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ABSTRACT 

The capabilities of Escherichia coli and Zymomonas mobilis to efficiently 

converting substrate into valuable metabolites have caught the attention of many 

industries. However, the production rates of these metabolites are still below the 

maximum threshold. Over the years, the organism strain design was improvised 

through the development of metabolic network that eases the process of exploiting and 

manipulating organism to maximize its growth rate and to maximize metabolites 

production. Due to the complexity of metabolic networks and multiple objectives, it is 

difficult to identify near-optimal knockout reactions that can maximize both 

objectives. This research has developed two improved modelling-optimization 

methods. The first method introduces a Differential Search Algorithm and Flux 

Balance Analysis (DSAFBA) to identify knockout reactions that maximize the 

production rate of desired metabolites. The latter method develops a non-dominated 

searching DSAFBA (ndsDSAFBA) to investigate the trade-off relationship between 

production rate and its growth rate by identifying knockout reactions that maximize 

both objectives. These methods were assessed against three metabolic networks – 

E.coli core model, iAF1260 and iEM439 for production of succinic acid, acetic acid 

and ethanol. The results revealed that the improved methods are superior to the other 

state-of-the-art methods in terms of production rate, growth rate and computation time. 

The study has demonstrated that the two improved modelling-optimization methods 

could be used to identify near-optimal knockout reactions that maximize production 

of desired metabolites as well as the organism’s growth rate within a shorter 

computation time. 
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ABSTRAK 

Keupayaan Escherichia coli dan Zymomonas mobilis untuk menukar substrat 

menjadi metabolit yang bernilai telah menarik perhatian banyak industri. Walau 

bagaimanapun, kadar penghasilan metabolit ini masih di bawah tahap maksima. 

Beberapa tahun kebelakangan, reka bentuk untaian organisma telah diperbaharui 

melalui penghasilan rangkaian metabolik yang memudahkan proses mengeksploitasi 

dan memanipulasi organisma untuk meningkatkan kadar pertumbuhan dan kadar 

penghasilan metabolit. Oleh kerana rangkaian metabolik dan pelbagai objektif yang 

komplek, ianya sukar untuk mengenal pasti tindak balas hampir optimal untuk 

disingkirkan bagi memaksimumkan dua objektif tersebut. Kajian ini telah 

membangunkan dua kaedah pengoptimuman-pemodelan yang lebih baik. Kaedah 

pertama memperkenalkan Differential Search Algorithm and Flux Balance Analysis 

(DSAFBA) untuk mengenal pasti tindak balas yang perlu disingkirkan bagi 

memaksimumkan kadar penghasilan metabolit yang dikehendaki. Kaedah kedua 

membangunkan non-dominated sorting DSAFBA (ndsDSAFBA) untuk menyelidik 

hubungan keseimbangan antara kadar penghasilan metabolit dan kadar pertumbuhan 

organisma dengan mengenal pasti tindak balas yang perlu disingkirkan bagi 

memaksimumkan kedua-dua objektif. Kaedah ini dinilai terhadap tiga rangkaian 

metabolik iaitu model teras E.coli, iAF1260 dan iEM439 untuk penghasilan asid 

suksinik, asid asetik dan etanol. Hasil kajian mendapati bahawa kaedah yang 

dicadangkan adalah lebih baik daripada kaedah lain yang kompetitif dari segi kadar 

penghasilan, kadar pertumbuhan dan masa pengiraan. Kajian ini menunjukkan bahawa 

kedua-dua kaedah pengoptimuman-pemodelan yang lebih baik ini dapat digunakan 

untuk mengenal pasti tindak balas penyingkiran yang paling optimal untuk 

memaksimumkan kadar penghasilan metabolit yang dikehendaki serta kadar 

pertumbuhan organism dalam masa pengiraan yang lebih pendek. 

  



viii 

TABLE OF CONTENTS 

 TITLE PAGE 

 

