4 research outputs found

    A hybrid of differential search algorithm and flux balance analysis to: Identify knockout strategies for in silico optimization of metabolites production

    Get PDF
    An increasing demand of naturally producing metabolites has gained the attention of researchers to develop better algorithms for predicting the effects of reaction knockouts. With the success of genome sequencing, in silico metabolic engineering has aided the researchers in modifying the genome-scale metabolic network. However, the complexities of the metabolic networks, have led to difficulty in obtaining a set of knockout reactions, which eventually lead to increase in computational time. Hence, many computational algorithms have been developed. Nevertheless, most of these algorithms are hindered by the solution being trapped in the local optima. In this paper, we proposed a hybrid of Differential Search Algorithm (DSA) and Flux Balance Analysis (FBA), to identify knockout reactions for enhancing the production of desired metabolites. Two organisms namely Escherichia coli and Zymomonas mobilis were tested by targeting the production rate of succinic acid, acetic acid, and ethanol. From this experiment, we obtained the list of knockout reactions and production rate. The results show that our proposed hybrid algorithm is capable of identifying knockout reactions with above 70% of production rate from the wild-type

    A combinatorial algorithm for microbial consortia synthetic design

    Get PDF
    International audienceSynthetic biology has boomed since the early 2000s when it started being shown that it was possible to efficiently synthetize compounds of interest in a much more rapid and effective way by using other organisms than those naturally producing them. However, to thus engineer a single organism, often a microbe, to optimise one or a collection of metabolic tasks may lead to difficulties when attempting to obtain a production system that is efficient, or to avoid toxic effects for the recruited microorganism. The idea of using instead a microbial consortium has thus started being developed in the last decade. This was motivated by the fact that such consortia may perform more complicated functions than could single populations and be more robust to environmental fluctuations. Success is however not always guaranteed. In particular, establishing which consortium is best for the production of a given compound or set thereof remains a great challenge. This is the problem we address in this paper. We thus introduce an initial model and a method that enable to propose a consortium to synthetically produce compounds that are either exogenous to it, or are endogenous but where interaction among the species in the consortium could improve the production line. Synthetic biology has been defined by the European Commission as " the application of science, technology, and engineering to facilitate and accelerate the design, manufacture, and/or modification of genetic materials in living organisms to alter living or nonliving materials ". It is a field that has boomed since the early 2000s when in particular Jay Keasling showed that it was possible to efficiently synthetise a compound–artemisinic acid–which after a few more tricks then leads to an effective anti-malaria drug, artemisini

    Improved differential search algorithms for metabolic network optimization

    Get PDF
    The capabilities of Escherichia coli and Zymomonas mobilis to efficiently converting substrate into valuable metabolites have caught the attention of many industries. However, the production rates of these metabolites are still below the maximum threshold. Over the years, the organism strain design was improvised through the development of metabolic network that eases the process of exploiting and manipulating organism to maximize its growth rate and to maximize metabolites production. Due to the complexity of metabolic networks and multiple objectives, it is difficult to identify near-optimal knockout reactions that can maximize both objectives. This research has developed two improved modelling-optimization methods. The first method introduces a Differential Search Algorithm and Flux Balance Analysis (DSAFBA) to identify knockout reactions that maximize the production rate of desired metabolites. The latter method develops a non-dominated searching DSAFBA (ndsDSAFBA) to investigate the trade-off relationship between production rate and its growth rate by identifying knockout reactions that maximize both objectives. These methods were assessed against three metabolic networks – E.coli core model, iAF1260 and iEM439 for production of succinic acid, acetic acid and ethanol. The results revealed that the improved methods are superior to the other state-of-the-art methods in terms of production rate, growth rate and computation time. The study has demonstrated that the two improved modelling-optimization methods could be used to identify near-optimal knockout reactions that maximize production of desired metabolites as well as the organism’s growth rate within a shorter computation time
    corecore