25 research outputs found

    DDP-GCN: Multi-Graph Convolutional Network for Spatiotemporal Traffic Forecasting

    Full text link
    Traffic speed forecasting is one of the core problems in Intelligent Transportation Systems. For a more accurate prediction, recent studies started using not only the temporal speed patterns but also the spatial information on the road network through the graph convolutional networks. Even though the road network is highly complex due to its non-Euclidean and directional characteristics, previous approaches mainly focus on modeling the spatial dependencies only with the distance. In this paper, we identify two essential spatial dependencies in traffic forecasting in addition to distance, direction and positional relationship, for designing basic graph elements as the smallest building blocks. Using the building blocks, we suggest DDP-GCN (Distance, Direction, and Positional relationship Graph Convolutional Network) to incorporate the three spatial relationships into prediction network for traffic forecasting. We evaluate the proposed model with two large-scale real-world datasets, and find 7.40% average improvement for 1-hour forecasting in highly complex urban networks

    Hourly Demand Prediction of Shared Mobility Ridership

    Get PDF
    This research focuses on predicting the hourly number of bikes needed using Citi bike data. Micro mobility is the new trend that serves the transportation sector in any city. With the development of technology and introduction of new modes, comes new challenges. Bike sharing is the most developed and standard micro mobility device with extensive data sources. In this research we introduce the rebalancing bike sharing problem, which is very recent and interesting problem. Bikes are being ridden from a station and returned to another, not necessarily the same one of departure, this procedure can cause some stations to be empty while others to be full, as a result, there is a need for a method by which distribution of bikes among stations are done. Using year-round historical trip data obtained from one of the famous bike operators in New York that is Citi bike. The study aims to find the factors affecting bike ridership and then by utilizing some predictive algorithms such as, regression models, k-means, decision trees and random forest a model will be created to estimate the number of bikes needed in an hourly basis regardless of any specific stations initially. Where accuracy will be eventually calculated. The testing will be initially evaluating the data of Citi bike in New York, however, the same can be utilized to evaluate data from other cities worldwide and operators, as well as other micro mobility modes such as e-scooters, mopeds, and others. Initially the Prediction problem will be evaluated against the current data available in the open-source Citi-Bike data, however, weather factors, bike infrastructure, and some other open-source data can be integrated for better results

    D3P : Data-driven demand prediction for fast expanding electric vehicle sharing systems

    Get PDF
    The future of urban mobility is expected to be shared and electric. It is not only a more sustainable paradigm that can reduce emissions, but can also bring societal benefits by offering a more affordable on-demand mobility option to the general public. Many car sharing service providers as well as automobile manufacturers are entering the competition by expanding both their EV fleets and renting/returning station networks, aiming to seize a share of the market and to bring car sharing to the zero emissions level. During their fast expansion, one determinant for success is the ability of predicting the demand of stations as the entire system is growing continuously. There are several challenges in this demand prediction problem: First, unlike most of the existing work which predicts demand only for static systems or at few stages of expansion, in the real world we often need to predict the demand as or even before stations are being deployed or closed, to provide information and decision support. Second, for the new stations to be deployed, there is no historical data available to help the prediction of their demand. Finally, the impact of deploying/closing stations on the other stations in the system can be complex. To address these challenges, we formulate the demand prediction problem in the context of fast expanding electric vehicle sharing systems, and propose a data-driven demand prediction approach which aims to model the expansion dynamics directly from the data. We use a local temporal encoding process to handle the historical data for each existing station, and a dynamic spatial encoding process to take correlations between stations into account with Graph Convolutional Neural Networks (GCN). The encoded features are fed to a multi-scale predictor, which forecasts both the long-term expected demand of the stations and their instant demand in the near future. We evaluate the proposed approach with real-world data collected from a major EV sharing platform for one year. Experimental results demonstrate that our approach significantly outperforms the state of the art, showing up to three-fold performance gain in predicting demand for the expanding EV sharing systems

    Learning Mobility Flows from Urban Features with Spatial Interaction Models and Neural Networks

    Full text link
    A fundamental problem of interest to policy makers, urban planners, and other stakeholders involved in urban development projects is assessing the impact of planning and construction activities on mobility flows. This is a challenging task due to the different spatial, temporal, social, and economic factors influencing urban mobility flows. These flows, along with the influencing factors, can be modelled as attributed graphs with both node and edge features characterising locations in a city and the various types of relationships between them. In this paper, we address the problem of assessing origin-destination (OD) car flows between a location of interest and every other location in a city, given their features and the structural characteristics of the graph. We propose three neural network architectures, including graph neural networks (GNN), and conduct a systematic comparison between the proposed methods and state-of-the-art spatial interaction models, their modifications, and machine learning approaches. The objective of the paper is to address the practical problem of estimating potential flow between an urban development project location and other locations in the city, where the features of the project location are known in advance. We evaluate the performance of the models on a regression task using a custom data set of attributed car OD flows in London. We also visualise the model performance by showing the spatial distribution of flow residuals across London.Comment: 9 pages, 5 figures, to be published in the Proceedings of 2020 IEEE International Conference on Smart Computing (SMARTCOMP 2020

    Modeling Heterogeneous Relations across Multiple Modes for Potential Crowd Flow Prediction

    Full text link
    Potential crowd flow prediction for new planned transportation sites is a fundamental task for urban planners and administrators. Intuitively, the potential crowd flow of the new coming site can be implied by exploring the nearby sites. However, the transportation modes of nearby sites (e.g. bus stations, bicycle stations) might be different from the target site (e.g. subway station), which results in severe data scarcity issues. To this end, we propose a data driven approach, named MOHER, to predict the potential crowd flow in a certain mode for a new planned site. Specifically, we first identify the neighbor regions of the target site by examining the geographical proximity as well as the urban function similarity. Then, to aggregate these heterogeneous relations, we devise a cross-mode relational GCN, a novel relation-specific transformation model, which can learn not only the correlations but also the differences between different transportation modes. Afterward, we design an aggregator for inductive potential flow representation. Finally, an LTSM module is used for sequential flow prediction. Extensive experiments on real-world data sets demonstrate the superiority of the MOHER framework compared with the state-of-the-art algorithms.Comment: Accepted by the 35th AAAI Conference on Artificial Intelligence (AAAI 2021
    corecore