DECLARATION iii 

DEDICATION iv 

ACKNOWLEDGEMENT v 

ABSTRACT vi 

ABSTRAK vii 

TABLE OF CONTENTS viii 

LIST OF TABLES xii 

LIST OF FIGURES xiv 

LIST OF ABBREVIATIONS xviii 

LIST OF SYMBOLS xxii 

LIST OF APPENDICES xxiii 

CHAPTER 1 INTRODUCTION 1 

1.1 Overview 1 

1.2 Problem Background 3 

1.3 Problem Statement 8 

1.4 Research Goal and Objectives 10 

1.5 Scope of Study 11 

1.6 The Significance of This Study 12 

1.7 Thesis Structure 13 

CHAPTER 2 LITERATURE REVIEW 15 

2.1 Overview 15 

2.2 In silico Metabolic Engineering 17 

2.3 Constraint-Based Modelling 24 

2.3.1 Constraint-Based Modelling Approaches in 

Metabolic Engineering 27 

2.3.1.1 Flux Balance Analysis 27 



ix 

2.3.1.2 Flux Variability Analysis 30 

2.3.1.3 Minimization of Metabolic 

Adjustment (MoMA) 31 

2.3.1.4 Regulatory On/Off Minimization 

(ROOM) 32 

2.3.2 Applications and Comparison of Constraint-

Based Modelling (CBM) Approaches 33 

2.4 Computational Strain Optimization Methods in In 

Silico Metabolic Engineering 40 

2.4.1 Metaheuristic Optimization Algorithms 47 

2.4.2 Hybrid Metaheuristic Optimization and 

Constraint-Based Modelling Methods 52 

2.5 The Concept of Multiobjective Optimization 58 

2.5.1 Multiobjective Optimization Approaches 62 

2.5.2 Differences in Multiobjective Evolutionary 

Algorithms (MOEA) 63 

2.5.3 Multiobjective Optimization Methods in 

Metabolic Engineering 67 

2.6 Differential Search Algorithm (DSA) and Its 

Applications 70 

2.7 Trends and Directions in Metabolic Engineering 75 

2.8 Summary 77 

CHAPTER 3 RESEARCH METHODOLOGY 79 

3.1 Overview 79 

3.2 The Research Framework 80 

3.3 The Datasets and Case Study 83 

3.4 The Research Requirements 86 

3.5 The Performance Measurements of the Research 87 

3.6 Problem Descriptions 89 

3.7 Summary 93 

CHAPTER 4 AN IMPROVED DIFFERENTIAL SEARCH 

ALGORITHM AND FLUX BALANCE ANALYSIS (DSAFBA) 95 

4.1 Overview 95 



x 

4.2 An Improved Differential Search Algorithm and Flux 

Balance Analysis (DSAFBA) 96 

4.3 Pre-experimental Setup for Parameter Settings 109 

4.3.1 Biological Parameters 109 

4.3.2 Computational Parameters 113 

4.4 Experimental Results 117 

4.4.1 Case Study 1: Comparative Analysis of 

Improved Metaheuristic Algorithms and 

Constraint-based Modelling Approaches 118 

4.4.2 Case Study 2: Succinic Acid Production in 

Escherichia coli Core Model 122 

4.4.3 Case Study 3: Succinic Acid and Acetic Acid 

Productions in Escherichia coli (iAF1260) 126 

4.4.4 Case Study 4: Ethanol Production in 

Zymomonas mobilis (iEM439) 132 

4.5 Discussion 136 

4.6 Summary 139 

CHAPTER 5 NON-DOMINATED SORTING DSAFBA 

(ndsDSAFBA)  141 

5.1 Overview 141 

5.2 Non-dominated Sorting Strategy 143 

5.3 Non-dominated sorting Differential Search Algorithm 

and Flux Balance Analysis (ndsDSAFBA) 145 

5.4 Experimental Results 156 

5.4.1 Case Study 1: Succinic Acid Production in 

Escherichia coli core model 156 

5.4.2 Case Study 2: Succinic Acid and Acetic Acid 

Production in Escherichia coli, iAF1260 160 

5.4.3 Case Study 3: Succinic Acid Production in 

Zymomonas mobilis, iEM439 166 

5.5 Discussion 169 

5.6 Summary 173 

CHAPTER 6 CONCLUSION 175 

6.1 Conclusion 175 

6.2 The Research Contribution 176 



xi 

6.3 Future Works 178 

REFERENCES 179 

LIST OF PUBLICATIONS 206 

 

  



xii 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

Table 2.1 Differences between kinetic model and constraint-based 

model 21 

Table 2.2 Summary of the strategies applied in silico metabolic 

engineering 33 

Table 2.3 Summary of Constraint-based modelling approaches 38 

Table 2.4 Summary of computational strain optimization frameworks 

in in silico metabolic engineering 44 

Table 2.5 Comparison of DSA, PSO, BA, ACO, GA, and DE 

algorithms 49 

Table 2.6 Summary of metaheuristic algorithms 50 

Table 2.7 Summary of hybrid of metaheuristic optimization and 

constraint-based modelling (CBM) methods for strain 

design 54 

Table 2.8 List of Multiobjective Evolutionary Algorithms 66 

Table 2.9 List of MOEA in Metabolic Engineering 68 

Table 2.10 Advantages and disadvantages of multiobjective algorithms 

in metabolic engineering 69 

Table 2.11 Summary of applications and improvements made to 

Differential Search Algorithm 74 

Table 3.1 The details of the models used 83 

Table 3.2 Summary of models pre-processing 85 

Table 3.3 Pre-processed model and candidate reactions for the 

knockout 86 

Table 3.4 The summary of simulation conditions for each model 87 

Table 4.1 The parameters involved in the improved method, 

DSAFBA 108 

Table 4.2 Conditions used to simulate the medium 117 

Table 4.3 Result comparison of different evolutionary methods 118 

Table 4.4 Knockout reactions identified by methods 119 



xiii 

Table 4.5 Suggested knockout reactions obtained by different 

methods for succinic acid production in E.coli core model 123 

Table 4.6 Suggested knockout reactions obtained by different 

methods for succinic acid production in E.coli iAF1260 127 

Table 4.7 Suggested knockout reactions obtained by different 

methods of acetic acid production in E.coli iAF1260 130 

Table 4.8 Suggested knockout reactions obtained by different 

methods for ethanol production in Z.mobilis 133 

Table 4.9 Comparison of computation time (in sec) for different 

methods and organisms 136 

Table 4.10 p-value and t-stat values of DSAFBA and other methods 

(production rate) 138 

Table 5.1 Maximization of succinic acid production and growth rates 

in E.coli core model 157 

Table 5.2 Maximization of succinic acid production and growth rates 

in iAF1260 model 160 

Table 5.3 Maximization of acetic acid production and growth rates in 

iAF1260 model 163 

Table 5.4 Maximization of ethanol production and growth rates in 

iEM439 model 166 

Table 5.5 Comparison of results from SOO methods and MOO 

methods 171 

Table 5.6 Significant statistical test of ndsDSAFBA and DSAFBA for 

production rate and growth rate 172 

 

