In this work, we explore techniques that exploit the graph nature of bilingual dictionaries to automatically infer new links (translations). We build upon a cycle density based method: partitioning the graph into biconnected components for a speed-up, and simplifying the pipeline through a careful structural analysis that reduces hyperparameter tuning requirements. We also analyse the shortcomings of traditional evaluation metrics used for translation inference and propose to complement them with new ones, both-word precision (BWP) and both-word recall (BWR), aimed at being more informative of algorithmic improvements. Over twenty-seven language pairs, our algorithm produces dictionaries about 70% the size of existing Apertium RDF dictionaries at a high BWP of 85% from scratch within a minute. Human evaluation shows that 78% of the additional translations generated for dictionary enrichment are correct as well. We further describe an interesting use-case: inferring synonyms within a single language, on which our initial human-based evaluation shows an average accuracy of 84%. We release our tool as free/open-source software which can not only be applied to RDF data and Apertium dictionaries, but is also easily usable for other formats and communities.This work was partially funded by the Prêt-à-LLOD project within the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 825182. This article is also based upon work from COST Action CA18209 NexusLinguarum, “European network for Web-centred linguistic data science”, supported by COST (European Cooperation in Science and Technology). It has been also partially supported by the Spanish projects TIN2016-78011-C4-3-R and PID2020-113903RB-I00 (AEI/FEDER, UE), by DGA/FEDER, and by the Agencia Estatal de Investigación of the Spanish Ministry of Economy and Competitiveness and the European Social Fund through the “Ramón y Cajal” program (RYC2019-028112-I)

    Itzulpen automatiko gainbegiratu gabea

    Get PDF
    192 p.Modern machine translation relies on strong supervision in the form of parallel corpora. Such arequirement greatly departs from the way in which humans acquire language, and poses a major practicalproblem for low-resource language pairs. In this thesis, we develop a new paradigm that removes thedependency on parallel data altogether, relying on nothing but monolingual corpora to train unsupervisedmachine translation systems. For that purpose, our approach first aligns separately trained wordrepresentations in different languages based on their structural similarity, and uses them to initializeeither a neural or a statistical machine translation system, which is further trained through iterative backtranslation.While previous attempts at learning machine translation systems from monolingual corporahad strong limitations, our work¿along with other contemporaneous developments¿is the first to reportpositive results in standard, large-scale settings, establishing the foundations of unsupervised machinetranslation and opening exciting opportunities for future research
    corecore