261 research outputs found

    Off-line processing of ERS-1 synthetic aperture radar data with high precision and high throughput

    Get PDF
    The first European remote sensing satellite ERS-1 will be launched by the European Space Agency (ESA) in 1989. The expected lifetime is two to three years. The spacecraft sensors will primarily support ocean investigations and to a limited extent also land applications. Prime sensor is the Active Microwave Instrumentation (AMI) operating in C-Band either as Synthetic Aperture Radar (SAR) or as Wave-Scatterometer and simultaneously as Wind-Scatterometer. In Europe there will be two distinct types of processing for ERS-1 SAR data, Fast Delivery Processing and Precision Processing. Fast Delivery Proceessing will be carried out at the ground stations and up to three Fast Delivery products per pass will be delivered to end users via satellite within three hours after data acquisition. Precision Processing will be carried out in delayed time and products will not be generated until several days or weeks after data acquisition. However, a wide range of products will be generated by several Processing and Archiving Facilities (PAF) in a joint effort coordinated by ESA. The German Remote Sensing Data Center (Deutsches Fernerkundungsdatenzentrum DFD) will develop and operate one of these facilities. The related activities include the acquisition, processing and evaluation of such data for scientific, public and commercial users. Based on this experience the German Remote Sensing Data Center is presently performing a Phase-B study regarding the development of a SAR processor for ERS-1. The conceptual design of this processing facility is briefly outlined

    Selected bibliography of remote sensing

    Get PDF
    Bibliography of remote sensing techniques for analysis and assimilation of geographic dat

    Potenziale der Photogrammetrie bei der Vermessung von Verarbeitungsmaschinen

    Get PDF
    Um die Prozessstabilität in Verarbeitungsmaschinen auch bei hohen Ausbringungen bewerten und darauf aufbauend sicherstellen zu können ist eine geometrisch-kinematische Analyse des realen Verarbeitungsprozesses notwendig. Dazu wird im Beitrag ein optisches Hochgeschwindigkeits-Mehrkamera-Messsystem vorgestellt, mit dem auch schnelle Prozesse berührungslos analysiert werden können. Es wird gezeigt, wie durch die Zusammenführung von Bewegungsanalyse und Daten aus der Maschinensteuerung der Informationsgehalt und damit auch die Aussagefähigkeit von Messungen deutlich erhöht werden kann. Als Beispielprozess wird der intermittierende Transport kleinformatiger Stückgüter (z.B. Schokoladenriegel) gewählt

    AUFNAHMEGERÄTE FÜR BILDMESSUNG IM NAHBEREICH

    Get PDF

    ERTS-1 image enhancement by optically combining density slices

    Get PDF
    The technique of density slicing using a photographic film and its application to enhancement of ERTS-1 imagery has proved to be useful for mapping varigated areal phenomena and provides a useful supplement ot the I2S MiniAddcol viewing system. The intial experiments conducted with this film were encouraging, and indicated that this technique of density slicing using readily accessible darkroom facilities and simple darkroom procedures allows rapid, accurate, and facile interpretation of certain areal phenomena to be made from the imagery. The distribution of the tree yucca, Yucca brevifolia Jaegeriana, in the eastern Mojave Desert of Southern California and southern Nevada was used as an example to test the accuracy of the technique for mapping purposes. The distribution was mapped at a relatively high level of accuracy

    Methodik zur Modellierung von photogrammetrischen Messungen zur Charakterisierung der Genauigkeit von Werkzeugmaschinen