  



xiv 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

Figure 1.1 Overview of in silico metabolic engineering 2 

Figure 1.2 Complexity of metabolic network (left) lead to 

combinatorial problem (right) 4 

Figure 1.3 Example of optimization of two competing objectives (Oh 

et al., 2009) 7 

Figure 2.1 The content structure of Chapter 2 17 

Figure 2.2 Approaches in Metabolic Engineering 19 

Figure 2.3 Stoichiometric modelling framework (Kuepfer, 2014) 23 

Figure 2.4 Unconstrained (a) and constrained (b) solution space 25 

Figure 2.5 The conceptual basis of constraint-based modelling (Reed 

et al., 2003) 26 

Figure 2.6 Example of FBA formulation problem 28 

Figure 2.7 Relationship between production rate and growth rate, 

whereby solid line represents wild-type and dashed line 

represents mutant (Yen et al., 2015) 36 

Figure 2.8 Computational strain optimization methods in metabolic 

engineering 40 

Figure 2.9 Illustration of multiobjective optimization 59 

Figure 2.10 Overview of Multiobjective Optimization 62 

Figure 2.11 Differences in Multiobjective Evolutionary Algorithms 63 

Figure 3.1 The Research Framework 82 

Figure 3.2 Example network with five metabolites 90 

Figure 3.3 Holistic framework for solving in silico metabolic 

engineering 92 

Figure 4.1 Conventional DSA (Civicioglu, 2012) 97 

Figure 4.2 Proposed method, Differential Search Algorithm and Flux 

Balance Analysis (DSAFBA) 97 

Figure 4.3 Representation of knockout reactions in artificial-

organisms in DSAFBA 98 

file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224854
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224855
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224856
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224857
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224861
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224861
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224863
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224864
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224865
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224866
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224867
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224867
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224868
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224870
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224870


xv 

Figure 4.4 Illustration of initialization using reaction indices 99 

Figure 4.5 The flow of fitness evaluation using FBA 101 

Figure 4.6 Relationship between different variability towards product 

rate and growth rate 102 

Figure 4.7 Flowchart of Brownian-random walk motion 104 

Figure 4.8 Illustration of transforming real number of stopover, So to 

binary using Tanh function and modified Tanh (Mod. Tanh)

 106 

Figure 4.9  Illustration of the exploitation process using greedy rule 107 

Figure 4.10 Different number of reactions knockout in E.coli core 

model for the production of succinic acid 110 

Figure 4.11 Different number of reactions knockout in iAF1260 for the 

production of succinic acid 110 

Figure 4.12 Different number of reactions knockout in iAF1260 for the 

production of acetic acid 111 

Figure 4.13 Different number of reactions knockout in iEM439 for the 

production of ethanol 111 

Figure 4.14 Different artificial-organisms sizes towards the production 

rate in E.coli core model 114 

Figure 4.15 Different artificial-organisms sizes towards the production 

rate in iAF1260 114 

Figure 4.16 Different artificial-organisms sizes towards the production 

rate in iEM439 115 

Figure 4.17 Succinic acid product rate graph with a varying number of 

iterations 116 

Figure 4.18 Convergence graph of PSOFBA, ABCFBA, GAFBA and 

DSAFBA 120 

Figure 4.19  Comparison of FBA, MoMA and ROOM 121 

Figure 4.20 Comparison of succinic acid production and its growth rate 

obtained in E.coli core model 123 

Figure 4.21 Metabolic map of E.coli core model in optimizing the 

production of succinic acid. Red crosses mark to show the 

knockout reactions in italic and green arrows show the 

simulated flow of fluxes 125 

Figure 4.22 Comparison of succinic acid production and its growth rate 

obtained in iAF1260 127 

file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224871
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224872
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224874
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224875
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224875
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224875
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224876


