142,708 research outputs found

    Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning

    Get PDF
    This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/ licenses/by/4.0

    Two-Dimensional Spectroscopy of Photospheric Shear Flows in a Small delta Spot

    Full text link
    In recent high-resolution observations of complex active regions, long-lasting and well-defined regions of strong flows were identified in major flares and associated with bright kernels of visible, near-infrared, and X-ray radiation. These flows, which occurred in the proximity of the magnetic neutral line, significantly contributed to the generation of magnetic shear. Signatures of these shear flows are strongly curved penumbral filaments, which are almost tangential to sunspot umbrae rather than exhibiting the typical radial filamentary structure. Solar active region NOAA 10756 was a moderately complex, beta-delta sunspot group, which provided an opportunity to extend previous studies of such shear flows to quieter settings. We conclude that shear flows are a common phenomenon in complex active regions and delta spots. However, they are not necessarily a prerequisite condition for flaring. Indeed, in the present observations, the photospheric shear flows along the magnetic neutral line are not related to any change of the local magnetic shear. We present high-resolution observations of NOAA 10756 obtained with the 65-cm vacuum reflector at Big Bear Solar Observatory (BBSO). Time series of speckle-reconstructed white-light images and two-dimensional spectroscopic data were combined to study the temporal evolution of the three-dimensional vector flow field in the beta-delta sunspot group. An hour-long data set of consistent high quality was obtained, which had a cadence of better than 30 seconds and sub-arcsecond spatial resolution.Comment: 23 pages, 6 gray-scale figures, 4 color figures, 2 tables, submitted to Solar Physic

    Anomaly Detection in Multivariate Non-stationary Time Series for Automatic DBMS Diagnosis

    Full text link
    Anomaly detection in database management systems (DBMSs) is difficult because of increasing number of statistics (stat) and event metrics in big data system. In this paper, I propose an automatic DBMS diagnosis system that detects anomaly periods with abnormal DB stat metrics and finds causal events in the periods. Reconstruction error from deep autoencoder and statistical process control approach are applied to detect time period with anomalies. Related events are found using time series similarity measures between events and abnormal stat metrics. After training deep autoencoder with DBMS metric data, efficacy of anomaly detection is investigated from other DBMSs containing anomalies. Experiment results show effectiveness of proposed model, especially, batch temporal normalization layer. Proposed model is used for publishing automatic DBMS diagnosis reports in order to determine DBMS configuration and SQL tuning.Comment: 8 page

    iMapD: intrinsic Map Dynamics exploration for uncharted effective free energy landscapes

    Full text link
    We describe and implement iMapD, a computer-assisted approach for accelerating the exploration of uncharted effective Free Energy Surfaces (FES), and more generally for the extraction of coarse-grained, macroscopic information from atomistic or stochastic (here Molecular Dynamics, MD) simulations. The approach functionally links the MD simulator with nonlinear manifold learning techniques. The added value comes from biasing the simulator towards new, unexplored phase space regions by exploiting the smoothness of the (gradually, as the exploration progresses) revealed intrinsic low-dimensional geometry of the FES

    Non-local updates for quantum Monte Carlo simulations

    Full text link
    We review the development of update schemes for quantum lattice models simulated using world line quantum Monte Carlo algorithms. Starting from the Suzuki-Trotter mapping we discuss limitations of local update algorithms and highlight the main developments beyond Metropolis-style local updates: the development of cluster algorithms, their generalization to continuous time, the worm and directed-loop algorithms and finally a generalization of the flat histogram method of Wang and Landau to quantum systems.Comment: 14 pages, article for the proceedings of the "The Monte Carlo Method in the Physical Sciences: Celebrating the 50th Anniversary of the Metropolis Algorithm", Los Alamos, June 9-11, 200

    Learning Vine Copula Models For Synthetic Data Generation

    Full text link
    A vine copula model is a flexible high-dimensional dependence model which uses only bivariate building blocks. However, the number of possible configurations of a vine copula grows exponentially as the number of variables increases, making model selection a major challenge in development. In this work, we formulate a vine structure learning problem with both vector and reinforcement learning representation. We use neural network to find the embeddings for the best possible vine model and generate a structure. Throughout experiments on synthetic and real-world datasets, we show that our proposed approach fits the data better in terms of log-likelihood. Moreover, we demonstrate that the model is able to generate high-quality samples in a variety of applications, making it a good candidate for synthetic data generation

    Invaded cluster algorithm for Potts models

    Full text link
    The invaded cluster algorithm, a new method for simulating phase transitions, is described in detail. Theoretical, albeit nonrigorous, justification of the method is presented and the algorithm is applied to Potts models in two and three dimensions. The algorithm is shown to be useful for both first-order and continuous transitions and evidently provides an efficient way to distinguish between these possibilities. The dynamic properties of the invaded cluster algorithm are studied. Numerical evidence suggests that the algorithm has no critical slowing for Ising models.Comment: 39 pages, revtex, 15 figures available on request from [email protected], to appear in Phys. Rev.
    corecore