    Get PDF
    An Werkzeugmaschinen können steuerungsintegrierte geometrisch-kinematische Korrekturmodelle, wie z.B. das VCS, sowie Laserinterferometer und Lasertracker zur Bestimmung von Korrekturparametern als Stand der Technik angesehen werden. Defizite bestehen derzeit in der Charakterisierung des genauigkeitsrelevanten Maschinenzustandes durch Bestimmung von Verformungen sowie der räumlichen Lagevermessung bewegter Maschinenbaugruppen im gesamten Arbeitsraum. Photogrammetrische Verfahren sind zwar prinzipiell in der Lage, dies zu realisieren, erreichen aber nicht die notwendige Genauigkeit und können hinsichtlich der Anzahl der Kameras und des Sichtfeldes nicht an die räumlichen Gegebenheiten einer Werkzeugmaschine angepasst werden. Ziel dieser Arbeit ist die Entwicklung eines photogrammetrischen Verfahrens zur Charakterisierung des Maschinenzustandes mit hoher Genauigkeit. Grundlage ist ein Messmodell, in dem die kinematische Struktur und die Messanordnung zusammengeführt wird. Weiterhin werden alle Objektzustände zusammengeführt, um einen möglichst hohen Informationsgehalt zu erreichen und diesen für statistische Auswertungen zugänglich zu machen. Zur Verifizierung werden Analysen von Komponenten und Maschinen sowie die Simulation von Messungen vorgestellt. Dabei wird die kinematische Achsanordnung im Messmodell berücksichtigt, was sowohl die Erstellung optimierter Messkonfigurationen als auch die direkte Parameterermittlung von Korrekturmodellen ermöglicht. Für die Bestimmung thermo-elastischer Verlagerungen an einem Hexapod wird eine erweiterte 6DoF-Messkonfiguration, bestehend aus stationären und mit der Maschine bewegten Kameras, vorgestellt. Damit können Messunsicherheiten von weniger als 10 μm bzw. 10 μm /m in einem Messvolumen von 600 mm x 600 mm x 400 mm experimentell verifiziert werden. Im Mittelpunkt steht dabei die Entwicklung eines Modellierungskonzepts für photogrammetrische Messungen. Anhand von Beispielmessungen wird gezeigt, dass dadurch die erzielbare Messgenauigkeit deutlich erhöht werden kann. Im Vordergrund steht dabei die Kombination der Modelle von Maschine und Messsystem sowie des Messzyklus in einem geschlossenen Messmodell. Durch die Entwicklungen im Bereich Industrie 4.0 besteht ein zunehmender Bedarf, Maschinen zu konfigurieren und zu kalibrieren. Gleichzeitig verbessern sich Leistung, Verfügbarkeit und Zugänglichkeit von maschinenspezifischen Modellen. Die Kombination von maschinenspezifischen Modellen mit Modellen der Messsysteme unter Verwendung der entwickelten Methodik ermöglicht eine deutliche Erhöhung der Messgenauigkeit.:Inhaltsverzeichnis 1 Einleitung und Motivation 1 1.1 Bedeutung und Genauigkeit von Werkzeugmaschinen 2 1.2 Erfassung der Genauigkeit 4 1.3 Anforderungen der Industrie 4.0 an WZM 5 1.4 Inhalt und Aufbau dieser Arbeit 6 2 Aufbau, Verhalten und Korrektur von WZM 9 2.1 Kinematischer Aufbau von WZM 10 2.2 Fertigungs- und Maschinengenauigkeit 11 2.3 Genauigkeitsbestimmende Verhaltensbereiche 13 2.4 Steuerungsintegrierte Korrektur 18 2.5 Methoden zur Erfassung von Abweichungen 20 2.6 Typische Messmittel an WZM 21 2.7 Defizite 29 3 Photogrammetrische Methoden 33 3.1 Bildentstehung 34 3.2 Bildverarbeitung 38 3.3 Objektrekonstruktion 41 3.4 Genauigkeitskenngrößen 50 3.5 Auswertemethoden 53 3.6 Potenziale und Defizite 59 4 Konkretisierung der Zielstellung 61 4.1 Bedarf 62 4.2 Zielstellung 63 4.3 Methodik 63 5 Entwicklung eines Modellierungskonzeptes für WZM 65 5.1 Struktur und Parameter der Modelle 66 5.2 Genauigkeitsrelevante Einflussgrößen 70 5.3 Modellierungskonzept 78 5.4 Beispielhafte Modellierung: DMU80 90 6 Realisierung und Test der Modellumgebung 95 6.1 Hard- und Softwarekonzept 96 6.2 Softwarekomponenten 97 6.3 Bildaufnahme und Bildspeicher 98 6.4 Realisierung und Test der Bildmessung 99 6.5 Implementierung der Modellkomponenten 107 6.6 Realisierung und Test der Ausgleichungskomponente 109 6.7 Verifikation der 3D-Koordinatenbestimmung 111 6.8 Zwischenfazit 112 7 Experimentelle Verifikation 113 7.1 Komponentenanalyse 115 7.2 Analyse von Maschinen 131 7.3 Simulation von Messkonfigurationen 144 8 Zusammenfassung und Ausblic

    Orientation Problem of SLAR Imagery

    Get PDF
    This report treats the orientation and restitution problem of SLAR imagery theoretically. The orientation problem is discussed for single SLAR configuration and also for stereo SLAR configuration. For the former, this paper proposed an analytical orientation method constructed on the geometrical basis of SLAR imagery already studied. For the latter, the author developed an orientation technique to calculate the exterior orientation parameters of the antenna for stereo SLAR imageries simultaneously. With this method the analysis of SLAR imagery may be performed three-dimensionally and more accurately than before. In both cases, some functional form, such as polynomials and Fourier's series, is used to model the behaviors of the exterior orientation elements of the antenna along the flight path, as in the analysis of MSS imagery. Linearizing the determination equations for the orientation problem of single SLAR imagery, one obtains error equations for the restitution problem of SLAR imagery. This report introduced simple restitution methods of SLAR imagery for a flat terrain and also for a hilly ground surface, and further, clarified some characteristics

    De fotokaart

    Get PDF
    Rede Wageninge

    Integration of SAR and DEM data: Geometrical considerations

    Get PDF
    General principles for integrating data from different sources are derived from the experience of registration of SAR images with digital elevation models (DEM) data. The integration consists of establishing geometrical relations between the data sets that allow us to accumulate information from both data sets for any given object point (e.g., elevation, slope, backscatter of ground cover, etc.). Since the geometries of the two data are completely different they cannot be compared on a pixel by pixel basis. The presented approach detects instances of higher level features in both data sets independently and performs the matching at the high level. Besides the efficiency of this general strategy it further allows the integration of additional knowledge sources: world knowledge and sensor characteristics are also useful sources of information. The SAR features layover and shadow can be detected easily in SAR images. An analytical method to find such regions also in a DEM needs in addition the parameters of the flight path of the SAR sensor and the range projection model. The generation of the SAR layover and shadow maps is summarized and new extensions to this method are proposed

    Versuch über K. O. Götz

    Get PDF
    corecore