xvi 

Figure 4.23 Metabolic map of iAF1260 in optimizing the production of 

succinic acid. Red crosses mark to show the knockout 

reactions in italic and green arrows show the simulated flow 

of fluxes 128 

Figure 4.24 Comparison of acetic acid production and its growth rate 

obtained in iAF1260 129 

Figure 4.25 Metabolic map of iAF1260 in optimizing the production of 

acetic acid. Red crosses mark to show the knockout 

reactions in italic and green arrows show the simulated flow 

of fluxes 131 

Figure 4.26 Comparison of product rate and growth rate obtained by 

different methods 133 

Figure 4.27 Metabolic map of iEM439 in optimizing the production of 

ethanol. Red crosses mark to show the knockout reactions 

in italic and green arrows show the simulated flow of fluxes

 135 

Figure 4.28 Convergence graph of DSAFBA for a different production 

of desired metabolites. The x-axis represents iteration 

whereas the y-axis represents the production rate 137 

Figure 5.1 Illustration of Pareto dominance and how to assign the 

Pareto front 144 

Figure 5.2 Flowchart of DSAFBA 146 

Figure 5.3 Flowchart of ndsDSAFBA. The grey box represents the 

improvement being made 146 

Figure 5.4 Representation of artificial-organisms in ndsDSAFBA 147 

Figure 5.5 Flow of fitness calculation 149 

Figure 5.6 Illustration of objective function evaluation and dominance 

used in this problem domain where 𝑍1 and 𝑍2 represent the 

growth rate and production rate, respectively 150 

Figure 5.7 Initialization of Superorganism 152 

Figure 5.8 Fitness evaluation using FBA where 𝑍1 and 𝑍2 represent 

the growth rate and production rate, respectively 153 

Figure 5.9 Illustration of non-dominated solutions and assignment of 

artificial organism to the respective Pareto front 153 

Figure 5.10 Illustration of step changes in artificial-organism 1 154 

Figure 5.11 Illustration of Stopover and fitness evaluation using FBA 

where 𝑍1 and 𝑍2 represent the growth rate and production 

rate, respectively 154 

file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224896
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224896
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224897
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224898
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224898
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224899
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224900
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224901
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224901
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224901
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224902
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224903
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224903
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224904
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224904
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224905
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224906
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224906
file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224906


xvii 

Figure 5.12 Illustration of exploitation using greedy rule 155 

Figure 5.13 Results for optimization of succinic acid production and 

growth rate in E.coli core model 158 

Figure 5.14 Metabolic map of E.coli core model in optimizing the 

production of succinic acid. Red crosses mark to show the 

knockout reactions in italic and green arrows show the 

simulated flow of fluxes 159 

Figure 5.15 Results for optimization of succinic acid production and 

growth rates in iAF1260 model 161 

Figure 5.16 Metabolic map of iAF1260 in optimizing the production of 

succinic acid. Red crosses mark to show the knockout 

reactions in italic and green arrows show the simulated flow 

of fluxes 162 

Figure 5.17 Results for optimization of acetic acid production and 

growth rate in iAF1260 model 163 

Figure 5.18 Metabolic map of iAF1260 in optimizing the production of 

acetic acid. Red crosses mark to show the knockout 

reactions in italic 165 

Figure 5.19 Results for optimization of ethanol production and growth 

rate in iEM439 model 167 

Figure 5.20 Metabolic map of iEM439 in optimizing the production of 

ethanol. Red crosses mark to show the knockout reactions 

in italic 168 

 

  

file:///J:/Thesis_PHD/FINALE_THESIS.docx%23_Toc25224907


xviii 

LIST OF ABBREVIATIONS 

ABC - Artificial Bee Colony 

ACALD - Acetaldehyde dehydrogenase 

ACKr - Acetate kinase 

ACO - Ant Colony Optimization 

AKGDH - 2-Oxogluterate dehydrogenase 

ATP - Adenosine triphosphate 

BA - Bees Algorithm 

BADE - Bat Algorithm based on the Differential Evolutionary 

Algorithm 

BATFBA - Bat Algorithm Flux Balance Analysis 

BB-BC - Big Bang–Big Crunch algorithm 

BPCY - Biomass Production Couple Yield 

CASOP - Computational Approach for Strain Optimization aiming at 

high Productivity 

CBM - Constraint Based Method 

CiED - Cipher Of Evolutionary Design 

cMCSs - constrained Minimal Cut Sets 

COBRA - Constraint-Based Reconstruction and Analysis Toolbox 

CS - Cuckoo Search 

CSOM - Computational Strain Optimization Method 

DBFBA - Differential Bees Flux Balance Analysis 

DE - Differential Evolution 

DHORD2 - Dihydoorotic acid dehydrogenase 2 

DMOEA - Dynamical Multiobjective Evolutionary Algorithm 

DNA - Deoxyribonucleic acid 

DSA - Differential Search Algorithm 

DSAFBA - Differential Search Algorithm Flux Balance Analysis 

EDA - 2-dehydro-3-deoxy-phosphogluconate aldolase 

EDD - 6-phosphogluconate dehydratase 

EMA - Elementary Mode Analysis 



xix 

ES - Evolution Strategies 

F6PA - Fructose 6-phosphate aldolase 

FBA - Flux Balance Analysis 

FBA - Fructose-bisphosphate aldolase 

FOCuS - Flower-pOllination-coupled Clonal Selection algorithm 

FPA - Flux Pathway Analysis 

FVA - Flux Variability Analysis 

G6PDH2r - Glucose 6-phosphate dehydrogenase 

GA - Genetic Algorithm 

GACOFBA - Genetic Ant Colony Optimization Flux Balance Analysis 

gDW - Gram dry weight 

GEPSVM - Generalized Eigenvalue Proximal Support Vector Machine 

GLUDy - Glutamate dehydrogenase 

GLUN - Glutaminase 

GLYCL - Glycine Cleavage System 

GND - Phosphogluconate dehydrogenase 

GSA - Gravitational Search Algorithm 

HDSA - Hyperheuristic Differential Search Algorithm 

HEX1 - Hexokinase  

hr - Hour 

IDOND - L-idonate 5-dehydrogenase 

JADE - Adaptive Differential Evolution 

KEGG - Kyoto Encyclopedia of Genes and Genomes 

LDH_D - D-lactate dehydrogenase 

LP - Linear Programming 

LPPFBA - Linear Physical Programming Flux Balance Analysis 

MCs - Minimal Cut set 

ME - Metabolic Engineering 

ME1 - Malic enzyme 1 

ME2 - Malic enzyme 2 

MEA - Multi-objective Evolutionary Algorithm  

Micro-GA - Micro Genetic Algorithm 

MILP - Mixed integer linear programming 



xx 

mmol - Milli mole 

MOEA - Multiobjective Optimization Evolutionary Algorithm 

MOGA - Multi-Objective Genetic Algorithms 

MoMA - Minimization of Metabolic Adjustment 

MOO - Multi-Objective Optimization 

MOP - Multiobjective Optimization Problem 

NBI - Normal Boundary Intersection 

ndsDSAFBA - non-dominated sorting Differential Search Algorithm Flux 

Balance Analysis 

NGAM - Non-growth ATP requirement 

NISE - Non-Inferior Set Estimation 

NPGA - Niched Pareto Genetic Algorithm 

NSGA - Non-dominated Sorting Genetic Algorithm 

ODE - Ordinary Differential Equations 

PAES - Pareto Archived Evolution Strategy  

PESA - Pareto Envelope-based Selection Algorithm 

PFL - Pyruvate formate lyase 

PGCD - Phosphoglycerate dehydrogenase 

PGI - Glucose-6-phosphate isomerase 

PSERT - Phosphoserine transaminase 

PSO - Particle Swarm Optimization 

PSOFBA - Particle Swarm Optimization Flux Balance Analysis 

PSOMCS - Particle Swarm Optimization Constrained Minimal cut Set 

PSP_L - Phosphoserine phosphatase 

PTAr - Phosphotransacetylase 

PYK - Pyruvate kinase 

QP - Quadratic Programming 

RDGA -  Rank-Density Based Genetic Algorithm 

ROOM - Regulatory On/Off Minimization 

RWGA - Random Weighted Genetic Algorithm 

SA - Simulated Annealing 

SEA - Set-based Evolutionary Algorithm 

SOO - Single Objective Optimization 



xxi 

SPEA - Strength Pareto Evolutionary Algorithm 

SPEA2 - Strength Pareto Evolutionary Algorithm 2 

SSGA - Scatter Search algorithm based on the Genetic Algorithm 

SUCDi - Succinate dehydrogenase 

SUCOAS - Succinyl-CoA synthetase 

TALA - Transaldolase 

VEGA - Vector Evaluated Genetic Algorithm 

WBGA - Weight-Based Genetic Algorithm 

WBGA-MO - Weight-Based Genetic Algorithm for Multiobjective 

Optimization 

XYL12 - Xylose isomerase 

  



xxii 

LIST OF SYMBOLS 

𝑣  - Vector of flux distributions 

𝑛, 𝑐  - Coefficients of stoichiometric matrix 

𝑚  - Metabolites  

𝑣𝑢𝑏  - Upper limits of each reaction 

𝑣𝑙𝑏  - Lower limits of each reaction 

𝑍𝑜𝑏𝑗  - Objective function to be optimized 

𝑃  - Amount of product produced 

𝐵  - Grams of biomass produced 

𝑆𝑜  - Stopover 

𝑆𝑂  - Superorganism 

𝑝1, 𝑝2  - Control parameters 

𝑃𝑅  - Product rate 

𝐺𝑅  - Growth rate 

𝑚𝑎𝑥𝐾𝑂𝑠  - Maximum number of reactions knockout 

𝐴𝑂  - Artificial-organism 

𝑃𝐹  - Pareto front 

maxIter - Maximum iteration 

  



xxiii 

LIST OF APPENDICES 

APPENDIX TITLE PAGE 

Appendix A Datasets 202 

 

 

 

 



1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

Ethanol, succinic acid and acetic acid are naturally synthesized in cell factories 

such as Escherichia coli, Zymomonas mobilis and Saccharomyces cerevisiae (Raab et 

al., 2010). These metabolites are useful in various applications such as 

pharmaceuticals, food processing and biofuel as they bring more profit to the global 

market such as the pharmaceutical industry (Davy et al., 2017). However, the 

productions of these metabolites are not sufficient as their production rates are 

theoretically below the maximum threshold. Given the intrinsic need of flexible and 

sustainable cell factories that can provide the maximum production of desired 

metabolites, these natural producers have been re-engineered and manipulated to 

overproduce desired metabolites. 

Due to the remarkable advancements in DNA sequencing technology, 

hundreds of metabolic networks have been curated and constructed. The advancements 

have provide new information, understanding and visualization of the processes 

involved in the systems biology. A metabolic network consists of all enzymes and 

transport proteins that are associated with reactions that determine the physiological 

and biochemical properties of the cell. Traditional techniques such as random 

mutagenesis and selection have been used to decipher the available information in the 

model. Using traditional techniques, genetic perturbations are conducted only based 

on a physical characteristic (Kim et al., 2015). However, it may affect the organisms’ 

stability and feasibility. Despite the great success, however, these techniques are 

tedious, time-consuming, irreversible and higher error rate (Maia, Rocha and Rocha, 

2016). Therefore, metabolic engineering has been introduced to engineer an efficient 

cell factory, considering that metabolic engineering can provide more understanding 

of the cell. 
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Metabolic engineering is an approach that exploits or improves the capabilities 

of organisms by manipulating enzymatic, transport and regulatory functions of the cell 

using recombinant DNA technology (Heirendt et al., 2017). The aim of metabolic 

engineering is to improve the microbial strain in order to economically and industrially 

produces the desired metabolites. Previously, the genome sequencing has allowed the 

biologists to curate the biological information of an organism into the network. As 

time went on, huge amount of information have been generated. However little amount 

of information is being analysed. The assistance of in silico metabolic engineering has 

allowed a new approach of redesigning and re-engineering the organism in order to 

produce desirable metabolic phenotypes.  

Figure 1.1 illustrates the overview of in silico metabolic engineering. Herein, 

the information pertaining to E.coli is represented in a metabolic network that consists 

of pathways, reactions, genes, and metabolites. By using the metabolic network as a 

template for simulating the effects of genotypic modifications, different genetic 

perturbation strategies can be applied. Furthermore, various methods and algorithms 

have been developed to optimize the metabolic network. In addition to that, the 

phenotypic characteristics of metabolic networks can be inferred, thus eventually 

produce a mutant strain with high production rate of desired metabolites and viable 

growth that can be applied in industrial manufacturing.  

 

Figure 1.1 Overview of in silico metabolic engineering  
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1.2 Problem Background 

Organisms have been used to manufacture commercially important products, 

from food additives to pharmaceuticals. These practices have begun around the year 

1940s for producing biochemical such as penicillin. In recent years, the continuous 

growth in global population and industries has resulted in increased demand of various 

products such as a wide array of antibiotics. The beginning of industrial revolution has 

shown the usage of organisms for manufacturing substances on a large scale by 

designing an efficient mutant strain. Initially, the design was based on random 

mutagenesis and selection (traditional approaches).  

However, there are several disadvantages of employing traditional approaches 

to improve the strains. Traditional approaches are based on intuitive design principles 

whereby brute force approach is being applied. This will lead to the undesired 

mutations that can occur elsewhere in the genome. Furthermore, the organisms usually 

abide to natural selection where the phenotypic and genotypic characteristics of an 

organism are based on population’s heritable traits while maximizing the growth rate 

(Rocha et al., 2008). Nevertheless, organism can be modify by adopting the adaptive 

evolution, yet the traditional approaches failed to capture these evolutions. Another 

disadvantages of traditional approaches include they are more prone to higher error 

rate, tedious and irreversible process as well as time consuming (Maia et al., 2016). 

Thus, computational power is needed to address the issue.  

Owing to the complexity of topological and regulatory metabolism of an 

organism, it is a pre-requisite to understand the organization and functional principles 

for each molecules and components in the organisms for engineering the strains. Thus, 

a systematic representation of the organism has been developed to view the whole 

metabolism processes that operates through a metabolic network. A metabolic network 

constitutes metabolites and reactions that are involved in generating energy and 

building of molecules for growth and maintenance of the cell. The metabolic network 

helps in rational design strategies for engineering the organisms, for example 

reaction/gene knockout.  



4 

However, the high connectivity in metabolic networks has caused issue in 

determining near-optimal set of knockout reactions. This is because, a metabolic 

network consists of thousands or hundreds of reactions, genes and metabolites that are 

interconnected among each other. This resulted in the complexity of the data. 

According to Hansen et al. (2017) and Wang et al. (2017), the complexity of metabolic 

network has resulted in the dimensions of solutions space becoming too large and 

exponentially increase the computational time. Furthermore, it has indirectly 

contributed to the combinatorial problem (Savoglidis et al., 2016).  

Figure 1.2 illustrates the complexity of metabolic network with different 

combinations of knockout reactions that can be simulated. In addition, as for an 

example, a metabolic network that consists of 92 reactions can have 9.3𝑒10 

combinations of 8 knockout reactions. Therefore, identifying near-optimal knockout 

reactions to optimize the production rate of desired metabolites and its growth rates 

are very challenging. 

 

Figure 1.2 Complexity of metabolic network (left) lead to combinatorial problem 

(right) 
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Metabolic engineering has been applied to the metabolic network by 

identifying near-optimal knockout reactions. The aim of metabolic engineering is to 

improve the microbial strain in order to optimize the production of desired metabolites 

and its growth rates (phenotypic characteristics). Using metabolic networks, the 

phenotypic characteristics can be predicted using constraint-based modelling (CBM) 

approaches. The CBM approaches have been developed and applied to analyse the 

effects of genetic perturbations for the past 25 years (Bordbar et al., 2014). CBM 

approaches such as Flux Balance Analysis (FBA), Flux Variability Analysis (FVA), 

Minimization of Metabolic Adjustment (MoMA) and Regulatory On/Off 

Minimization (ROOM) have been developed to evaluate the fluxes for each metabolite 

in the reactions.  

Based on the literature review, discussed in Chapter 2, FBA is promising for 

evaluating the fluxes of metabolites in reactions, due to FBA predicts the optimal long 

term evolved state of the mutant while the other three approaches provide intermediate 

outcome of genetic manipulations. However, FBA itself could not redesign the 

metabolic network for maximizing the production rate of desired metabolites and its 

growth rate. Therefore, FBA has been improved with metaheuristic algorithms to 

identify a set of reactions knockout that optimize the desired objective function.  

Metaheuristic algorithm is one of the most efficient optimization methods. It 

can be categorized into single solution and population based searches. The single 

solution searches operated by improving the single solution within the search space 

while population based searches improve a set of candidate solutions. In in silico 

metabolic engineering, single solution and population based searches have been 

applied to identify near-optimal knockout reactions/genes for improving the desired 

phenotypes. Methods such as OptGene, Set-based Evolutionary algorithm (SEA), 

Simulated Annealing (SA), Differential Bees Algorithm Flux Balance Analysis 

(DBAFBA), Genetic Ant Colony Optimization Flux Balance Analysis (GACOFBA) 

and others have been developed to address the issues in metabolic engineering.  
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However, methods such as OptGene and DBAFBA generate solutions that are 

over-optimistic whereby the suggested knockout genes/reactions produced high 

production rate of metabolites with lower growth rates (Mutturi, 2017). Therefore, 

population based evolutionary method such as Differential Search Algorithm (DSA) 

is a suitable candidate to solve the optimization problem (Civicioglu, 2013; Kurban et 

al., 2014; Abaci and Yamacli, 2016). The main advantage of DSA is it maintains a 

small number of population when dealing with large problem size. Eventually, it will 

reduces the computation time. Another advantage of DSA is the non-sensitivity 

towards the control parameters (Yang et al., 2013a). However, DSA has not yet been 

applied in identifying near-optimal knockout reactions. Furthermore, the conventional 

DSA only applicable for solving continuous problem whereby in this research, the 

problem of identifying knockout reactions are represented in binary.  

Besides that, another issue is the optimization of two objectives. In real-world 

problems, it involves optimization of several other objectives, such as by-products, 

growth rates, ATP minimization and others. Figure 1.3 illustrates the production of 

desired product versus the biomass production (growth rate). As shown in the figure, 

the production of poly-3-hyrdoxybutryrate (P-3HB) at maximum rate when the 

biomass production is 0 (a), while the production of P-3HB at the lowest rate when the 

biomass production is at the highest (d). Development of most strains design has been 

focused on optimizing of only one objective.  

Previously, the optimization techniques dealt with multiple objectives by 

combining them into a single objective function with individual weighted sum or treat 

one objective as a main objective function while the rest as constraints (Edgar et al., 

2001). These techniques are based on assumption that the multiple objectives will 

resolve at an optimal point, yet in most cases, it is unlikely to have the same optimal 

values for all objectives. Still, there are several disadvantages pertaining to these 

techniques. One of the disadvantages is no information about trade-offs among 

multiple competing objectives are provided. Furthermore, they provide only one near-

optimal solution rather than a set of solutions. Hence, identifying near-optimal 

knockout reactions that provide trade-offs between production rate and its growth rate 

are challenging.  
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Figure 1.3 Example of optimization of two competing objectives (Oh et al., 2009) 

FBA has issue in dealing with multiple objectives as it only deals with one 

single objective. Furthermore, methods such as OptGene, DBAFBA and others only 

focus on optimizing one single objective. Also, in multiobjective optimization problem 

(MOP), it is an exceptional to find a solution that simultaneously optimizes all the 

objective functions. Therefore, the verification of trade-offs among objectives are 

important for decision making of more realistic analysis. The trade-offs between 

production rate of metabolites and its growth rate are described by unique solutions 

whereby upon generation of the solution space of a given knockout reaction, the 

solutions that having the greatest growth rate was chosen to represent the expected 

phenotype of a mutant strain. 

Based on the discussion in Chapter 2, non-dominated sorting (nds) is a 

promising technique for identifying Pareto solution, due to nds utilizes the concept of 

dominance in selection process. Furthermore, nds is able to generate an entire set of 

Pareto solutions in a single run and it is less susceptible to the shape of Pareto curve 

(Gandibleux, 2006). Hence, the classical modelling-optimization that has been 

developed to solve the previous problem has been improved by incorporating nds 

strategy to identify non-dominated solutions.   
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1.3 Problem Statement  

Traditional approaches such as random mutagenesis and selection have been 

used for designing potential strains. However, these approaches has some limitations 

as they intuitively conducted based on certain physiological characteristics of the 

metabolism. This lead to increase experimental effort and costs. Moreover, the 

production rate of desired metabolites are still not satisfactorily increased (Zhao et al., 

2016). Since advent of omics, the information pertaining to the organism has been 

represented in a metabolic network. Still, due to the fact that metabolic network is 

consists of thousands of reactions that are interconnected among each other, one of the 

main concerns in improving strain design is to identify respective knockout reactions 

that can maximize the production rate of desired metabolites and its growth rate. This 

is because, only few reactions will affect the production of desired metabolites and 

majority of the reactions have no effect to the desired phenotype (Kim et al., 2015; 

Mutturi, 2017).  

In silico metabolic engineering problem can be depicted as an optimization 

problem where optimization methods is applied to find near-optimal knockout 

reactions to optimize the production rate of desired metabolites and its growth rates. 

Considering the metabolic network is usually an underdetermined system, CBM 

approaches are used to calculate the flux values (Park et al., 2009). Although most 

CBM approaches including FBA, MoMA and ROOM are applied to evaluate fluxes 

in metabolic network, unfortunately they could not optimize and redesign the 

metabolic network (Shabestary and Hudson, 2016). Many of the CBM approaches 

have been improved with metaheuristic algorithms such as Bees Algorithm (BA), 

Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Ant Colony 

Optimization (ACO). In these methods, the metaheuristic algorithms are used to find 

different combination of knockout reactions while CBM approaches are used to 

evaluate the fitness (production rate or growth rate) of the suggested knockout 

reactions. For example, methods such as IdealKnock, ReacKnock, Flower-pollination 

coupled clonal selection algorithm (FOCuS) and others were proposed and have been 

used in identifying knockout reactions for maximizing the production rate of desired 

metabolites (Xu et al., 2013; Gu et al., 2016; Mutturi, 2017). Despite the good 
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performance shown by these methods, the production rate of desired metabolites can 

still be improved as the different metaheuristic algorithms have different exploration 

and exploitation strategies. Furthermore, these methods produce results that are over-

optimistic (Patil et al., 2005; Rocha et al., 2008; Mutturi, 2017).  

Besides, limitation also arises from the multiple conflicting objectives that 

provides more valuable exploration of the organism potential in strain designing. 

Often, when dealing with MOP, the classical modelling-optimization methods does 

not cope efficiently due to they only focusing on optimization of single objective. 

Although bi-level optimization algorithms have been formulated and developed, 

however they provide only one single near-optimal solution at a time to the problem. 

Nevertheless, in many situations, a set of different trade-offs solutions are more 

desirable. Furthermore, method such as OptKnock transferred the bi-level 

optimization into a single-level mixed integer linear programme that can exponentially 

increase the computation time with the increase in problem dimensions (Wang and 

Wu, 2015). Furthermore, the predicted flux distributions do not represent the long-

term flux distributions that tend to optimize the growth rate only (Fong and Palsson, 

2004; Shabestary and Hudson, 2016).  

Hence, the main problem in this research is the complexity of metabolic 

network and existence of multiple competing objectives lead to the low production rate 

of desired metabolites and lack of information on the trade-off relationship between 

production rate and its growth rate. Thus, this research intends to address the 

aforementioned problems based on the following research questions:  

(a) How to identify near-optimal knockout reactions in the metabolic network in 

order to improve the production rate of desired metabolites? 

(b) How to ensure the near-optimal knockout reactions obtained can maximize the 

metabolites production rate and its growth rate in order to investigate the trade-

off relationship between production rate and growth rate? 
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1.4 Research Goal and Objectives  

The goal of this research is to propose improved optimization-modelling 

methods to efficiently identify near-optimal knockout reactions for maximizing the 

metabolites production rate and its growth rate.  

In order to achieve the goal of this research, two objectives have been 

identified:  

1. To propose an improved Differential Search Algorithm with Flux Balance 

Analysis (DSAFBA) in order to maximize the production of desired 

metabolites. 

2. To propose non-dominated sorting algorithm on DSAFBA (ndsDSAFBA) that 

is able to investigate the trade-off relationship between maximization of 

production rate and its growth.  
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1.5 Scope of Study  

This research is focusing on identifying combinations of reactions to be 

knockout from thousands and hundreds of reactions available in the genome-scale 

model that can enhance the production of desired metabolites and growth rate of the 

mutants. While there are other factors that may complicate the problem in identifying 

combinations of reactions to be knocked out, therefore, a list of scopes have been made 

in order to make this research traceable. The following are the scopes of this research: 

(a) Three metabolic networks are used, namely E.coli core model, iAF1260, and 

iEM439 from Escherichia coli and Zymomonas mobilis, respectively. The type 

of these datasets is Systems Biology Markup Language (SBML) in XML 

format.   

(b) The pre-processing steps are applied to the datasets by deleting essential 

reactions, transport reactions and peripheral reactions that are not related to the 

pathways of the desired metabolites.  

(c) The objectives function evaluated are the production rate of desired metabolites 

and growth rate of mutants. 

(d) Differential Search Algorithm and Flux Balance Analysis are used to identify 

combination of knockout reactions  

(e) Succinic acid, acetic acid and ethanol are targeted for maximization as they 

play important roles in the industry such as food processing, pharmaceuticals 

and others.  
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1.6 The Significance of This Study 

This research is considered significant in terms of computational and biological 

contributions. In metabolic engineering, organisms play an important role to maximize 

the production of desired metabolites as they serve as a natural producer or host for 

non-native production. With the reconstruction of the metabolic network at the 

genome-scale level, the simulations for genotypic perturbations has been made a 

success. For instance, the practice of knockout certain reactions has been made 

possible as scientists can select the respective reactions for knockout, thus, allow re-

engineering of the organisms towards more productive hosts (Maia, Rocha and Rocha, 

2016). Furthermore, with the intervention of computer simulation, the problems 

aroused due to the traditional techniques can be avoided, therefore, the solutions 

obtained via in silico can be used as prior knowledge for a wet lab experiment.  

Secondly, the design and development of improved methods which utilizes the 

advantages of the searching strategy in DSA may enhance the accuracy in finding the 

respective reactions that can contribute to the production of desired metabolites. 

Furthermore, the ability of DSA to not directly go to the optimum results may 

overcome the premature convergence poses by previously developed methods. Thus, 

it can successfully find the proper respective solutions and omit solutions being 

trapped in local optima. On the other hand, various researches have been focusing on 

the development of hybrid methods such as OptForce, FPA, CSA, PSO, and BA in 

solving in silico metabolic engineering problem. However, the problems still persist 

and limited to maximize only a single objective, which contradicts with the real world 

problems that involve multiple conflicting objectives. Therefore, in this research, 

metaheuristic algorithm, DSA, has been improved in dealing with competing 

objectives by incorporating non-dominated strategy. The significance of this study is 

to obtain near-optimal solutions of production rate and growth rate without trapped in 

local optima.  
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